Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 251(Pt 1): 118580, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38423496

RESUMEN

BACKGROUND AND AIMS: Exposure to brominated flame retardants (BFRs) has been widely confirmed to impair the normal functioning of the human body system. However, there is a paucity of study on the effects of serum BFRs on bone mineral density (BMD). This study aims to investigate the relationship between exposure to BFRs and BMD in a nationally representative sample of U.S. adults. METHODS: 3079 participants aged between 20 and 80 years with complete data were included in the study. Serum levels of BFRs were measured using automated liquid-liquid extraction and subsequent sample clean-up. The BMD of all participants were assessed by DXA examinations. Generalize linear model, Restricted cubic spline (RCS), subgroup, weighted quantile sum (WQS) and bayesian kernel machine regression (BKMR) were used to estimate the association between serum BFRs and BMD. RESULTS: Multivariate linear regression analyses revealed that, after adjusting for covariates, PBB153 was significantly associated with TF-BMD (ß = 0.0177, 95%CI: 0.0103-0.0252), FN-BMD (ß = 0.009, 95%CI: 0.0036-0.0145), TS-BMD (ß = 0.0081, 95%CI: 0.0013-0.015) and L1-BMD (ß = 0.0144, 95%CI: 0.0075-0.0213). However, the associations lose their statistical significance after further adjustment for sex. BFRs exhibited S-shaped or line-plateau dose-response curves with BMD. In subgroup analyses, BFRs were significantly associated with BMD in participants who were younger than 55 years, female, overweight (BMI >25 kg/m2), and less alcohol consumption. In WQS and BKMR analyses, the effects of BFRs mixtures on BMD differed by sex, and PBDE153, PBDE209 and PBB153 had the highest weights in the WQS regression model. CONCLUSION: This study showed that serum BFRs negatively predicted BMD in men, but not in women or the general population. PBDE153, PBDE209, and PBB153 were significant BMD factors, especially in younger, overweight, and less alcohol consumption individuals.


Asunto(s)
Densidad Ósea , Retardadores de Llama , Encuestas Nutricionales , Humanos , Persona de Mediana Edad , Adulto , Retardadores de Llama/análisis , Femenino , Masculino , Densidad Ósea/efectos de los fármacos , Estudios Transversales , Anciano , Estados Unidos , Adulto Joven , Anciano de 80 o más Años , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/sangre
2.
Drug Deliv ; 31(1): 2306231, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38245895

RESUMEN

Nanosecond pulsed laser induced photoporation has gained increasing attention from scholars as an effective method for delivering the membrane-impermeable extracellular materials into living cells. Compared with femtosecond laser, nanosecond laser has the advantage of high throughput and low costs. It also has a higher delivery efficiency than continuous wave laser. Here, we provide an extensive overview of current status of nanosecond pulsed laser induced photoporation, covering the photoporation mechanism as well as various factors that impact the delivery efficiency of photoporation. Additionally, we discuss various techniques for achieving photoporation, such as direct photoporation, nanoparticles-mediated photoporation and plasmonic substrates mediated photoporation. Among these techniques, nanoparticles-mediated photoporation is the most promising approach for potential clinical application. Studies have already been reported to safely destruct the vitreous opacities in vivo by nanosecond laser induced vapor nanobubble. Finally, we discuss the potential of nanosecond laser induced phototoporation for future clinical applications, particularly in the areas of skin and ophthalmic pathologies. We hope this review can inspire scientists to further improve nanosecond laser induced photoporation and facilitate its eventual clinical application.


Asunto(s)
Rayos Láser , Nanopartículas , Luz , Piel
3.
Nanomicro Lett ; 16(1): 144, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436767

RESUMEN

Aqueous sodium-ion batteries are known for poor rechargeability because of the competitive water decomposition reactions and the high electrode solubility. Improvements have been reported by salt-concentrated and organic-hybridized electrolyte designs, however, at the expense of cost and safety. Here, we report the prolonged cycling of ASIBs in routine dilute electrolytes by employing artificial electrode coatings consisting of NaX zeolite and NaOH-neutralized perfluorinated sulfonic polymer. The as-formed composite interphase exhibits a molecular-sieving effect jointly played by zeolite channels and size-shrunken ionic domains in the polymer matrix, which enables high rejection of hydrated Na+ ions while allowing fast dehydrated Na+ permeance. Applying this coating to electrode surfaces expands the electrochemical window of a practically feasible 2 mol kg-1 sodium trifluoromethanesulfonate aqueous electrolyte to 2.70 V and affords Na2MnFe(CN)6//NaTi2(PO4)3 full cells with an unprecedented cycling stability of 94.9% capacity retention after 200 cycles at 1 C. Combined with emerging electrolyte modifications, this molecular-sieving interphase brings amplified benefits in long-term operation of ASIBs.

4.
J Colloid Interface Sci ; 665: 240-251, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38531271

RESUMEN

Seawater electrolysis to generate hydrogen offers a clean, green, and sustainable solution for new energy. However, the catalytic activity and durability of anodic catalysts are plagued by the corrosion and competitive oxidation reactions of chloride in high concentrations. In this study, we find that the additive CrO42- anions in the electrolyte can not only promote the formation and stabilization of the metal oxyhydroxide active phase but also greatly mitigate the adverse effect of Cl- on the anode. Linear sweep voltammetry, accelerated corrosion experiments, corrosion polarization curves, and charge transfer resistance results indicate that the addition of CrO42- distinctly improves oxygen evolution reaction (OER) kinetics and corrosion resistance in alkaline seawater electrolytes. Especially, the introduction of CrO42- even in the highly concentrated NaCl (2.5 M) electrolyte prolongs the durability of NiFe-LDH to almost five times the case without CrO42-. Density functional theory calculations also reveal that the adsorption of CrO42- can tune the electronic configuration of active sites of metal oxyhydroxides, enhance conductivity, and optimize the intermediate adsorption energies. This anionic additive strategy can give a better enlightenment for the development of efficient and stable oxygen evolution reactions for seawater electrolysis.

5.
ACS Appl Mater Interfaces ; 16(20): 26460-26467, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38713066

RESUMEN

Owing to the ionic bond nature of the Pb-I bond, the iodide at the interface of perovskite polycrystalline films was easily lost during the preparation process, resulting in the formation of a large number of iodine vacancy defects. The presence of iodine vacancy defects can cause nonradiative recombination, provide a pathway for iodide migration, and be harmful to the power conversion efficiency (PCE) and stability of organic-inorganic hybrid perovskite solar cells (HPSCs). Here, in order to increase the robustness of iodides at the interface, a strategy to introduce anion binding effects was developed to stabilize the perovskite films. It was demonstrated that the N,N'-diphenylurea (DPU), characterized by high anionic binding constants and a Y-shaped structure, provides a relatively strong hydrogen bond donor site to effectively reduce the iodine loss during film preparation and inhibits iodide migration in the device working condition. As expected, the reduced iodine loss considerably improves the quality of the perovskite films and suppresses nonradiative recombination. The performance of the device after DPU modification was significantly increased, with the PCE rising from 23.65 to 25.01% with huge stability enhancement as well.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA