Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nucleic Acids Res ; 46(17): 8993-9010, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30124912

RESUMEN

Trypanosoma brucei live in mammals as bloodstream forms and in the Tsetse midgut as procyclic forms. Differentiation from one form to the other proceeds via a growth-arrested stumpy form with low messenger RNA (mRNA) content and translation. The parasites have six eIF4Es and five eIF4Gs. EIF4E1 pairs with the mRNA-binding protein 4EIP but not with any EIF4G. EIF4E1 and 4EIP each inhibit expression when tethered to a reporter mRNA, but while tethered EIF4E1 suppresses only when 4EIP is present, suppression by tethered 4EIP does not require the interaction with EIF4E1. In growing bloodstream forms, 4EIP is preferentially associated with unstable mRNAs. Bloodstream- or procyclic-form trypanosomes lacking 4EIP have only a marginal growth disadvantage. Bloodstream forms without 4EIP are, however, defective in translation suppression during stumpy-form differentiation and cannot subsequently convert to growing procyclic forms. Intriguingly, the differentiation defect can be complemented by a truncated 4EIP that does not interact with EIF4E1. In contrast, bloodstream forms lacking EIF4E1 have a growth defect, stumpy formation seems normal, but they appear unable to grow as procyclic forms. We suggest that 4EIP and EIF4E1 fine-tune mRNA levels in growing cells, and that 4EIP contributes to translation suppression during differentiation to the stumpy form.


Asunto(s)
Factor 4E Eucariótico de Iniciación/genética , Estadios del Ciclo de Vida/genética , Biosíntesis de Proteínas , Proteínas Protozoarias/genética , ARN Mensajero/genética , Trypanosoma brucei brucei/genética , Secuencia de Aminoácidos , Factor 4E Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica , Leishmania major/genética , Leishmania major/crecimiento & desarrollo , Leishmania major/metabolismo , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Protozoarias/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma brucei brucei/metabolismo
2.
RNA Biol ; 15(9): 1206-1214, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30235972

RESUMEN

Antisense transcription emerges as a key regulator of important biological processes in the human malaria parasite Plasmodium falciparum. RNA-processing factors, however, remain poorly characterized in this pathogen. Here, we purified the multiprotein RNA exosome complex of malaria parasites by affinity chromatography, using HA-tagged PfRrp4 and PfDis3 as the ligands. Seven distinct core exosome subunits (PfRrp41, PfMtr3, PfRrp42, PfRrp45, PfRrp4, PfRrp40, PfCsl4) and two exoribonuclease proteins PfRrp6 and PfDis3 are identified by mass spectrometry. Western blot analysis detects Dis3 and Rrp4 predominantly in the cytoplasmic fraction during asexual blood stage development. An inducible gene knock out of the PfDis3 subunit reveals the upregulation of structural and coding RNA, but the vast majority belongs to antisense RNA. Furthermore, we detect numerous types of cryptic unstable transcripts (CUTs) linked to virulence gene families including antisense RNA in the rif gene family. Our work highlights the limitations of steady-state RNA analysis to predict transcriptional activity and link the RNA surveillance machinery directly with post-transcriptional control and gene expression in malaria parasites.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/genética , ARN sin Sentido/metabolismo , Proteínas de Unión al ARN/genética
3.
BMC Genomics ; 17: 306, 2016 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-27118143

RESUMEN

BACKGROUND: Trypanosoma brucei is a unicellular parasite which multiplies in mammals (bloodstream form) and Tsetse flies (procyclic form). Trypanosome RNA polymerase II transcription is polycistronic, individual mRNAs being excised by trans splicing and polyadenylation. We previously made detailed measurements of mRNA half-lives in bloodstream and procyclic forms, and developed a mathematical model of gene expression for bloodstream forms. At the whole transcriptome level, many bloodstream-form mRNAs were less abundant than was predicted by the model. RESULTS: We refined the published mathematical model and extended it to the procyclic form. We used the model, together with known mRNA half-lives, to predict the abundances of individual mRNAs, assuming rapid, unregulated mRNA processing; then we compared the results with measured mRNA abundances. Remarkably, the abundances of most mRNAs in procyclic forms are predicted quite well by the model, being largely explained by variations in mRNA decay rates and length. In bloodstream forms substantially more mRNAs are less abundant than predicted. We list mRNAs that are likely to show particularly slow or inefficient processing, either in both forms or with developmental regulation. We also measured ribosome occupancies of all mRNAs in trypanosomes grown in the same conditions as were used to measure mRNA turnover. In procyclic forms there was a weak positive correlation between ribosome density and mRNA half-life, suggesting cross-talk between translation and mRNA decay; ribosome density was related to the proportion of the mRNA on polysomes, indicating control of translation initiation. Ribosomal protein mRNAs in procyclics appeared to be exceptionally rapidly processed but poorly translated. CONCLUSIONS: Levels of mRNAs in procyclic form trypanosomes are determined mainly by length and mRNA decay, with some control of precursor processing. In bloodstream forms variations in nuclear events play a larger role in transcriptome regulation, suggesting aquisition of new control mechanisms during adaptation to mammalian parasitism.


Asunto(s)
Estabilidad del ARN , ARN Mensajero/genética , ARN Protozoario/genética , Proteínas Ribosómicas/metabolismo , Trypanosoma brucei brucei/genética , Semivida , Modelos Genéticos , Proteínas Protozoarias/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/genética , Ribosomas/metabolismo , Transcripción Genética , Transcriptoma
4.
Nucleic Acids Res ; 42(7): 4652-68, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24470144

RESUMEN

The trypanosome zinc finger protein ZC3H11 binds to AU-rich elements in mRNAs. It is essential for survival of the mammalian-infective bloodstream form, where it stabilizes several mRNAs including some encoding chaperones, and is also required for stabilization of chaperone mRNAs during the heat-shock response in the vector-infective procyclic form. When ZC3H11 was artificially 'tethered' to a reporter mRNA in bloodstream forms it increased reporter expression. We here show that ZC3H11 interacts with trypanosome MKT1 and PBP1, and that domains required for both interactions are necessary for function in the bloodstream-form tethering assay. PBP1 interacts with MKT1, LSM12 and poly(A) binding protein, and localizes to granules during parasite starvation. All of these proteins are essential for bloodstream-form trypanosome survival and increase gene expression in the tethering assay. MKT1 is cytosolic and polysome associated. Using a yeast two-hybrid screen and tandem affinity purification we found that trypanosome MKT1 interacts with multiple RNA-binding proteins and other potential RNA regulators, placing it at the centre of a post-transcriptional regulatory network. A consensus interaction sequence, H(E/D/N/Q)PY, was identified. Recruitment of MKT1-containing regulatory complexes to mRNAs via sequence-specific mRNA-binding proteins could thus control several different post-transcriptional regulons.


Asunto(s)
Proteínas Protozoarias/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Trypanosoma brucei brucei/metabolismo , Línea Celular , Gránulos Citoplasmáticos/química , Polirribosomas/química , Dominios y Motivos de Interacción de Proteínas , Proteínas Protozoarias/análisis , Proteínas Protozoarias/química , Interferencia de ARN , Proteínas de Unión al ARN/análisis , Proteínas de Unión al ARN/química , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crecimiento & desarrollo
5.
Mol Microbiol ; 94(2): 307-26, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25145465

RESUMEN

African trypanosomes are an excellent system for quantitative modelling of post-transcriptional mRNA control. Transcription is constitutive and polycistronic; individual mRNAs are excised by trans splicing and polyadenylation. We here measure mRNA decay kinetics in two life cycle stages, bloodstream and procyclic forms, by transcription inhibition and RNASeq. Messenger RNAs with short half-lives tend to show initial fast degradation, followed by a slower phase; they are often stabilized by depletion of the 5'-3' exoribonuclease XRNA. Many longer-lived mRNAs show initial slow degradation followed by rapid destruction: we suggest that the slow phase reflects gradual deadenylation. Developmentally regulated mRNAs often show regulated decay, and switch their decay pattern. Rates of mRNA decay are good predictors of steady state levels for short mRNAs, but mRNAs longer than 3 kb show unexpectedly low abundances. Modelling shows that variations in splicing and polyadenylation rates can contribute to steady-state mRNA levels, but this is completely dependent on competition between processing and co-transcriptional mRNA precursor destruction.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Estabilidad del ARN , Trypanosoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento
6.
RNA ; 19(7): 937-47, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23697549

RESUMEN

The degradation of eukaryotic mRNAs can be initiated by deadenylation, decapping, or endonuclease cleavage. This is followed by 5'-3' degradation by homologs of Xrn1, and/or 3'-5' degradation by the exosome. We previously reported that, in African trypanosome Trypanosoma brucei, most mRNAs are deadenylated prior to degradation, and that depletion of the major 5'-3' exoribonuclease XRNA preferentially stabilizes unstable mRNAs. We now show that depletion of either CAF1 or CNOT10, two components of the principal deadenylation complex, strongly inhibits degradation of most mRNAs. RNAi targeting another deadenylase, PAN2, or RRP45, a core component of the exosome, preferentially stabilized mRNAs with intermediate half-lives. RRP45 depletion resulted in a 5' bias of mRNA sequences, suggesting action by a distributive 3'-5' exoribonuclease. Results suggested that the exosome is involved in the processing of trypanosome snoRNAs. There was no correlation between effects on half-lives and on mRNA abundance.


Asunto(s)
Exorribonucleasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , ARN Protozoario/metabolismo , Trypanosoma brucei brucei/genética , Línea Celular , Biología Computacional , Exorribonucleasas/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Semivida , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Interferencia de ARN , Transporte de ARN , ARN Mensajero/genética , ARN Protozoario/genética , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Trypanosoma brucei brucei/enzimología
7.
PLoS Pathog ; 9(4): e1003286, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23592996

RESUMEN

In most organisms, the heat-shock response involves increased heat-shock gene transcription. In Kinetoplastid protists, however, virtually all control of gene expression is post-transcriptional. Correspondingly, Trypanosoma brucei heat-shock protein 70 (HSP70) synthesis after heat shock depends on regulation of HSP70 mRNA turnover. We here show that the T. brucei CCCH zinc finger protein ZC3H11 is a post-transcriptional regulator of trypanosome chaperone mRNAs. ZC3H11 is essential in bloodstream-form trypanosomes and for recovery of insect-form trypanosomes from heat shock. ZC3H11 binds to mRNAs encoding heat-shock protein homologues, with clear specificity for the subset of trypanosome chaperones that is required for protein refolding. In procyclic forms, ZC3H11 was required for stabilisation of target chaperone-encoding mRNAs after heat shock, and the HSP70 mRNA was also decreased upon ZC3H11 depletion in bloodstream forms. Many mRNAs bound to ZC3H11 have a consensus AUU repeat motif in the 3'-untranslated region. ZC3H11 bound preferentially to AUU repeats in vitro, and ZC3H11 regulation of HSP70 mRNA in bloodstream forms depended on its AUU repeat region. Tethering of ZC3H11 to a reporter mRNA increased reporter expression, showing that it is capable of actively stabilizing an mRNA. These results show that expression of trypanosome heat-shock genes is controlled by a specific RNA-protein interaction. They also show that heat-shock-induced chaperone expression in procyclic trypanosome enhances parasite survival at elevated temperatures.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Respuesta al Choque Térmico/genética , Proteínas de Unión al ARN/metabolismo , Trypanosoma brucei brucei/metabolismo , Dedos de Zinc , Línea Celular , Regulación de la Expresión Génica , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Unión Proteica , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Interferencia de ARN , Procesamiento Postranscripcional del ARN , Empalme del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Protozoario/genética , ARN Protozoario/metabolismo , ARN Interferente Pequeño , Proteínas de Unión al ARN/genética , Alineación de Secuencia , Trypanosoma brucei brucei/genética , Dedos de Zinc/genética
8.
Eukaryot Cell ; 13(5): 664-74, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24681684

RESUMEN

Pumilio domain RNA-binding proteins are known mainly as posttranscriptional repressors of gene expression that reduce mRNA translation and stability. Trypanosoma brucei has 11 PUF proteins. We show here that PUF2 is in the cytosol, with roughly the same number of molecules per cell as there are mRNAs. Although PUF2 exhibits a low level of in vivo RNA binding, it is not associated with polysomes. PUF2 also decreased reporter mRNA levels in a tethering assay, consistent with a repressive role. Depletion of PUF2 inhibited growth of bloodstream-form trypanosomes, causing selective loss of mRNAs with long open reading frames and increases in mRNAs with shorter open reading frames. Reexamination of published RNASeq data revealed the same trend in cells depleted of some other proteins. We speculate that these length effects could be caused by inhibition of the elongation phase of transcription or by an influence of translation status or polysomal conformation on mRNA decay.


Asunto(s)
Sistemas de Lectura Abierta , Proteínas Protozoarias/metabolismo , Proteínas de Unión al ARN/metabolismo , Transcriptoma , Trypanosoma brucei brucei/metabolismo , Humanos , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Protozoario/genética , ARN Protozoario/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crecimiento & desarrollo , Tripanosomiasis Africana/parasitología
9.
Wiley Interdiscip Rev RNA ; 7(6): 772-792, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27230797

RESUMEN

The malaria parasite Plasmodium spp. varies the expression profile of its genes depending on the host it resides in and its developmental stage. Virtually all messenger RNA (mRNA) is expressed in a monocistronic manner, with transcriptional activation regulated at the epigenetic level and by specialized transcription factors. Furthermore, recent systems-wide studies have identified distinct mechanisms of post-transcriptional and translational control at various points of the parasite lifecycle. Taken together, it is evident that 'just-in-time' transcription and translation strategies coexist and coordinate protein expression during Plasmodium development, some of which we review here. In particular, we discuss global and specific mechanisms that control protein translation in blood stages of the human malaria parasite Plasmodium falciparum, once a cytoplasmic mRNA has been generated, and its crosstalk with mRNA decay and storage. We also focus on the widespread translational delay observed during the 48-hour blood stage lifecycle of P. falciparum-for over 30% of transcribed genes, including virulence factors required to invade erythrocytes-and its regulation by cis-elements in the mRNA, RNA-processing enzymes and RNA-binding proteins; the first-characterized amongst these are the DNA- and RNA-binding Alba proteins. More generally, we conclude that translational regulation is an emerging research field in malaria parasites and propose that its elucidation will not only shed light on the complex developmental program of this parasite, but may also reveal mechanisms contributing to drug resistance and define new targets for malaria intervention strategies. WIREs RNA 2016, 7:772-792. doi: 10.1002/wrna.1365 For further resources related to this article, please visit the WIREs website.


Asunto(s)
Regulación de la Expresión Génica , Malaria/genética , Plasmodium/genética , Biosíntesis de Proteínas , Proteínas Protozoarias/genética , Animales , Humanos , Malaria/parasitología , Plasmodium/patogenicidad
10.
PeerJ ; 1: e180, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24133638

RESUMEN

Small ubiquitin like modifier (SUMO) proteins are involved in many processes in eukaryotes. We here show that Trypanosoma brucei SUMO (Tb927.5.3210) modifies many proteins. The levels of SUMOylation were unaffected by temperature changes but were increased by severe oxidative stress. We obtained evidence that trypanosome homologues of the SUMO conjugating enzyme Ubc9 (Tb927.2.2460) and the SUMO-specific protease SENP (Tb927.9.2220) are involved in SUMOylation and SUMO removal, respectively.

11.
FEBS Lett ; 584(6): 1156-62, 2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20153321

RESUMEN

Proteins with Pumilio RNA binding domains (Puf proteins) are ubiquitous in eukaryotes. Some Puf proteins bind to the 3'-untranslated regions of mRNAs, acting to repress translation and promote degradation; others are involved in ribosomal RNA maturation. The genome of Trypanosoma brucei encodes eleven Puf proteins whose function cannot be predicted by sequence analysis. We show here that epitope-tagged TbPUF7 is located in the nucleolus, and associated with a nuclear cyclophilin-like protein, TbNCP1. RNAi targeting PUF7 reduced trypanosome growth and inhibited two steps in ribosomal RNA processing.


Asunto(s)
Ciclofilinas/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/fisiología , Núcleo Celular/metabolismo , Crecimiento y Desarrollo/efectos de los fármacos , Crecimiento y Desarrollo/genética , Filogenia , Unión Proteica/fisiología , Estructura Terciaria de Proteína , Procesamiento Postranscripcional del ARN/efectos de los fármacos , Procesamiento Postranscripcional del ARN/genética , ARN Interferente Pequeño/farmacología , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma brucei brucei/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA