Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Nat Mater ; 22(12): 1499-1506, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37770677

RESUMEN

Recently, the increasing demand for data-centric applications is driving the elimination of image sensing, memory and computing unit interface, thus promising for latency- and energy-strict applications. Although dedicated electronic hardware has inspired the development of in-memory computing and in-sensor computing, folding the entire signal chain into one device remains challenging. Here an in-memory sensing and computing architecture is demonstrated using ferroelectric-defined reconfigurable two-dimensional photodiode arrays. High-level cognitive computing is realized based on the multiplications of light power and photoresponsivity through the photocurrent generation process and Kirchhoff's law. The weight is stored and programmed locally by the ferroelectric domains, enabling 51 (>5 bit) distinguishable weight states with linear, symmetric and reversible manipulation characteristics. Image recognition can be performed without any external memory and computing units. The three-in-one paradigm, integrating high-level computing, weight memorization and high-performance sensing, paves the way for a computing architecture with low energy consumption, low latency and reduced hardware overhead.

2.
Nano Lett ; 23(21): 10013-10020, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37856232

RESUMEN

The realization of multiferroic materials offers the possibility of multifunctional electronic device design. However, the coupling between the multiferroicity and piezoelectricity in Janus materials is rarely reported. In this study, we propose a mechanism for manipulating valley physics by magnetization reversing and ferroelectric switching in multiferroic and piezoelectric material. The ferromagnetic VSiGeP4 monolayer exhibits a large valley polarization up to 100 meV, which can be effectively operated by reversing magnetization. Interestingly, the antiferromagnetic VSiGeP4 bilayers with AB and BA stacking configurations allow the coexistence of valley polarization and ferroelectricity, supporting the proposed strategy for manipulating valley physics via ferroelectric switching and interlayer sliding. In addition, the VSiGeP4 monolayer contains remarkable tunable piezoelectricity regulated by electron correlation U. This study proposes a feasible idea for regulating valley polarization and a general design idea for multifunctional devices with multiferroic and piezoelectric properties, facilitating the miniaturization and integration of nanodevices.

3.
J Am Chem Soc ; 145(49): 26791-26798, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37972388

RESUMEN

Knot-like structures were found to have interesting magnetic properties in condensed matter physics. Herein, we report on topologically chiral molecular knots as efficient spintronic chiral material. The discovery of the chiral-induced spin selectivity (CISS) effect opens the possibility of manipulating the spin orientation with soft materials at room temperature and eliminating the need for a ferromagnetic electrode. In the chiral molecular trefoil knot, there are no stereogenic carbon atoms, and chirality results from the spatial arrangements of crossings in the trefoil knot structures. The molecules show a very high spin polarization of nearly 90%, a conductivity that is higher by about 2 orders of magnitude compared with that of other chiral small molecules, and enhanced thermal stability. A plausible explanation for these special properties is provided, combined with model calculations, that supports the role of electron-electron interaction in these systems.

4.
Nano Lett ; 22(12): 4792-4799, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35639474

RESUMEN

HfO2-based films with high compatibility with Si and complementary metal-oxide semiconductors (CMOS) have been widely explored in recent years. In addition to ferroelectricity and antiferroelectricity, flexoelectricity, the coupling between polarization and a strain gradient, is rarely reported in HfO2-based films. Here, we demonstrate that the mechanically written out-of-plane domains are obtained in 10 nm Hf0.5Zr0.5O2 (HZO) ferroelectric film at room temperature by generating the stress gradient via the tip of an atomic force microscope. The results of scanning Kelvin force microscopy (SKPM) exclude the possibility of flexoelectric-like mechanisms and prove that charge injection could be avoided by mechanical writing and thus reveal the true polarization state, promoting wider flexoelectric applications and ultrahigh-density storage of HZO thin films.

5.
Nano Lett ; 22(4): 1580-1586, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35073104

RESUMEN

Strontium titanate (STO), with a wide spectrum of emergent properties such as ferroelectricity and superconductivity, has received significant attention in the community of strongly correlated materials. In the strain-free STO film grown on the SrRuO3 buffer layer, the existing polar nanoregions can facilitate room-temperature ferroelectricity when the STO film thickness approaches 10 nm. Here we show that around this thickness scale, the freestanding STO films without the influence of a substrate show the tetragonal structure at room temperature, contrasting with the cubic structure seen in bulk form. The spectroscopic measurements reveal the modified Ti-O orbital hybridization that causes the Ti ion to deviate from its nominal 4+ valency (3d0 configuration) with excess delocalized 3d electrons. Additionally, the Ti ion in TiO6 octahedron exhibits an off-center displacement. The inherent symmetry lowering in ultrathin freestanding films offers an alternative way to achieve tunable electronic structures that are of paramount importance for future technological applications.

6.
Phys Chem Chem Phys ; 23(47): 26997-27004, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34842874

RESUMEN

Among the IV-VI compounds, GeSe has wide applications in nanoelectronics due to its unique photoelectric properties and adjustable band gap. Even though modulation of its physical characteristics, including the band gap, by an external field will be useful for designing novel devices, experimental work is still rare. Here, we report a detailed anisotropic Raman response of GeSe flakes under uniaxial tension strain. Based on theoretical analysis, the anisotropy of the phonon response is attributed to a change in anisotropic bond length and bond angle under in-plane uniaxial strain. An enhancement in anisotropy and band gap is found due to strain along the ZZ or AC directions. This study shows that strain-engineering is an effective method for controlling the GeSe lattice, and paves the way for modulating the anisotropic electric and optical properties of GeSe.

7.
Proc Natl Acad Sci U S A ; 115(34): 8511-8516, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30076226

RESUMEN

Engineering the electronic band structure of material systems enables the unprecedented exploration of new physical properties that are absent in natural or as-synthetic materials. Half metallicity, an intriguing physical property arising from the metallic nature of electrons with singular spin polarization and insulating for oppositely polarized electrons, holds a great potential for a 100% spin-polarized current for high-efficiency spintronics. Conventionally synthesized thin films hardly sustain half metallicity inherited from their 3D counterparts. A fundamental challenge, in systems of reduced dimensions, is the almost inevitable spin-mixed edge or surface states in proximity to the Fermi level. Here, we predict electric field-induced half metallicity in bilayer A-type antiferromagnetic van der Waals crystals (i.e., intralayer ferromagnetism and interlayer antiferromagnetism), by employing density functional theory calculations on vanadium diselenide. Electric fields lift energy levels of the constituent layers in opposite directions, leading to the gradual closure of the gap of singular spin-polarized states and the opening of the gap of the others. We show that a vertical electrical field is a generic and effective way to achieve half metallicity in A-type antiferromagnetic bilayers and realize the spin field effect transistor. The electric field-induced half metallicity represents an appealing route to realize 2D half metals and opens opportunities for nanoscale highly efficient antiferromagnetic spintronics for information processing and storage.

10.
Phys Rev Lett ; 123(23): 233202, 2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31868470

RESUMEN

We experimentally observe the bond stretching time of one-photon and net-two-photon dissociation pathways of singly ionized H_{2} molecules driven by a polarization-skewed femtosecond laser pulse. By measuring the angular distributions of the ejected photoelectron and nuclear fragments in coincidence, the cycle-changing polarization of the laser field enables us to clock the photon-ionization starting time and photon-dissociation stopping time, analogous to a stopwatch. After the single ionization of H_{2}, our results show that the produced H_{2}^{+} takes almost the same time in the one-photon and net-two-photon dissociation pathways to stretch to the internuclear distance of the one-photon coupled dipole-transition between the ground and excited electronic states. The spatiotemporal mapping character of the polarization-skewed laser field provides us a straightforward route to clock the ultrafast dynamics of molecules with sub-optical-cycle time resolution.

11.
Nanotechnology ; 30(46): 464001, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31422955

RESUMEN

Memristors have been intensively studied in recent years as promising building blocks for next-generation nonvolatile memory, artificial neural networks and brain-inspired computing systems. However, most memristors cannot simultaneously function in extremely low and high temperatures, limiting their use for many harsh environment applications. Here, we demonstrate that the memristors based on high-Curie temperature ferroelectrics can resolve these issues. Excellent synaptic learning and memory functions can be achieved in BiFeO3 (BFO)-based ferroelectric memristors in an ultra-wide temperature range. Correlation between electronic transport and ferroelectric properties is established by the coincidence of resistance and ferroelectricity switch and the direct visualization of local current and domain distributions. The interfacial barrier modification by the reversal of ferroelectric polarization leads to a robust resistance switching behavior. Various synaptic functions including long-term potentiation/depression, consecutive potentiation/depression and spike-timing dependent plasticity have been realized in the BFO ferroelectric memristors over an extremely wide temperature range of -170 °C âˆ¼ 300 °C, which even can be extended to 500 °C due to the robust ferroelectricity of BFO at high temperatures. Our findings illustrate that the BFO ferroelectric memristors are promising candidates for ultra-wide temperature electronic synapse in extreme or harsh environments.

12.
Nano Lett ; 18(4): 2435-2441, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29533632

RESUMEN

Graphene, having all atoms on its surface, is favorable to extend the functions by introducing the spin-orbit coupling and magnetism through proximity effect. Here, we report the tunable interfacial exchange field produced by proximity coupling in graphene/BiFeO3 heterostructures. The exchange field has a notable dependence with external magnetic field, and it is much larger under negative magnetic field than that under positive magnetic field. For negative external magnetic field, interfacial exchange coupling gives rise to evident spin splitting for N ≠ 0 Landau levels and a quantum Hall metal state for N = 0 Landau level. Our findings suggest graphene/BiFeO3 heterostructures are promising for spintronics.

13.
Nano Lett ; 18(12): 7742-7748, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30407834

RESUMEN

Photostriction, optical stimulus driven mechanical deformation in materials, provides a solution toward next-generation technology. Here, the giant photostriction (∼2% change of lattice) of epitaxial strontium iridate (SrIrO3) films under illumination at room temperature is revealed via power-dependent Raman scattering, which is significantly larger as compared to conventional inorganic materials. The time scale and mechanism of this giant photostriction in SrIrO3 are further studied through time-resolved transient reflectivity measurements. The main mechanism is determined to be the electron-phonon coupling. In addition, we find that such an exotic behavior happens within few picoseconds and remains up to 107 cyclic on/off operations. The observation of giant photostriction in SrIrO3 films with superior endurance promises the advance of shape responsive solids that are sensitive to environmental stimuli, which could be widely utilized for multifunctional optoelectronics and optomechanical devices.

14.
Phys Chem Chem Phys ; 19(26): 16960-16968, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28636685

RESUMEN

Memristive devices are promising circuit elements that enable novel computational approaches which go beyond the von-Neumann paradigms. Here by tuning the chemistry at the Al-LaNiO3 (LNO) interface, a metal-metal junction, we engineer good switching behavior with good electroresistance (ON-OFF resistance ratios of 100), and repeatable multiple resistance states. The active material responsible for such a behavior is a self-formed sandwich of an AlxOy layer at the interface obtained by grabbing oxygen by Al from LNO. Using aberration corrected electron microscopy and transport measurements, it is confirmed that the memristive hysteresis occurs due to the electric field driven O2- (or ) cycling between LNO (reservoir) and the interlayer, which drives the redox reactions forming and dissolving Al nanoclusters in the AlxOy matrix. This work provides clear insights into and details on precise oxygen control at such interfaces and can be useful for newer opportunities in oxitronics.

15.
Phys Chem Chem Phys ; 18(21): 14222-7, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27167677

RESUMEN

Two dimensional materials have many outstanding intrinsic advantages that can be utilized to enhance the photocatalytic efficiency of water splitting. Herein, based on ab initio calculations, we reveal that for monolayer and multilayer rhenium disulphide (ReS2), the band gap and band edge positions are an excellent match with the water splitting energy levels. Moreover, the effective masses of the carriers are relatively light, and the optical absorption coefficients are high under visible illumination. Due to the feature of weak interlayer coupling, these properties are independent of the layer thickness. Our results suggest that ReS2 is a stable and efficient photocatalyst with potential applications in the use of solar energy for water splitting.

16.
Nanomicro Lett ; 16(1): 227, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918252

RESUMEN

Ferroelectrics have great potential in the field of nonvolatile memory due to programmable polarization states by external electric field in nonvolatile manner. However, complementary metal oxide semiconductor compatibility and uniformity of ferroelectric performance after size scaling have always been two thorny issues hindering practical application of ferroelectric memory devices. The emerging ferroelectricity of wurtzite structure nitride offers opportunities to circumvent the dilemma. This review covers the mechanism of ferroelectricity and domain dynamics in ferroelectric AlScN films. The performance optimization of AlScN films grown by different techniques is summarized and their applications for memories and emerging in-memory computing are illustrated. Finally, the challenges and perspectives regarding the commercial avenue of ferroelectric AlScN are discussed.

17.
Nat Commun ; 15(1): 295, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38177167

RESUMEN

Stacking two atomic layers together can induce interlayer (sliding) ferroelectricity that is absent in their naturally occurring crystal forms. With the flexibility of two-dimensional materials, more layers could be assembled to give rise to even richer polarization states. Here, we show that three-layer boron nitride can host ferro- and antiferroelectric domains in the same sample. When used as a tunneling junction, the polarization of these domains could be switched in a layer-by-layer procedure, producing multiple resistance states. Theoretical investigation reveals an important role played by the interaction between the trilayer boron nitride and graphene substrate. These findings reveal the great potential and unique properties of 2D sliding ferroelectric materials.

18.
Mater Horiz ; 11(5): 1325-1333, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38174937

RESUMEN

Low-dimensional ferroelectric tunnel junctions are appealing for the realization of nanoscale nonvolatile memory devices due to their inherent advantages of device miniaturization. Those based on current mechanisms have limitations, including low tunneling electroresistance (TER) effects and complex heterostructures. Here, we introduce an entirely new TER mechanism to construct a nanotube ferroelectric tunnel junction with ferroelectric nanotubes as the tunneling region. When rolling a ferroelectric monolayer into a nanotube, due to the coexistence of its intrinsic ferroelectric polarization with the flexoelectric polarization induced by bending, a metal-insulator transition occurs depending on the radiative polarization states. For the pristine monolayer, its out-of-plane polarization is tunable by an in-plane electric field, and the conducting states of the ferroelectric nanotube can thus be tuned between metallic and insulating states via axial electric means. Using α-In2Se3 as an example, our first-principles density functional theory calculations and nonequilibrium Green's function formalism confirm the feasibility of the TER mechanism and indicate an ultrahigh TER ratio that exceeds 9.9 × 1010% of the proposed nanotube ferroelectric tunnel junctions. Our findings provide a promising approach based on simple homogeneous structures for high density ferroelectric microelectric devices with excellent ON/OFF performance.

19.
Nat Commun ; 15(1): 702, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267410

RESUMEN

Ferroelectric polymer-based electrocaloric effect may lead to sustainable heat pumps and refrigeration owing to the large electrocaloric-induced entropy changes, flexible, lightweight and zero-global warming potential. Herein, low-k nanodiamonds are served as extrinsic dielectric fillers to fabricate polymeric nanocomposites for electrocaloric refrigeration. As low-k nanofillers are naturally polar-inactive, hence they have been widely applied for consolidate electrical stability in dielectrics. Interestingly, we observe that the nanodiamonds markedly enhances the electrocaloric effect in relaxor ferroelectrics. Compared with their high-k counterparts that have been extensively studied in the field of electrocaloric nanocomposites, the nanodiamonds introduces the highest volumetric electrocaloric enhancement (~23%/vol%). The resulting polymeric nanocomposite exhibits concurrently improved electrocaloric effect (160%), thermal conductivity (175%) and electrical stability (125%), which allow a fluid-solid coupling-based electrocaloric refrigerator to exhibit an improved coefficient of performance from 0.8 to 5.3 (660%) while maintaining high cooling power (over 240 W) at a temperature span of 10 K.

20.
Small Methods ; : e2400258, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38962863

RESUMEN

Nanoengineering polar oxide films have attracted great attention in energy storage due to their high energy density. However, most of them are deposited on thick and rigid substrates, which is not conducive to the integration of capacitors and applications in flexible electronics. Here, an alternative strategy using van der Waals epitaxial oxide dielectrics on ultra-thin flexible mica substrates is developed and increased the disorder within the system through high laser flux. The introduction of defects can efficiently weaken or destroy the long-range ferroelectric ordering, ultimately leading to the emergence of a large numbers of weak-coupling regions. Such polarization configuration ensures fast polarization response and significantly improves energy storage characteristics. A flexible BiFeO3-BaTiO3 (BF-BT) capacitor exhibits a total energy density of 43.5 J cm-3 and an efficiency of 66.7% and maintains good energy storage performance over a wide temperature range (20-200 °C) and under large bending deformation (bending radii ≈ 2 mm). This study provides a feasible approach to improve the energy storage characteristics of dielectric oxide films and paves the way for their practical application in high-energy density capacitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA