Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 602(21): 5659-5684, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38348606

RESUMEN

We examined the extent to which apnoea-induced extremes of oxygen demand/carbon dioxide production impact redox regulation of cerebral bioenergetic function. Ten ultra-elite apnoeists (six men and four women) performed two maximal dry apnoeas preceded by normoxic normoventilation, resulting in severe end-apnoea hypoxaemic hypercapnia, and hyperoxic hyperventilation designed to ablate hypoxaemia, resulting in hyperoxaemic hypercapnia. Transcerebral exchange of ascorbate radicals (by electron paramagnetic resonance spectroscopy) and nitric oxide metabolites (by tri-iodide chemiluminescence) were calculated as the product of global cerebral blood flow (by duplex ultrasound) and radial arterial (a) to internal jugular venous (v) concentration gradients. Apnoea duration increased from 306 ± 62 s during hypoxaemic hypercapnia to 959 ± 201 s in hyperoxaemic hypercapnia (P ≤ 0.001). Apnoea generally increased global cerebral blood flow (all P ≤ 0.001) but was insufficient to prevent a reduction in the cerebral metabolic rates of oxygen and glucose (P = 0.015-0.044). This was associated with a general net cerebral output (v > a) of ascorbate radicals that was greater in hypoxaemic hypercapnia (P = 0.046 vs. hyperoxaemic hypercapnia) and coincided with a selective suppression in plasma nitrite uptake (a > v) and global cerebral blood flow (P = 0.034 to <0.001 vs. hyperoxaemic hypercapnia), implying reduced consumption and delivery of nitric oxide consistent with elevated cerebral oxidative-nitrosative stress. In contrast, we failed to observe equidirectional gradients consistent with S-nitrosohaemoglobin consumption and plasma S-nitrosothiol delivery during apnoea (all P ≥ 0.05). Collectively, these findings highlight a key catalytic role for hypoxaemic hypercapnia in cerebral oxidative-nitrosative stress. KEY POINTS: Local sampling of blood across the cerebral circulation in ultra-elite apnoeists determined the extent to which severe end-apnoea hypoxaemic hypercapnia (prior normoxic normoventilation) and hyperoxaemic hypercapnia (prior hyperoxic hyperventilation) impact free radical-mediated nitric oxide bioavailability and global cerebral bioenergetic function. Apnoea generally increased the net cerebral output of free radicals and suppressed plasma nitrite consumption, thereby reducing delivery of nitric oxide consistent with elevated oxidative-nitrosative stress. The apnoea-induced elevation in global cerebral blood flow was insufficient to prevent a reduction in the cerebral metabolic rates of oxygen and glucose. Cerebral oxidative-nitrosative stress was greater during hypoxaemic hypercapnia compared with hyperoxaemic hypercapnia and coincided with a lower apnoea-induced elevation in global cerebral blood flow, highlighting a key catalytic role for hypoxaemia. This applied model of voluntary human asphyxia might have broader implications for the management and treatment of neurological diseases characterized by extremes of oxygen demand and carbon dioxide production.


Asunto(s)
Apnea , Circulación Cerebrovascular , Hipercapnia , Estrés Nitrosativo , Estrés Oxidativo , Humanos , Masculino , Hipercapnia/metabolismo , Hipercapnia/fisiopatología , Apnea/metabolismo , Apnea/fisiopatología , Femenino , Adulto , Metabolismo Energético , Hipoxia/metabolismo , Hipoxia/fisiopatología , Encéfalo/metabolismo , Óxido Nítrico/metabolismo
2.
Am J Physiol Regul Integr Comp Physiol ; 327(4): R442-R456, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39102462

RESUMEN

The mammalian dive reflex, characterized by bradycardia and peripheral vasoconstriction, occurs in all mammals, including humans, in response to apnea. However, the dive reflex to a single, maximal, dry, dynamic apnea (DYN) and how it compares to a time-matched exercise control trial (EX) or dry static apnea (SA) has not been studied. We examined the hypotheses that, compared with EX and SA, the magnitude of the 1) cardiovascular response and 2) hematological response to DYN would be greater. Cardiovascular parameters [heart rate (HR), systolic (SBP), diastolic (DBP), and mean arterial (MAP) blood pressure] were continuously collected in 23 (F = 6 females) moderate and elite freedivers, first during a maximal DYN, then during a time-matched SA and EX on a swimming ergometer in randomized order. Venous blood draws were made before and following each trial. The change in calculated oxygen saturation (DYN: -17 ± 13%, EX: -2 ± 1%, ΔSA: -2 ± 1%; P < 0.05, all comparisons) was greater during DYN compared with EX and SA. During DYN, ΔSBP (DYN: 104 ± 31 mmHg; EX: 38 ± 23 mmHg; and SA: 20 ± 11 mmHg), ΔDBP (DYN: 45 ± 12 mmHg; EX: 14 ± 10 mmHg; and SA: 15 ± 8 mmHg), and ΔMAP (DYN: 65 ± 17 mmHg; EX: 22 ± 13 mmHg; and SA: 16 ± 9 mmHg) were increased compared with EX and SA, while ΔHR was greater during EX (DYN: -24 ± 23 beats/min; EX: 33 ± 13 beats/min; and SA: -1 ± 10 beats/min) than either DYN or SA (P < 0.0001, all comparisons). Females had a greater pressor response to EX (ΔSBP: 59 ± 30 mmHg; ΔDBP: 24 ± 14 mmHg; and ΔMAP: 35 ± 8 mmHg) than males (ΔSBP: 31 ± 15 mmHg; ΔDBP: 11 ± 6 mmHg; and ΔMAP: 18 ± 8 mmHg; P < 0.01, all comparisons). Together, these data indicate that DYN elicits a distinct, exaggerated cardiovascular response compared with EX or SA alone.NEW & NOTEWORTHY This study performed a dry dynamic apnea with sport-specific equipment to closely mimic the physiological demands of competition diving. We found the cardiovascular and hematological responses to dynamic apnea were more robust compared with time-matched exercise and dry static apnea control trials.


Asunto(s)
Apnea , Presión Sanguínea , Contencion de la Respiración , Buceo , Frecuencia Cardíaca , Humanos , Femenino , Masculino , Adulto , Buceo/fisiología , Apnea/fisiopatología , Apnea/sangre , Presión Sanguínea/fisiología , Adulto Joven , Reflejo de Inmersión , Saturación de Oxígeno , Sistema Cardiovascular/fisiopatología , Sistema Cardiovascular/metabolismo , Factores de Tiempo
3.
Exp Physiol ; 107(11): 1225-1240, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35993480

RESUMEN

NEW FINDINGS: What is the central question of this study? Does the hyperbaric, hypercapnic, acidotic, hypoxic stress of apnoea diving lead to greater pulmonary vasoreactivity and increased right heart work in apnoea divers? What is the main finding and its importance? Compared with sex- and age-matched control subjects, divers experienced significantly less change in total pulmonary resistance in response to short-duration isocapnic hypoxia. With oral sildenafil (50 mg), there were no differences in total pulmonary resistance between groups, suggesting that divers can maintain normal pulmonary artery tone in hypoxic conditions. Blunted hypoxic pulmonary vasoconstriction might be beneficial during apnoea diving. ABSTRACT: Competitive apnoea divers dive repetitively to depths >50 m. During the final portions of ascent, divers experience significant hypoxaemia. Additionally, hyperbaria during diving increases thoracic blood volume while simultaneously reducing lung volume and increasing pulmonary artery pressure. We hypothesized that divers would have exaggerated hypoxic pulmonary vasoconstriction, leading to increased right heart work owing to their repetitive hypoxaemia and hyperbaria, and that the administration of sildenafil would have a greater effect in reducing pulmonary resistance in divers. We recruited 16 divers (Divers) and 16 age- and sex-matched non-diving control subjects (Controls). Using a double-blinded, placebo-controlled, cross-over design, participants were evaluated for normal cardiac and lung function, then their cardiopulmonary responses to 20-30 min of isocapnic hypoxia (end-tidal partial pressure of O2  = 50 mmHg) were measured 1 h after ingestion of 50 mg sildenafil or placebo. Cardiac structure and cardiopulmonary function were similar at baseline. With placebo, Divers had a significantly smaller increase in total pulmonary resistance than Controls after 20-30 min isocapnic hypoxia (change -3.85 ± 72.85 vs. 73.74 ± 91.06 dyns cm-5 , P = 0.0222). With sildenafil, Divers and Controls had similar blunted increases in total pulmonary resistance after 20-30 min of hypoxia. Divers also had a significantly lower systemic vascular resistance after sildenafil in normoxia. These data indicate that repetitive apnoea diving leads to a blunted hypoxic pulmonary vasoconstriction. We suggest that this is a beneficial adaption allowing for increased cardiac output with reduced right heart work and thus reducing cardiac oxygen utilization in hypoxaemic conditions.


Asunto(s)
Apnea , Vasoconstricción , Humanos , Hipoxia , Pulmón , Oxígeno , Citrato de Sildenafil , Método Doble Ciego , Estudios Cruzados
4.
Exp Physiol ; 106(4): 1120-1133, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33559974

RESUMEN

NEW FINDINGS: What is the central question of this study? How does deep breath-hold diving impact cardiopulmonary function, both acutely and over the subsequent 2.5 hours post-dive? What is the main finding and its importance? Breath-hold diving, to depths below residual volume, is associated with acute impairments in pulmonary gas exchange, which typically resolve within 2.5 hours. These data provide new insight into the behaviour of the lungs and pulmonary vasculature following deep diving. ABSTRACT: Breath-hold diving involves highly integrative and extreme physiological responses to both exercise and asphyxia during progressive elevations in hydrostatic pressure. Over two diving training camps (Study 1 and 2), 25 breath-hold divers (recreational to world-champion) performed 66 dives to 57 ± 20 m (range: 18-117 m). Using the deepest dive from each diver, temporal changes in cardiopulmonary function were assessed using non-invasive pulmonary gas exchange (indexed via the O2 deficit), ultrasound B-line scores, lung compliance and pulmonary haemodynamics at baseline and following the dive. Hydrostatically induced lung compression was quantified in Study 2, using spirometry and lung volume measurement, enabling each dive to be categorized by its residual volume (RV)-equivalent depth. From both studies, pulmonary gas exchange inefficiency - defined as an increase in O2 deficit - was related to the depth of the dive (r2  = 0.345; P < 0.001), with dives associated with lung squeeze symptoms exhibiting the greatest deficits. In Study 1, although B-lines doubled from baseline (P = 0.027), cardiac output and pulmonary artery systolic pressure were unchanged post-dive. In Study 2, dives with lung compression to ≤RV had higher O2 deficits at 9 min, compared to dives that did not exceed RV (24 ± 25 vs. 5 ± 8 mmHg; P = 0.021). The physiological significance of a small increase in estimated lung compliance post-dive (via decreased and increased/unaltered airway resistance and reactance, respectively) remains equivocal. Following deep dives, the current study highlights an integrated link between hydrostatically induced lung compression and transient impairments in pulmonary gas exchange efficiency.


Asunto(s)
Contencion de la Respiración , Intercambio Gaseoso Pulmonar , Gasto Cardíaco , Volumen Residual , Espirometría
5.
Can J Physiol Pharmacol ; 98(2): 124-130, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31505129

RESUMEN

The pathogenesis of predominantly neurological decompression sickness (DCS) is multifactorial. In SCUBA diving, besides gas bubbles, DCS has been linked to microparticle release, impaired endothelial function, and platelet activation. This study focused on vascular damage and its potential role in the genesis of DCS in breath-hold diving. Eleven breath-hold divers participated in a field study comprising eight deep breath-hold dives with short surface periods and repetitive breath-hold dives lasting for 6 h. Endothelium-dependent vasodilation of the brachial artery, via flow-mediated dilation (FMD), and the number of microparticles (MPs) were assessed before and after each protocol. All measures were analyzed by two-way within-subject ANOVA (2 × 2 ANOVA; factors: time and protocol). Absolute FMD was reduced following both diving protocols (p < 0.001), with no interaction (p = 0.288) or main effect of protocol (p = 0.151). There was a significant difference in the total number of circulating MPs between protocols (p = 0.007), where both increased post-dive (p = 0.012). The number of CD31+/CD41- and CD66b+ MP subtypes, although different between protocols (p < 0.001), also increased by 41.0% ± 56.6% (p = 0.050) and 60.0% ± 53.2% (p = 0.045) following deep and repetitive breath-hold dives, respectively. Both deep and repetitive breath-hold diving lead to endothelial dysfunction that may play an important role in the genesis of neurological DCS.


Asunto(s)
Vasos Sanguíneos/fisiopatología , Contencion de la Respiración , Buceo/efectos adversos , Micropartículas Derivadas de Células/metabolismo , Humanos , Factores de Tiempo , Vasodilatación
6.
FASEB J ; 32(4): 2305-2314, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29191963

RESUMEN

Static apnea provides a unique model that combines transient hypertension, hypercapnia, and severe hypoxemia. With apnea durations exceeding 5 min, the purpose of the present study was to determine how that affects cerebral free-radical formation and the corresponding implications for brain structure and function. Measurements were obtained before and following a maximal apnea in 14 divers with transcerebral exchange kinetics, measured as the product of global cerebral blood flow (duplex ultrasound) and radial arterial to internal jugular venous concentration differences ( a-vD). Apnea increased the systemic (arterial) and, to a greater extent, the regional (jugular venous) concentration of the ascorbate free radical, resulting in a shift from net cerebral uptake to output ( P < 0.05). Peroxidation (lipid hydroperoxides, LDL oxidation), NO bioactivity, and S100ß were correspondingly enhanced ( P < 0.05), the latter interpreted as minor and not a pathologic disruption of the blood-brain barrier. However, those changes were insufficient to cause neuronal-parenchymal damage confirmed by the lack of change in the a-vD of neuron-specific enolase and human myelin basic protein ( P > 0.05). Collectively, these observations suggest that increased cerebral oxidative stress following prolonged apnea in trained divers may reflect a functional physiologic response, rather than a purely maladaptive phenomenon.-Bain, A. R., Ainslie, P. N., Hoiland, R. L., Barak, O. F., Drvis, I., Stembridge, M., MacLeod, D. M., McEneny, J., Stacey, B. S., Tuaillon, E., Marchi, N., De Maudave, A. F., Dujic, Z., MacLeod, D. B., Bailey, D. M. Competitive apnea and its effect on the human brain: focus on the redox regulation of blood-brain barrier permeability and neuronal-parenchymal integrity.


Asunto(s)
Apnea/metabolismo , Barrera Hematoencefálica/metabolismo , Estrés Oxidativo , Adulto , Apnea/sangre , Permeabilidad Capilar , Circulación Cerebrovascular , Femenino , Radicales Libres/metabolismo , Humanos , Peroxidación de Lípido , Masculino , Proteína Básica de Mielina/metabolismo , Fosfopiruvato Hidratasa/metabolismo
7.
Exp Physiol ; 103(5): 635-651, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29512224

RESUMEN

NEW FINDINGS: What is the topic of this review? This review provides an up-to-date assessment of the physiology involved with extreme static dry-land breath holding in trained apneists. What advances does it highlight? We specifically highlight the recent findings involved with the cardiovascular, cerebrovascular and metabolic function during a maximal breath hold in elite apneists. ABSTRACT: Breath-hold-related activities have been performed for centuries, but only recently, within the last ∼30 years, has it emerged as an increasingly popular competitive sport. In apnoea sport, competition relates to underwater distances or simply maximal breath-hold duration, with the current (oxygen-unsupplemented) static breath-hold record at 11 min 35 s. Remarkably, many ultra-elite apneists are able to suppress respiratory urges to the point where consciousness fundamentally limits a breath-hold duration. Here, arterial oxygen saturations as low as ∼50% have been reported. In such cases, oxygen conservation to maintain cerebral functioning is critical, where responses ascribed to the mammalian dive reflex, e.g. sympathetically mediated peripheral vasoconstriction and vagally mediated bradycardia, are central. In defence of maintaining global cerebral oxygen delivery during prolonged breath holds, the cerebral blood flow may increase by ∼100% from resting values. Interestingly, near the termination of prolonged dry static breath holds, recent studies also indicate that reductions in the cerebral oxidative metabolism can occur, probably attributable to the extreme hypercapnia and irrespective of the hypoxaemia. In this review, we highlight and discuss the recent data on the cardiovascular, metabolic and, particularly, cerebrovascular function in competitive apneists performing maximal static breath holds. The physiological adaptation and maladaptation with regular breath-hold training are also summarized, and future research areas in this unique physiological field are highlighted; particularly, the need to determine the potential long-term health impacts of extreme breath holding.


Asunto(s)
Apnea/fisiopatología , Contencion de la Respiración , Adaptación Fisiológica/fisiología , Animales , Circulación Cerebrovascular/fisiología , Humanos , Hipercapnia/fisiopatología , Hipoxia/fisiopatología
8.
J Neurophysiol ; 118(5): 2914-2924, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28835525

RESUMEN

This study investigated the influence of ventilation on sympathetic action potential (AP) discharge patterns during varying levels of high chemoreflex stress. In seven trained breath-hold divers (age 33 ± 12 yr), we measured muscle sympathetic nerve activity (MSNA) at baseline, during preparatory rebreathing (RBR), and during 1) functional residual capacity apnea (FRCApnea) and 2) continued RBR. Data from RBR were analyzed at matched (i.e., to FRCApnea) hemoglobin saturation (HbSat) levels (RBRMatched) or more severe levels (RBREnd). A third protocol compared alternating periods (30 s) of FRC and RBR (FRC-RBRALT). Subjects continued each protocol until 85% volitional tolerance. AP patterns in MSNA (i.e., providing the true neural content of each sympathetic burst) were studied using wavelet-based methodology. First, for similar levels of chemoreflex stress (both HbSat: 71 ± 6%; P = NS), RBRMatched was associated with reduced AP frequency and APs per burst compared with FRCApnea (both P < 0.001). When APs were binned according to peak-to-peak amplitude (i.e., into clusters), total AP clusters increased during FRCApnea (+10 ± 2; P < 0.001) but not during RBRMatched (+1 ± 2; P = NS). Second, despite more severe chemoreflex stress during RBREnd (HbSat: 56 ± 13 vs. 71 ± 6%; P < 0.001), RBREnd was associated with a restrained increase in the APs per burst (FRCApnea: +18 ± 7; RBREnd: +11 ± 5) and total AP clusters (FRCApnea: +10 ± 2; RBREnd: +6 ± 4) (both P < 0.01). During FRC-RBRALT, all periods of FRC elicited sympathetic AP recruitment (all P < 0.001), whereas all periods of RBR were associated with complete withdrawal of AP recruitment (all P = NS). Presently, we demonstrate that ventilation per se restrains and/or inhibits sympathetic axonal recruitment during high, and even extreme, chemoreflex stress.NEW & NOTEWORTHY The current study demonstrates that the sympathetic neural recruitment patterns observed during chemoreflex activation induced by rebreathing or apnea are restrained and/or inhibited by the act of ventilation per se, despite similar, or even greater, levels of severe chemoreflex stress. Therefore, ventilation modulates not only the timing of sympathetic bursts but also the within-burst axonal recruitment normally observed during progressive chemoreflex stress.


Asunto(s)
Potenciales de Acción , Apnea/fisiopatología , Ventilación Pulmonar , Reclutamiento Neurofisiológico , Reflejo , Estrés Fisiológico , Sistema Nervioso Simpático/fisiología , Adulto , Femenino , Hemoglobinas/metabolismo , Humanos , Masculino , Persona de Mediana Edad
9.
Exp Physiol ; 102(10): 1288-1299, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28762565

RESUMEN

NEW FINDINGS: What is the central question of this study? Does the reduction in cardiac output observed during extreme voluntary apnoea, secondary to high lung volume, result in a reduction in cerebral blood flow, perfusion pressure and oxygen delivery in a group of elite free divers? What is the main finding and its importance? High lung volumes reduce cardiac output and ventricular filling during extreme apnoea, but changes in cerebral blood flow are observed only transiently during the early stages of apnoea. This reveals that whilst cardiac output is important in regulating cerebral haemodynamics, the role of mean arterial pressure in restoring cerebral perfusion pressure is of greater significance to the regulation of cerebral blood flow. We investigated the role of lung volume-induced changes in cardiac output (Q̇) on cerebrovascular regulation during prolonged apnoea. Fifteen elite apnoea divers (one female; 185 ± 7 cm, 82 ± 12 kg, 29 ± 7 years old) attended the laboratory on two separate occasions and completed maximal breath-holds at total lung capacity (TLC) and functional residual capacity (FRC) to elicit disparate cardiovascular responses. Mean arterial pressure (MAP), internal jugular venous pressure and arterial blood gases were measured via cannulation. Global cerebral blood flow was quantified by ultrasound and cardiac output was quantified by via photoplethysmography. At FRC, stroke volume and Q̇ did not change from baseline (P > 0.05). In contrast, during the TLC trial stroke volume and Q̇ were decreased until 80 and 40% of apnoea, respectively (P < 0.05). During the TLC trial, global cerebral blood flow was significantly lower at 20%, but subsequently increased so that cerebral oxygen delivery was comparable to that during the FRC trial. Internal jugular venous pressure was significantly higher throughout the TLC trial in comparison to FRC. The MAP increased progressively in both trials but to a greater extent at TLC, resulting in a comparable cerebral perfusion pressure between trials by the end of apnoea. In summary, although lung volume has a profound effect on Q̇ during prolonged breath-holding, these changes do not translate to the cerebrovasculature owing to the greater sensitivity of cerebral blood flow to arterial blood gases and MAP; regulatory mechanisms that facilitate the maintenance of cerebral oxygen delivery.


Asunto(s)
Apnea/fisiopatología , Gasto Cardíaco/fisiología , Circulación Cerebrovascular/fisiología , Volumen de Ventilación Pulmonar/fisiología , Adulto , Apnea/metabolismo , Presión Arterial/fisiología , Análisis de los Gases de la Sangre/métodos , Contencion de la Respiración , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/fisiopatología , Buceo/fisiología , Femenino , Hemodinámica/fisiología , Humanos , Masculino , Oxígeno/metabolismo , Volumen Sistólico/fisiología
10.
Eur J Appl Physiol ; 117(4): 641-649, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28243777

RESUMEN

PURPOSE: Trained breath-hold divers hyperinflate their lungs by glossopharyngeal insufflation (GPI) to prolong submersion time and withstand lung collapse at depths. Pulmonary hyperinflation leads to profound hemodynamic changes. METHODS: Thirteen divers performed preparatory breath-holds followed by apnea with GPI. Filling of extrathoracic veins was determined by ultrasound and magnetic resonance imaging and peripheral extravasation of fluid was assessed by electrical impedance. Femoral vein diameter was measured by ultrasound throughout the easy-going and struggle phase of apnea with GPI in eight divers in a sub-study. RESULTS: After GPI, pulmonary volume increased by 0.8 ± 0.6 L above total lung capacity. The diameter of the superior caval (by 36 ± 17%) and intrathoracic part of the inferior caval vein decreased (by 21 ± 16%), while the diameters of the internal jugular (by 53 ± 34%), hepatic (by 28 ± 40%), abdominal part of the inferior caval (by 28 ± 28%), and femoral veins (by 65 ± 50%) all increased (P < 0.05). Blood volume of the internal jugular, the hepatic, the abdominal part of the inferior caval vein, and the combined common iliac and femoral veins increased by 145 ± 115, 80 ± 88, 61 ± 60, and 183 ± 197%, respectively. In the sub-study, femoral vein diameter increased by 44 ± 33% in the easy-going phase of apnea with GPI, subsequently decreasing by 20 ± 16% during the struggle phase. Electrical impedance remained unchanged over the thigh and forearm, thus excluding peripheral fluid extravasation. CONCLUSIONS: GPI leads to heart and pulmonary vessel compression, resulting in redistribution of blood to extrathoracic capacitance veins proximal to venous valves. This is partially reversed by the onset of involuntary breathing movements.


Asunto(s)
Contencion de la Respiración , Hemodinámica , Pulmón/fisiología , Adulto , Buceo/fisiología , Femenino , Vena Femoral/diagnóstico por imagen , Vena Femoral/fisiología , Humanos , Pulmón/irrigación sanguínea , Pulmón/diagnóstico por imagen , Mediciones del Volumen Pulmonar , Masculino , Distribución Aleatoria , Venas Cavas/diagnóstico por imagen , Venas Cavas/fisiología
11.
Physiol Genomics ; 48(11): 795-802, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27614202

RESUMEN

Freedivers hold their breath while diving, causing blood oxygen levels to decrease (hypoxia) while carbon dioxide increases (hypercapnia). Whereas blood gas changes are presumably involved in the progression of respiratory diseases, less is known about their effect on healthy individuals. Here we have used gene expression profiling to analyze elite athletes' immune and inflammatory responses to freediving. Blood was collected before and 1 and 3 h after a series of maximal dynamic and static freediving apneas in a pool, and peripheral blood gene expression was mapped on genome-wide microarrays. Fractions of phenotypically distinct immune cells were computed by deconvolution of the gene expression data using Cibersort software. Changes in gene activity and associated biological pathways were determined using R and GeneGo software. The results indicated a temporary increase of neutrophil granulocytes, and a decrease of cytotoxic lymphocytes; i.e., CD8+ T cells and resting NK cells. Biological pathway associations indicated possible protective reactions: genes involved in anti-inflammatory responses to proresolving lipid mediators were upregulated, whereas central factors involved in granule-mediated lymphocyte cytotoxicity were downregulated. While it remains unresolved whether freediving alters the immune system's defensive function, these results provide new insight into leukocyte responses and the protection of homeostasis in healthy athletes.


Asunto(s)
Buceo/fisiología , Perfilación de la Expresión Génica , Inflamación/genética , Inflamación/inmunología , Leucocitos/inmunología , Adulto , Femenino , Regulación de la Expresión Génica , Humanos , Inflamación/sangre , Análisis de los Mínimos Cuadrados , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal/genética , Adulto Joven
12.
J Physiol ; 594(18): 5317-28, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27256521

RESUMEN

KEY POINTS: The present study describes the cerebral oxidative and non-oxidative metabolism in man during a prolonged apnoea (ranging from 3 min 36 s to 7 min 26 s) that generates extremely low levels of blood oxygen and high levels of carbon dioxide. The cerebral oxidative metabolism, measured from the product of cerebral blood flow and the radial artery-jugular venous oxygen content difference, was reduced by ∼29% at the termination of apnoea, although there was no change in the non-oxidative metabolism. A subset study with mild and severe hypercapnic breathing at the same level of hypoxia suggests that hypercapnia can partly explain the cerebral metabolic reduction near the apnoea breakpoint. A hypercapnia-induced oxygen-conserving response may protect the brain against severe oxygen deprivation associated with prolonged apnoea. ABSTRACT: Prolonged apnoea in humans is reflected in progressive hypoxaemia and hypercapnia. In the present study, we explore the cerebral metabolic responses under extreme hypoxia and hypercapnia associated with prolonged apnoea. We hypothesized that the cerebral metabolic rate for oxygen (CMRO2 ) will be reduced near the termination of apnoea, attributed in part to the hypercapnia. Fourteen elite apnoea-divers performed a maximal apnoea (range 3 min 36 s to 7 min 26 s) under dry laboratory conditions. In a subset study with the same divers, the impact of hypercapnia on cerebral metabolism was determined using varying levels of hypercapnic breathing, against the background of similar hypoxia. In both studies, the CMRO2 was calculated from the product of cerebral blood flow (ultrasound) and the radial artery-internal jugular venous oxygen content difference. Non-oxidative cerebral metabolism was calculated from the ratio of oxygen and carbohydrate (lactate and glucose) metabolism. The CMRO2  was reduced by ∼29% (P < 0.01, Cohen's d = 1.18) near the termination of apnoea compared to baseline, although non-oxidative metabolism remained unaltered. In the subset study, in similar backgrounds of hypoxia (arterial O2 tension: ∼38.4 mmHg), severe hypercapnia (arterial CO2 tension: ∼58.7 mmHg), but not mild-hypercapnia (arterial CO2 tension: ∼46.3 mmHg), depressed the CMRO2 (∼17%, P = 0.04, Cohen's d = 0.87). Similarly to the apnoea, there was no change in the non-oxidative metabolism. These data indicate that hypercapnia can partly explain the reduction in CMRO2 near the apnoea breakpoint. This hypercapnic-induced oxygen conservation may protect the brain against severe hypoxaemia associated with prolonged apnoea.


Asunto(s)
Apnea/fisiopatología , Encéfalo/fisiología , Hipercapnia/fisiopatología , Hipoxia/fisiopatología , Consumo de Oxígeno , Adulto , Apnea/sangre , Presión Arterial , Velocidad del Flujo Sanguíneo , Análisis de los Gases de la Sangre , Circulación Cerebrovascular , Epinefrina/sangre , Femenino , Frecuencia Cardíaca , Humanos , Hipercapnia/sangre , Hipoxia/sangre , Norepinefrina/sangre , Presión Venosa , Adulto Joven
13.
Am J Physiol Heart Circ Physiol ; 310(3): H444-51, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26589331

RESUMEN

Pulmonary hyperinflation is used by competitive breath-hold divers and is accomplished by glossopharyngeal insufflation (GPI), which is known to compress the heart and pulmonary vessels, increasing sympathetic activity and lowering cardiac output (CO) without known consequence for organ perfusion. Myocardial, pulmonary, skeletal muscle, kidney, and liver perfusion were evaluated by magnetic resonance imaging in 10 elite breath-hold divers at rest and during moderate GPI. Cardiac chamber volumes, stroke volume, and thus CO were determined from cardiac short-axis cine images. Organ volumes were assessed from gradient echo sequences, and organ perfusion was evaluated from first-pass images after gadolinium injection. During GPI, lung volume increased by 5.2 ± 1.5 liters (mean ± SD; P < 0.001), while spleen and liver volume decreased by 46 ± 39 and 210 ± 160 ml, respectively (P < 0.05), and inferior caval vein diameter by 4 ± 3 mm (P < 0.05). Heart rate tended to increase (67 ± 10 to 86 ± 20 beats/min; P = 0.052) as right and left ventricular volumes were reduced (P < 0.05). Stroke volume (107 ± 21 to 53 ± 15 ml) and CO (7.2 ± 1.6 to 4.2 ± 0.8 l/min) decreased as assessed after 1 min of GPI (P < 0.01). Left ventricular myocardial perfusion maximum upslope and its perfusion index decreased by 1.52 ± 0.15 s(-1) (P < 0.001) and 0.02 ± 0.01 s(-1) (P < 0.05), respectively, without transmural differences. Pulmonary tissue, spleen, kidney, and pectoral-muscle perfusion also decreased (P < 0.05), and yet liver perfusion was maintained. Thus, during pulmonary hyperinflation by GPI, CO and organ perfusion, including the myocardium, as well as perfusion of skeletal muscles, are reduced, and yet perfusion of the liver is maintained. Liver perfusion seems to be prioritized when CO decreases during GPI.


Asunto(s)
Contencion de la Respiración , Gasto Cardíaco/fisiología , Circulación Coronaria/fisiología , Circulación Hepática/fisiología , Músculo Esquelético/irrigación sanguínea , Circulación Pulmonar/fisiología , Circulación Renal/fisiología , Adulto , Volumen Cardíaco/fisiología , Buceo , Femenino , Humanos , Imagen por Resonancia Magnética , Imagen por Resonancia Cinemagnética , Masculino , Flujo Sanguíneo Regional , Volumen Sistólico/fisiología
14.
Am J Physiol Regul Integr Comp Physiol ; 309(9): R1162-71, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26290106

RESUMEN

The purpose of this study was to determine the impact of peripheral chemoreflex inhibition with low-dose dopamine on maximal apnea time, and the related hemodynamic and cerebrovascular responses in elite apnea divers. In a randomized order, participants performed a maximal apnea while receiving either intravenous 2 µg·kg(-1)·min(-1) dopamine or volume-matched saline (placebo). The chemoreflex and hemodynamic response to dopamine was also assessed during hypoxia [arterial O2 tension, (PaO2 ) ∼35 mmHg] and mild hypercapnia [arterial CO2 tension (PaCO2 ) ∼46 mmHg] that mimicked the latter parts of apnea. Outcome measures included apnea duration, arterial blood gases (radial), heart rate (HR, ECG), mean arterial pressure (MAP, intra-arterial), middle (MCAv) and posterior (PCAv) cerebral artery blood velocity (transcranial ultrasound), internal carotid (ICA) and vertebral (VA) artery blood flow (ultrasound), and the chemoreflex responses. Although dopamine depressed the ventilatory response by 27 ± 41% (vs. placebo; P = 0.01), the maximal apnea duration was increased by only 5 ± 8% (P = 0.02). The PaCO2 and PaO2 at apnea breakpoint were similar (P > 0.05). When compared with placebo, dopamine increased HR and decreased MAP during both apnea and chemoreflex test (P all <0.05). At rest, dopamine compared with placebo dilated the ICA (3.0 ± 4.1%, P = 0.05) and VA (6.6 ± 5.0%, P < 0.01). During apnea and chemoreflex test, conductance of the cerebral vessels (ICA, VA, MCAv, PCAv) was increased with dopamine; however, flow (ICA and VA) was similar. At least in elite apnea divers, the small increase in apnea time and similar PaO2 at breakpoint (∼31 mmHg) suggest the apnea breakpoint is more related to PaO2 , rather than peripheral chemoreflex drive to breathe.


Asunto(s)
Apnea/fisiopatología , Barorreflejo/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Dopamina/administración & dosificación , Frecuencia Cardíaca/efectos de los fármacos , Oxígeno/sangre , Adulto , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Inyecciones Intravenosas , Masculino , Persona de Mediana Edad , Acoplamiento Neurovascular/efectos de los fármacos , Ventilación Pulmonar/efectos de los fármacos , Índice de Severidad de la Enfermedad
15.
J Sports Med Phys Fitness ; 64(1): 21-29, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37902796

RESUMEN

BACKGROUND: Freediving is defined as an activity where athletes repetitively dive and are exposed to long efforts with limited oxygen consumption. Therefore, anaerobic features are expected to be an important facet of diving performance. This study aimed to investigate differences in anaerobic capacity and local muscle oxygenation in spearfisherman and freedivers. METHODS: The sample of participants included 17 male athletes (nine freedivers, and eight spearfishermen), with an average age of 37.0±8.8 years, training experience of 10.6±9.5 years, body mass of 82.5±9.5 kg and height of 184.2±5.7 cm. Anthropometric characteristics included: body mass, body height, seated height, and body fat percentage. Wingate anaerobic test was conducted, during which local muscle oxygenation was measured with a NIRS device (Moxy monitor). Wingate power outputs were measured (peak power [W/kg] and average power [W/kg]), together with muscle oxygenation variables (baseline oxygen saturation [%], desaturation slope [%/s], minimum oxygen saturation [%], half time recovery [s], and maximum oxygen saturation [%]). RESULTS: The differences were not obtained between freedivers and spearfisherman in power outputs (peak power (9.24±2.08 spearfisherman; 10.68±1.04 freedivers; P=0.14); average power (6.85±0.95 spearfisherman; 7.44±0.60 freedivers; P=0.15) and muscle oxygenation parameters. However, analysis of effect size showed a moderate effect in training experience (0.71), PP (0.89), AP (0.75), Desat slope mVLR (0.66), half time recovery mVLR (0.90). CONCLUSIONS: The non-existence of differences between freedivers and spearfishermen indicates similar training adaptations to the anaerobic demands. However, the results show relatively low anaerobic capacities of our divers that could serve as an incentive for the further development of these mechanisms.


Asunto(s)
Buceo , Saturación de Oxígeno , Humanos , Masculino , Adulto , Persona de Mediana Edad , Anaerobiosis , Músculos , Consumo de Oxígeno/fisiología , Buceo/fisiología , Prueba de Esfuerzo/métodos , Umbral Anaerobio/fisiología
16.
Artículo en Inglés | MEDLINE | ID: mdl-39382945

RESUMEN

BACKGROUND: Freediving is a sport that could be defined as both aerobic and anaerobic. Therefore, this study aimed to evaluate the effect of aerobic-anaerobic training on the performance of moderate and elite freedivers. METHODS: The sample of participants included 26 freedivers (9 females) (average age of 26.62±3.34 years, body height of 178.95±9.19 cm, and body mass of 74.64±11.97 kg). The sample of variables included: anthropometric indices, relative maximal oxygen consumption (rVO2max), Diving anaerobic sprint test (DAST), Swimming anaerobic sprint test (SAST), 100-meter crawl sprint test (100 m), maximal dynamic apnea with monofin (DYN), maximal swimming length for 2 minutes (2 min). The study procedure included a 5-month aerobic-anaerobic training intervention. This intervention was conducted during a 4-phase (5-week each) training period. RESULTS: The results showed that moderate group showed a significant decrease in 100 m (final 83.94±15.68; initial 88.29±16.73; P<0.00), DASTmax (final 10.91±1.46; initial 12.01±1.38; P<0.00), DAST (final 70.29±8.95; initial 79.40±10.25; P<0.00), SASTmax (final 16.81±2.24; initial 18.01±2.69; P<0.00), SAST(final 112.87±19.19; initial 122.65±21.55; P<0.00), and increase in 2 min (final 140.56±21.53; initial 128.68±19.33; P<0.00), and DYN (final 130.48±26.89; initial 91.65; P<0.00). Similarly, the elite group experienced a decrease in 100 m (final 72.18±9.77; initial 75.00±11.36; P=0.02), DASTmax (final 10.14±0.95; initial 10.88±0.99; P=0.03), DAST (final 65.55±6.50; initial 71.24±7.32; P=0.02), SASTmax (final 14.82±1.84; initial 15.76±1.80; P=0.03), and increase in DYN (final 194.94±27.70; initial 161.11±27.70; P<0.00). CONCLUSIONS: The results of this study demonstrate that dynamic apnea, as a main performance factor, had increase in all phases of procedure, with highest increase during anaerobic phases.

17.
Sports (Basel) ; 12(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38668578

RESUMEN

Breath-hold diving is explained as an activity that requires enduring muscle asphyxia and acidosis, high anaerobic capacity, and the tactic of the dive. Therefore, this study aimed to construct and validate tests that will mimic anaerobic processes in the specific media of freedivers. The sample of participants included 34 Croatian freedivers (average age: 26.85 ± 4.0 years, competitive age: 3.82 ± 1.92 years, their body height: 180.14 ± 8.93 cm, and their body mass: 76.82 ± 12.41 kg). The sample of variables consists of anthropometric indices, competitive efficiency (maximal length of a dive (DYN)), and specific anaerobic capacities (100 m and 2 min tests). Newly developed tests included the swimming anaerobic sprint test (SAST) and diving anaerobic sprint test (DAST). DAST and SAST variables included the total time of the test (DAST/SAST) and the fastest interval (DASTmax/SASTmax). The results showed good reliability of the tests with high Cronbach alpha coefficients (DAST: 0.98, DASTmax: 0.97, SAST: 0.99, SASTmax: 0.91). Furthermore, pragmatic validity shows a high correlation among all variables and DAST (DYN: -0.70, 100 m: 0.66, 2 min: -0.68). High relation is also found between 100 m (0.96), 2 min (-0.94), and a moderate result for DYN (-0.43) and the SAST test. A factor analysis extracted one significant factor. The factor analysis involved DAST, SAST, DYN, 100 m, and 2 min tests regarding factor 1. After the examination of all variables, the total time of the DAST test showed the best predictive values for the performance of divers. However, both tests could be used for diagnostics and the evaluation of specific condition abilities in freediving.

18.
J Sci Med Sport ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39209689

RESUMEN

OBJECTIVES: To determine the influence of a patent foramen ovale and fibroblast growth factor-21 on core temperature (Tc) responses in SCUBA divers. Additionally, we aimed to quantify the individual and combined influences of wetsuit thickness and anthropometric data on Tc changes during the dives. DESIGN: An experimental study comparing the Tc responses between divers with (n = 17) and without a patent foramen ovale (n = 14). METHODS: A total of 31 divers participated in the study. Tc was measured pre- and post-dive in 17-18 °C sea water using a telemetric pill. Additionally, blood was drawn pre-dive and ~1-2 h post-dive for measurement of fibroblast growth factor-21. RESULTS: There was no influence of a patent foramen ovale on the Tc responses during SCUBA diving in either dive profile (p > 0.05). Additionally, there was no influence of SCUBA diving on fibroblast growth factor-21 concentrations (p > 0.05). The strongest positive and significant associations with the ∆Tc/min were found when multiplying wetsuit thickness in millimeters by body mass (r2 = 0.3147, p = 0.0010), BMI (r2 = 0.3123, p = 0.0011), and body surface area (r2 = 0.2877, p = 0.0019). There was a significant, negative linear relationship between the body surface area to mass ratio and ∆Tc/min (r2 = 0.2812, p = 0.0032). CONCLUSIONS: These data suggest that Tc regulation during recreational SCUBA diving can be facilitated in part by the appropriate choice of wetsuit thickness for a given set of anthropometric characteristics.

19.
J Cereb Blood Flow Metab ; 42(6): 1120-1135, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35061562

RESUMEN

Voluntary asphyxia imposed by static apnea challenges blood-brain barrier (BBB) integrity in humans through transient extremes of hypertension, hypoxemia and hypercapnia. In the present study, ten ultra-elite breath-hold divers performed two maximal dry apneas preceded by normoxic normoventilation (NX: severe hypoxemia and hypercapnia) and hyperoxic hyperventilation (HX: absence of hypoxemia with exacerbating hypercapnia) with measurements obtained before and immediately after apnea. Transcerebral exchange of NVU proteins (ELISA, Single Molecule Array) were calculated as the product of global cerebral blood flow (gCBF, duplex ultrasound) and radial arterial to internal jugular venous concentration gradients. Apnea duration increased from 5 m 6 s in NX to 15 m 59 s in HX (P = <0.001) resulting in marked elevations in gCBF and venous S100B, glial fibrillary acidic protein, ubiquitin carboxy-terminal hydrolase-L1 and total tau (all P < 0.05 vs. baseline). This culminated in net cerebral output reflecting mildly increased BBB permeability and increased neuronal-gliovascular reactivity that was more pronounced in NX due to more severe systemic and intracranial hypertension (P < 0.05 vs. HX). These findings identify the hemodynamic stress to which the apneic brain is exposed, highlighting the critical contribution of hypoxemia and not just hypercapnia to BBB disruption.


Asunto(s)
Apnea , Hipercapnia , Apnea/metabolismo , Barrera Hematoencefálica/metabolismo , Humanos , Hipoxia/metabolismo , Permeabilidad
20.
J Sci Med Sport ; 25(7): 553-556, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35466041

RESUMEN

OBJECTIVES: During apnea diving, a patent foramen ovale may function as a pressure relief valve under conditions of high pulmonary pressure, preserving left-ventricular output. Patent foramen ovale prevalence in apneic divers has not been previously reported. We aimed to determine the prevalence of patent foramen ovale in apneic divers compared to non-divers. DESIGN: Cross sectional. METHODS: Apnea divers were recruited from a training camp in Cavtat, Croatia and the diving community of Split, Croatia. Controls were recruited from the population of Split, Croatia and Eugene, Oregon, USA. Participants were instrumented with an intravenous catheter and underwent patent foramen ovale screening utilizing transthoracic saline contrast echocardiography. Appearance of microbubbles in the left heart within 3 cardiac cycles indicated the presence of patent foramen ovale. Lung function was measured with spirometry. Comparison of patent foramen ovale prevalence was conducted using chi-square analysis, p < .05. RESULTS: Apnea divers had a significantly higher prevalence of patent foramen ovale (19 of 36, 53%) compared to controls (9 of 36, 25%) (X2 (1, N = 72) = 5.844, p = .0156). CONCLUSIONS: Why patent foramen ovale prevalence is greater in apnea divers remains unknown, though hyperbaria during an apnea dive results in a translocation of blood volume centrally with a concomitant reduction in lung volume and alveolar hypoxia during ascent results in hypoxic pulmonary vasoconstriction. These conditions increase pulmonary arterial pressure, increasing right-atrial pressure allowing for right-to-left blood flow through a patent foramen ovale which may be beneficial for preserving cardiac output and reducing capillary hydrostatic forces.


Asunto(s)
Enfermedad de Descompresión , Buceo , Foramen Oval Permeable , Apnea/complicaciones , Contencion de la Respiración , Estudios Transversales , Enfermedad de Descompresión/complicaciones , Enfermedad de Descompresión/prevención & control , Foramen Oval Permeable/complicaciones , Foramen Oval Permeable/diagnóstico por imagen , Foramen Oval Permeable/epidemiología , Humanos , Prevalencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA