Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(51): e2211534119, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36508653

RESUMEN

Food fortification is an effective strategy to address vitamin A (VitA) deficiency, which is the leading cause of childhood blindness and drastically increases mortality from severe infections. However, VitA food fortification remains challenging due to significant degradation during storage and cooking. We utilized an FDA-approved, thermostable, and pH-responsive basic methacrylate copolymer (BMC) to encapsulate and stabilize VitA in microparticles (MPs). Encapsulation of VitA in VitA-BMC MPs greatly improved stability during simulated cooking conditions and long-term storage. VitA absorption was nine times greater from cooked MPs than from cooked free VitA in rats. In a randomized controlled cross-over study in healthy premenopausal women, VitA was readily released from MPs after consumption and had a similar absorption profile to free VitA. This VitA encapsulation technology will enable global food fortification strategies toward eliminating VitA deficiency.


Asunto(s)
Deficiencia de Vitamina A , Vitamina A , Femenino , Ratas , Animales , Alimentos Fortificados , Estudios Cruzados , Culinaria , Micronutrientes
2.
Proc Natl Acad Sci U S A ; 110(51): 20449-54, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24284166

RESUMEN

Regulation of microtubule dynamic instability is crucial for cellular processes, ranging from mitosis to membrane transport. Stathmin (also known as oncoprotein 18/Op18) is a prominent microtubule destabilizer that acts preferentially on microtubule minus ends. Stathmin has been studied intensively because of its association with multiple types of cancer, but its mechanism of action remains controversial. Two models have been proposed. One model is that stathmin promotes microtubule catastrophe indirectly, and does so by sequestering tubulin; the other holds that stathmin alters microtubule dynamics by directly destabilizing growing microtubules. Stathmin's sequestration activity is well established, but the mechanism of any direct action is mysterious because stathmin binds to microtubules very weakly. To address these issues, we have studied interactions between stathmin and varied tubulin polymers. We show that stathmin binds tightly to Dolastatin-10 tubulin rings, which mimic curved tubulin protofilaments, and that stathmin depolymerizes stabilized protofilament-rich polymers. These observations lead us to propose that stathmin promotes catastrophe by binding to and acting upon protofilaments exposed at the tips of growing microtubules. Moreover, we suggest that stathmin's minus-end preference results from interactions between stathmin's N terminus and the surface of α-tubulin that is exposed only at the minus end. Using computational modeling of microtubule dynamics, we show that these mechanisms could account for stathmin's observed activities in vitro, but that both the direct and sequestering activities are likely to be relevant in a cellular context. Taken together, our results suggest that stathmin can promote catastrophe by direct action on protofilament structure and interactions.


Asunto(s)
Microtúbulos/química , Simulación de Dinámica Molecular , Estatmina/química , Tubulina (Proteína)/química , Animales , Depsipéptidos/química , Humanos , Microtúbulos/metabolismo , Unión Proteica , Estatmina/metabolismo , Porcinos , Tubulina (Proteína)/metabolismo
3.
Sci Transl Med ; 11(518)2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31723037

RESUMEN

Micronutrient deficiencies affect up to 2 billion people and are the leading cause of cognitive and physical disorders in the developing world. Food fortification is effective in treating micronutrient deficiencies; however, its global implementation has been limited by technical challenges in maintaining micronutrient stability during cooking and storage. We hypothesized that polymer-based encapsulation could address this and facilitate micronutrient absorption. We identified poly(butylmethacrylate-co-(2-dimethylaminoethyl)methacrylate-co-methylmethacrylate) (1:2:1) (BMC) as a material with proven safety, offering stability in boiling water, rapid dissolution in gastric acid, and the ability to encapsulate distinct micronutrients. We encapsulated 11 micronutrients (iron; iodine; zinc; and vitamins A, B2, niacin, biotin, folic acid, B12, C, and D) and co-encapsulated up to 4 micronutrients. Encapsulation improved micronutrient stability against heat, light, moisture, and oxidation. Rodent studies confirmed rapid micronutrient release in the stomach and intestinal absorption. Bioavailability of iron from microparticles, compared to free iron, was lower in an initial human study. An organotypic human intestinal model revealed that increased iron loading and decreased polymer content would improve absorption. Using process development approaches capable of kilogram-scale synthesis, we increased iron loading more than 30-fold. Scaled batches tested in a follow-up human study exhibited up to 89% relative iron bioavailability compared to free iron. Collectively, these studies describe a broad approach for clinical translation of a heat-stable ingestible micronutrient delivery platform with the potential to improve micronutrient deficiency in the developing world. These approaches could potentially be applied toward clinical translation of other materials, such as natural polymers, for encapsulation and oral delivery of micronutrients.


Asunto(s)
Calor , Micronutrientes/administración & dosificación , Microesferas , Administración Oral , Animales , Disponibilidad Biológica , Transporte Biológico , Preparaciones de Acción Retardada , Liberación de Fármacos , Femenino , Humanos , Ácido Hialurónico/química , Absorción Intestinal , Intestinos/fisiología , Hierro/metabolismo , Metacrilatos/química , Ratones , Oxidación-Reducción , Rayos Ultravioleta , Vitamina A/metabolismo , Agua
4.
Methods Cell Biol ; 141: 115-134, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28882298

RESUMEN

Microtubule cosedimentation assays have long been used to study the affinity of interactions between Tau protein and microtubules. While these assays are very useful for characterizing and comparing the effects of alterations to either Tau or the microtubule filaments, they can also be problematic. We provide a set of straightforward instructions for performing these assays and point out a number of challenges and pitfalls that can complicate their interpretation.


Asunto(s)
Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Proteínas tau/metabolismo , Centrifugación por Gradiente de Densidad , Humanos , Unión Proteica
5.
J Mol Biol ; 429(9): 1424-1438, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28322917

RESUMEN

Tau is a multifaceted neuronal protein that stabilizes microtubules (MTs), but the mechanism of this activity remains poorly understood. Questions include whether Tau binds MTs laterally or longitudinally and whether Tau's binding affinity depends on the nucleotide state of tubulin. We observed that Tau binds tightly to Dolastatin-10 tubulin rings and promotes the formation of Dolastatin-10 ring stacks, implying that Tau can crosslink MT protofilaments laterally. In addition, we found that Tau prefers GDP-like tubulin conformations, which implies that Tau binding to the MT surface is biased away from the dynamic GTP-rich MT tip. To investigate the potential impact of these Tau activities on MT stabilization, we incorporated them into our previously developed dimer-scale computational model of MT dynamics. We found that lateral crosslinking activities have a much greater effect on MT stability than do longitudinal crosslinking activities, and that introducing a bias toward GDP tubulin has little impact on the observed MT stabilization. To address the question of why Tau is GDP-tubulin-biased, we tested whether Tau might affect MT binding of the +TIP EB1. We confirmed recent reports that Tau binds directly to EB1 and that Tau competes with EB1 for MT binding. Our results lead to a conceptual model where Tau stabilizes the MT lattice by strengthening lateral interactions between protofilaments. We propose that Tau's GDP preference allows the cell to independently regulate the dynamics of the MT tip and the stability of the lattice.


Asunto(s)
Guanosina Difosfato/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Proteínas tau/metabolismo , Animales , Humanos , Modelos Biológicos , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Porcinos
6.
Biol Psychiatry ; 77(12): 1098-107, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25891221

RESUMEN

BACKGROUND: Low-frequency (delta/theta) oscillations in the thalamocortical system are elevated in schizophrenia during wakefulness and are also induced in the N-methyl-D-asparate receptor hypofunction rat model. To determine whether abnormal delta oscillations might produce functional deficits, we used optogenetic methods in awake rats. We illuminated channelrhodopsin-2 in the thalamic nucleus reuniens (RE) at delta frequency and measured the effect on working memory (WM) performance (the RE is involved in WM, a process affected in schizophrenia [SZ]). METHODS: We injected RE with adeno-associated virus to transduce cells with channelrhodopsin-2. An optical fiber was implanted just dorsal to the hippocampus in order to illuminate RE axon terminals. RESULTS: During optogenetic delta frequency stimulation, rats displayed a strong WM deficit. On the following day, performance was normal if illumination was omitted. CONCLUSIONS: The optogenetic experiments show that delta frequency stimulation of a thalamic nucleus is sufficient to produce deficits in WM. This result supports the hypothesis that delta frequency bursting in particular thalamic nuclei has a causal role in producing WM deficits in SZ. The action potentials in these bursts may "jam" communication through the thalamus, thereby interfering with behaviors dependent on WM. Studies in thalamic slices using the N-methyl-D-asparate receptor hypofunction model show that delta frequency bursting is dependent on T-type Ca(2+) channels, a result that we confirmed here in vivo. These channels, which are strongly implicated in SZ by genome-wide association studies, may thus be a therapeutic target for treatment of SZ.


Asunto(s)
Ritmo Delta/fisiología , Trastornos de la Memoria/fisiopatología , Memoria a Corto Plazo/fisiología , Núcleos Talámicos de la Línea Media/fisiología , Esquizofrenia/fisiopatología , Psicología del Esquizofrénico , Animales , Hipocampo/fisiología , Masculino , Trastornos de la Memoria/etiología , Optogenética , Ratas , Ratas Long-Evans , Esquizofrenia/etiología
7.
Methods Cell Biol ; 115: 375-84, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23973084

RESUMEN

MTBindingSim is a program that enables users to simulate experiments in which proteins or other ligands (e.g., drugs) bind to microtubules or other polymers under various binding models. The purpose of MTBindingSim is to help researchers and students gain an intuitive understanding of binding behavior and design experiments to distinguish between different binding mechanisms. MTBindingSim is open-source, freely available software and can be found at bindingtutor.org/mtbindingsim. This chapter first describes the capabilities of MTBindingSim, including the experimental designs and protein-binding models that it simulates, and then discusses two examples in which MTBindingSim is utilized in an experimental context. In the first, MTBindingSim is used to investigate potential explanations for unusual behavior observed in the binding of the neuronal protein Tau to microtubules, demonstrating that some potential explanations are incompatible with the experimental data. In the second example, MTBindingSim is used to design experiments to examine the question of whether the plus-end tracking protein EB1 binds preferentially to the microtubule seam.


Asunto(s)
Simulación por Computador , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas tau/metabolismo , Sitios de Unión , Humanos , Polímeros/metabolismo , Unión Proteica , Programas Informáticos
8.
Cytoskeleton (Hoboken) ; 70(6): 317-27, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23864329

RESUMEN

EB1 is a highly conserved microtubule (MT) plus end tracking protein (+TIP) involved in regulating MT dynamics, but the mechanisms of its effects on MT polymerization remain undefined. Resolving this question requires understanding how EB1 interacts with MTs. Previous electron microscopy of the S. pombe EB1 homolog Mal3p suggested that Mal3p binds specifically to the MT seam, implying that EB1 family members promote MT polymerization by stabilizing the seam. However, more recent electron microscopy indicates that Mal3p binds everywhere except the seam. Neither set of experiments investigated the behavior of human EB1, or provided an explanation for why these studies arrived at different answers. To resolve these questions, we have used a combination of MT-binding assays and theoretical modeling with MTBindingSim. Our results indicate that human EB1 binds to the lattice, consistent with the recent Mal3p results, and show that Mal3p-binding assays that were previously interpreted as evidence for preferential seam binding are equally consistent with weak lattice binding. In addition, we used analytical ultracentrifugation to investigate the possibility that the EB1 monomer-dimer equilibrium might contribute to EB1 binding behavior, and determined that the EB1 dimerization dissociation constant is approximately 90 nM. We and others find that the cellular concentration of EB1 is on the order of 200 nM, suggesting that a portion of EB1 may be monomeric at physiological concentrations. These observations lead us to suggest that regulation of EB1 dimerization might play a role in controlling EB1 function.


Asunto(s)
Interleucinas/metabolismo , Microtúbulos/metabolismo , Modelos Teóricos , Sitios de Unión , Bioensayo , Dimerización , Humanos , Antígenos de Histocompatibilidad Menor , Modelos Biológicos , Unión Proteica
9.
Mol Biol Cell ; 23(24): 4796-806, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23087208

RESUMEN

Tau is a neuronal protein that stabilizes the microtubule (MT) network, but it also forms filaments associated with Alzheimer's disease. Understanding Tau-MT and Tau-Tau interactions would help to establish Tau function in health and disease. For many years, literature reports on Tau-MT binding behavior and affinity have remained surprisingly contradictory (e.g., 10-fold variation in Tau-MT affinity). Tau-Tau interactions have also been investigated, but whether MTs might affect Tau filament formation is unknown. We have addressed these issues through binding assays and microscopy. We assessed Tau-MT interactions via cosedimentation and found that the measured affinity of Tau varies greatly, depending on the experimental design and the protein concentrations used. To investigate this dependence, we used fluorescence microscopy to examine Tau-MT binding. Strikingly, we found that Taxol-stabilized MTs promote Tau filament formation without characterized Tau-filament inducers. We propose that these novel Tau filaments account for the incongruence in Tau-MT affinity measurements. Moreover, electron microscopy reveals that these filaments appear similar to the heparin-induced Alzheimer's model. These observations suggest that the MT-induced Tau filaments provide a new model for Alzheimer's studies and that MTs might play a role in the formation of Alzheimer's-associated neurofibrillary tangles.


Asunto(s)
Microtúbulos/efectos de los fármacos , Ovillos Neurofibrilares/efectos de los fármacos , Paclitaxel/farmacología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Unión Competitiva , Western Blotting , Heparina/farmacología , Humanos , Cinética , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/ultraestructura , Unión Proteica , Moduladores de Tubulina/farmacología , Proteínas tau/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA