Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(13): 6146-6151, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30850535

RESUMEN

Mitochondria generate most cellular energy and are targeted by multiple pathogens during infection. In turn, metazoans employ surveillance mechanisms such as the mitochondrial unfolded protein response (UPRmt) to detect and respond to mitochondrial dysfunction as an indicator of infection. The UPRmt is an adaptive transcriptional program regulated by the transcription factor ATFS-1, which induces genes that promote mitochondrial recovery and innate immunity. The bacterial pathogen Pseudomonas aeruginosa produces toxins that disrupt oxidative phosphorylation (OXPHOS), resulting in UPRmt activation. Here, we demonstrate that Pseudomonas aeruginosa exploits an intrinsic negative regulatory mechanism mediated by the Caenorhabditis elegans bZIP protein ZIP-3 to repress UPRmt activation. Strikingly, worms lacking zip-3 were impervious to Pseudomonas aeruginosa-mediated UPRmt repression and resistant to infection. Pathogen-secreted phenazines perturbed mitochondrial function and were the primary cause of UPRmt activation, consistent with these molecules being electron shuttles and virulence determinants. Surprisingly, Pseudomonas aeruginosa unable to produce phenazines and thus elicit UPRmt activation were hypertoxic in zip-3-deletion worms. These data emphasize the significance of virulence-mediated UPRmt repression and the potency of the UPRmt as an antibacterial response.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiología , Mitocondrias/metabolismo , Infecciones por Pseudomonas/metabolismo , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada , Animales , Caenorhabditis elegans/metabolismo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa , Ubiquitina-Proteína Ligasas/metabolismo
2.
Front Cell Dev Biol ; 12: 1423208, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050895

RESUMEN

The existing literature points towards the presence of robust mitochondrial mechanisms aimed at mitigating protein dyshomeostasis within the organelle. However, the precise molecular composition of these mechanisms remains unclear. Our data show that inorganic polyphosphate (polyP), a polymer well-conserved throughout evolution, is a component of these mechanisms. In mammals, mitochondria exhibit a significant abundance of polyP, and both our research and that of others have already highlighted its potent regulatory effect on bioenergetics. Given the intimate connection between energy metabolism and protein homeostasis, the involvement of polyP in proteostasis has also been demonstrated in several organisms. For example, polyP is a bacterial primordial chaperone, and its role in amyloidogenesis has already been established. Here, using mammalian models, our study reveals that the depletion of mitochondrial polyP leads to increased protein aggregation within the organelle, following stress exposure. Furthermore, mitochondrial polyP is able to bind to proteins, and these proteins differ under control and stress conditions. The depletion of mitochondrial polyP significantly affects the proteome under both control and stress conditions, while also exerting regulatory control over gene expression. Our findings suggest that mitochondrial polyP is a previously unrecognized, and potent component of mitochondrial proteostasis.

3.
Nat Cell Biol ; 25(8): 1111-1120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37460695

RESUMEN

The ability to balance conflicting functional demands is critical for ensuring organismal survival. The transcription and repair of the mitochondrial genome (mtDNA) requires separate enzymatic activities that can sterically compete1, suggesting a life-long trade-off between these two processes. Here in Caenorhabditis elegans, we find that the bZIP transcription factor ATFS-1/Atf5 (refs. 2,3) regulates this balance in favour of mtDNA repair by localizing to mitochondria and interfering with the assembly of the mitochondrial pre-initiation transcription complex between HMG-5/TFAM and RPOM-1/mtRNAP. ATFS-1-mediated transcriptional inhibition decreases age-dependent mtDNA molecular damage through the DNA glycosylase NTH-1/NTH1, as well as the helicase TWNK-1/TWNK, resulting in an enhancement in the functional longevity of cells and protection against decline in animal behaviour caused by targeted and severe mtDNA damage. Together, our findings reveal that ATFS-1 acts as a molecular focal point for the control of balance between genome expression and maintenance in the mitochondria.


Asunto(s)
Proteínas de Caenorhabditis elegans , ADN Mitocondrial , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Caenorhabditis elegans/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Daño del ADN , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
4.
Cell Rep ; 41(13): 111875, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36577367

RESUMEN

Nutrient availability regulates the C. elegans life cycle as well as mitochondrial physiology. Food deprivation significantly reduces mitochondrial genome (mtDNA) numbers and leads to aging-related phenotypes. Here we show that the bZIP (basic leucine zipper) protein ATFS-1, a mediator of the mitochondrial unfolded protein response (UPRmt), is required to promote growth and establish a functional germline after prolonged starvation. We find that recovery of mtDNA copy numbers and development after starvation requires mitochondrion-localized ATFS-1 but not its nuclear transcription activity. We also find that the insulin-like receptor DAF-2 functions upstream of ATFS-1 to modulate mtDNA content. We show that reducing DAF-2 activity represses ATFS-1 nuclear function while causing an increase in mtDNA content, partly mediated by mitochondrion-localized ATFS-1. Our data indicate the importance of the UPRmt in recovering mitochondrial mass and suggest that atfs-1-dependent mtDNA replication precedes mitochondrial network expansion after starvation.


Asunto(s)
Proteínas de Caenorhabditis elegans , Genoma Mitocondrial , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Respuesta de Proteína Desplegada
5.
Nat Cell Biol ; 24(2): 181-193, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35165413

RESUMEN

The accumulation of deleterious mitochondrial DNA (∆mtDNA) causes inherited mitochondrial diseases and ageing-associated decline in mitochondrial functions such as oxidative phosphorylation. Following mitochondrial perturbations, the bZIP protein ATFS-1 induces a transcriptional programme to restore mitochondrial function. Paradoxically, ATFS-1 is also required to maintain ∆mtDNAs in heteroplasmic worms. The mechanism by which ATFS-1 promotes ∆mtDNA accumulation relative to wild-type mtDNAs is unclear. Here we show that ATFS-1 accumulates in dysfunctional mitochondria. ATFS-1 is absent in healthy mitochondria owing to degradation by the mtDNA-bound protease LONP-1, which results in the nearly exclusive association between ATFS-1 and ∆mtDNAs in heteroplasmic worms. Moreover, we demonstrate that mitochondrial ATFS-1 promotes the binding of the mtDNA replicative polymerase (POLG) to ∆mtDNAs. Interestingly, inhibition of the mtDNA-bound protease LONP-1 increased ATFS-1 and POLG binding to wild-type mtDNAs. LONP-1 inhibition in Caenorhabditis elegans and human cybrid cells improved the heteroplasmy ratio and restored oxidative phosphorylation. Our findings suggest that ATFS-1 promotes mtDNA replication in dysfunctional mitochondria by promoting POLG-mtDNA binding, which is antagonized by LONP-1.


Asunto(s)
Proteasas ATP-Dependientes , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Replicación del ADN , ADN Mitocondrial , Heteroplasmia , Mitocondrias , Proteínas Mitocondriales , Fosforilación Oxidativa , Factores de Transcripción , Animales , Humanos , Animales Modificados Genéticamente , Proteasas ATP-Dependientes/genética , Proteasas ATP-Dependientes/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Línea Celular , ADN Polimerasa gamma/genética , ADN Polimerasa gamma/metabolismo , ADN Mitocondrial/biosíntesis , ADN Mitocondrial/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteolisis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Nat Commun ; 12(1): 479, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33473112

RESUMEN

As organisms develop, individual cells generate mitochondria to fulfill physiological requirements. However, it remains unknown how mitochondrial network expansion is scaled to cell growth. The mitochondrial unfolded protein response (UPRmt) is a signaling pathway mediated by the transcription factor ATFS-1 which harbors a mitochondrial targeting sequence (MTS). Here, using the model organism Caenorhabditis elegans we demonstrate that ATFS-1 mediates an adaptable mitochondrial network expansion program that is active throughout normal development. Mitochondrial network expansion requires the relatively inefficient MTS in ATFS-1, which allows the transcription factor to be responsive to parameters that impact protein import capacity of the mitochondrial network. Increasing the strength of the ATFS-1 MTS impairs UPRmt activity by increasing accumulation within mitochondria. Manipulations of TORC1 activity increase or decrease ATFS-1 activity in a manner that correlates with protein synthesis. Lastly, expression of mitochondrial-targeted GFP is sufficient to expand the muscle cell mitochondrial network in an ATFS-1-dependent manner. We propose that mitochondrial network expansion during development is an emergent property of the synthesis of highly expressed mitochondrial proteins that exclude ATFS-1 from mitochondrial import, causing UPRmt activation.


Asunto(s)
Proteínas de Caenorhabditis elegans/biosíntesis , Caenorhabditis elegans/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Biosíntesis de Proteínas/fisiología , Animales , Caenorhabditis elegans/genética , Metabolismo Energético , Regulación de la Expresión Génica , Chaperonas Moleculares , Transporte de Proteínas , Transducción de Señal , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada
7.
Mol Oncol ; 14(8): 1833-1849, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32336014

RESUMEN

The mutation of K-RAS represents one of the most frequent genetic alterations in cancer. Targeting of downstream effectors of RAS, including of MEK and ERK, has limited clinical success in cancer patients with K-RAS mutations. The reduced sensitivity of K-RAS-mutated cells to certain MEK inhibitors (MEKi) is associated with the feedback phosphorylation of MEK by C-RAF and with the reactivation of mitogen-activated protein kinase (MAPK) signaling. Here, we report that the RAF dimer inhibitors lifirafenib (BGB-283) and compound C show a strong synergistic effect with MEKi, including mirdametinib (PD-0325901) and selumetinib, in suppressing the proliferation of K-RAS-mutated non-small-cell lung cancer and colorectal cancer (CRC) cell lines. This synergistic effect was not observed with the B-RAFV600E selective inhibitor vemurafenib. Our mechanistic analysis revealed that RAF dimer inhibition suppresses RAF-dependent MEK reactivation and leads to the sustained inhibition of MAPK signaling in K-RAS-mutated cells. This synergistic effect was also observed in several K-RAS mutant mouse xenograft models. A pharmacodynamic analysis supported a role for the synergistic phospho-ERK blockade in enhancing the antitumor activity observed in the K-RAS mutant models. These findings support a vertical inhibition strategy in which RAF dimer and MEKi are combined to target K-RAS-mutated cancers, and have led to a Phase 1b/2 combination therapy study of lifirafenib and mirdametinib in solid tumor patients with K-RAS mutations and other MAPK pathway aberrations.


Asunto(s)
Antineoplásicos/farmacología , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Mutación/genética , Inhibidores de Proteínas Quinasas/farmacología , Multimerización de Proteína , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Regulación Alostérica/efectos de los fármacos , Animales , Bencimidazoles/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Multimerización de Proteína/efectos de los fármacos , Factores de Tiempo , Regulación hacia Arriba/efectos de los fármacos , Vemurafenib/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Mol Cancer Ther ; 14(10): 2187-97, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26208524

RESUMEN

Oncogenic BRAF, which drives cell transformation and proliferation, has been detected in approximately 50% of human malignant melanomas and 5% to 15% of colorectal cancers. Despite the remarkable clinical activities achieved by vemurafenib and dabrafenib in treating BRAF(V600E) metastatic melanoma, their clinical efficacy in BRAF(V600E) colorectal cancer is far less impressive. Prior studies suggested that feedback activation of EGFR and MAPK signaling upon BRAF inhibition might contribute to the relative unresponsiveness of colorectal cancer to the first-generation BRAF inhibitors. Here, we report characterization of a dual RAF kinase/EGFR inhibitor, BGB-283, which is currently under clinical investigation. In vitro, BGB-283 potently inhibits BRAF(V600E)-activated ERK phosphorylation and cell proliferation. It demonstrates selective cytotoxicity and preferentially inhibits proliferation of cancer cells harboring BRAF(V600E) and EGFR mutation/amplification. In BRAF(V600E) colorectal cancer cell lines, BGB-283 effectively inhibits the reactivation of EGFR and EGFR-mediated cell proliferation. In vivo, BGB-283 treatment leads to dose-dependent tumor growth inhibition accompanied by partial and complete tumor regressions in both cell line-derived and primary human colorectal tumor xenografts bearing BRAF(V600E) mutation. These findings support BGB-283 as a potent antitumor drug candidate with clinical potential for treating colorectal cancer harboring BRAF(V600E) mutation.


Asunto(s)
Antineoplásicos/farmacología , Bencimidazoles/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Receptores ErbB/antagonistas & inhibidores , Naftiridinas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Quinasas raf/antagonistas & inhibidores , Animales , Dominio Catalítico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Modelos Moleculares , Fosforilación , Unión Proteica , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasas raf/metabolismo
9.
PLoS One ; 8(6): e67158, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23799143

RESUMEN

C. elegans PUD-1 and PUD-2, two proteins up-regulated in daf-2(loss-of-function) (PUD), are homologous 17-kD proteins with a large abundance increase in long-lived daf-2 mutant animals of reduced insulin signaling. In this study, we show that both PUD-1 and PUD-2 are abundantly expressed in the intestine and hypodermis, and form a heterodimer. We have solved their crystal structure to 1.9-Å resolution and found that both proteins adopt similar ß-sandwich folds in the V-shaped dimer. In contrast, their homologs PUD-3, PUD-4, PUDL-1 and PUDL-2 are all monomeric proteins with distinct expression patterns in C. elegans. Thus, the PUD-1/PUD-2 heterodimer probably has a function distinct from their family members. Neither overexpression nor deletion of pud-1 and pud-2 affected the lifespan of WT or daf-2 mutant animals, suggesting that their induction in daf-2 worms does not contribute to longevity. Curiously, deletion of pud-1 and pud-2 was associated with a protective effect against paralysis induced by the amyloid ß-peptide (1-42), which further enhanced the protection conferred by daf-2(RNAi) against Aß.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Receptor de Insulina/genética , Secuencia de Aminoácidos , Péptidos beta-Amiloides/farmacología , Animales , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Cristalografía por Rayos X , Factores de Transcripción Forkhead , Expresión Génica , Interacciones Hidrofóbicas e Hidrofílicas , Longevidad , Modelos Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/farmacología , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Estrés Fisiológico , Factores de Transcripción/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA