Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 630(8017): 613-618, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811737

RESUMEN

A large qubit capacity and an individual readout capability are two crucial requirements for large-scale quantum computing and simulation1. As one of the leading physical platforms for quantum information processing, the ion trap has achieved a quantum simulation of tens of ions with site-resolved readout in a one-dimensional Paul trap2-4 and of hundreds of ions with global observables in a two-dimensional (2D) Penning trap5,6. However, integrating these two features into a single system is still very challenging. Here we report the stable trapping of 512 ions in a 2D Wigner crystal and the sideband cooling of their transverse motion. We demonstrate the quantum simulation of long-range quantum Ising models with tunable coupling strengths and patterns, with or without frustration, using 300 ions. Enabled by the site resolution in the single-shot measurement, we observe rich spatial correlation patterns in the quasi-adiabatically prepared ground states, which allows us to verify quantum simulation results by comparing the measured two-spin correlations with the calculated collective phonon modes and with classical simulated annealing. We further probe the quench dynamics of the Ising model in a transverse field to demonstrate quantum sampling tasks. Our work paves the way for simulating classically intractable quantum dynamics and for running noisy intermediate-scale quantum algorithms7,8 using 2D ion trap quantum simulators.

2.
Phys Rev Lett ; 132(15): 150401, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38683009

RESUMEN

Quantum many-body scars are nonthermal excited eigenstates of nonintegrable Hamiltonians, which could support coherent revival dynamics from special initial states when scars form an equally spaced tower in the energy spectrum. For open quantum systems, engineering many-body scarred dynamics by a controlled coupling to the environment remains largely unexplored. Here, we provide a general framework to exactly embed quantum many-body scars into the decoherence-free subspaces of Lindblad master equations. The dissipative scarred dynamics manifest persistent periodic oscillations for generic initial states, and can be practically utilized to prepare scar states with potential quantum metrology applications. We construct the Liouvillian dissipators with the local projectors that annihilate the whole scar towers, and utilize the Hamiltonian part to rotate the undesired states out of the null space of dissipators. We demonstrate our protocol through several typical models hosting many-body scar towers and propose an experimental scheme to observe the dissipative scarred dynamics based on digital quantum simulations and resetting ancilla qubits.

3.
Phys Rev Lett ; 132(13): 130601, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38613306

RESUMEN

Synthetic dimension is a potent tool in quantum simulation of topological phases of matter. Here we propose and demonstrate a scheme to simulate an anisotropic Harper-Hofstadter model with controllable magnetic flux on a two-leg ladder using the spin and motional states of a single trapped ion. We verify the successful simulation of this model by comparing the measured dynamics with theoretical predictions under various coupling strength and magnetic flux, and we observe the chiral motion of wave packets on the ladder as evidence of the topological chiral edge modes. We develop a quench path to adiabatically prepare the ground states for varying magnetic flux and coupling strength, and we measure the chiral current on the ladder for the prepared ground states, which allows us to probe the quantum phase transition between the Meissner phase and the vortex phase. Our work demonstrates the trapped ion as a powerful quantum simulation platform for topological quantum matter.

4.
Phys Rev Lett ; 130(16): 163001, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37154650

RESUMEN

Non-Hermitian systems generically have complex energies, which may host topological structures, such as links or knots. While there has been great progress in experimentally engineering non-Hermitian models in quantum simulators, it remains a significant challenge to experimentally probe complex energies in these systems, thereby making it difficult to directly diagnose complex-energy topology. Here, we experimentally realize a two-band non-Hermitian model with a single trapped ion whose complex eigenenergies exhibit the unlink, unknot, or Hopf link topological structures. Based on non-Hermitian absorption spectroscopy, we couple one system level to an auxiliary level through a laser beam and then experimentally measure the population of the ion on the auxiliary level after a long period of time. Complex eigenenergies are then extracted, illustrating the unlink, unknot, or Hopf link topological structure. Our work demonstrates that complex energies can be experimentally measured in quantum simulators via non-Hermitian absorption spectroscopy, thereby opening the door for exploring various complex-energy properties in non-Hermitian quantum systems, such as trapped ions, cold atoms, superconducting circuits, or solid-state spin systems.

5.
Phys Rev Lett ; 129(27): 270501, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36638302

RESUMEN

Tensor networks are efficient representations of high-dimensional tensors with widespread applications in quantum many-body physics. Recently, they have been adapted to the field of machine learning, giving rise to an emergent research frontier that has attracted considerable attention. Here, we study the trainability of tensor-network based machine learning models by exploring the landscapes of different loss functions, with a focus on the matrix product states (also called tensor trains) architecture. In particular, we rigorously prove that barren plateaus (i.e., exponentially vanishing gradients) prevail in the training process of the machine learning algorithms with global loss functions. Whereas, for local loss functions the gradients with respect to variational parameters near the local observables do not vanish as the system size increases. Therefore, the barren plateaus are absent in this case and the corresponding models could be efficiently trainable. Our results reveal a crucial aspect of tensor-network based machine learning in a rigorous fashion, which provide a valuable guide for both practical applications and theoretical studies in the future.

6.
Phys Rev Lett ; 128(16): 160504, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35522503

RESUMEN

Quantum simulation provides important tools in studying strongly correlated many-body systems with controllable parameters. As a hybrid of two fundamental models in quantum optics and in condensed matter physics, the Rabi-Hubbard model demonstrates rich physics through the competition between local spin-boson interactions and long-range boson hopping. Here, we report an experimental realization of the Rabi-Hubbard model using up to 16 trapped ions and present a controlled study of its equilibrium properties and quantum dynamics. We observe the ground-state quantum phase transition by slowly quenching the coupling strength, and measure the quantum dynamical evolution in various parameter regimes. With the magnetization and the spin-spin correlation as probes, we verify the prediction of the model Hamiltonian by comparing theoretical results in small system sizes with experimental observations. For larger-size systems of 16 ions and 16 phonon modes, the effective Hilbert space dimension exceeds 2^{57}, whose dynamics is intractable for classical supercomputers.

7.
Phys Rev Lett ; 129(14): 140501, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36240415

RESUMEN

The Jaynes-Cummings-Hubbard (JCH) model is a fundamental many-body model for light-matter interaction. As a leading platform for quantum simulation, the trapped ion system has realized the JCH model for two to three ions. Here, we report the quantum simulation of the JCH model using up to 32 ions. We verify the simulation results even for large ion numbers by engineering low excitations and thus low effective dimensions; then we extend to 32 excitations for an effective dimension of 2^{77}, which is difficult for classical computers. By regarding the phonon modes as baths, we explore Markovian or non-Markovian spin dynamics in different parameter regimes of the JCH model, similar to quantum emitters in a structured photonic environment. We further examine the dependence of the non-Markovian dynamics on the effective Hilbert space dimension. Our Letter demonstrates the trapped ion system as a powerful quantum simulator for many-body physics and open quantum systems.

8.
Phys Rev Lett ; 128(20): 200502, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35657866

RESUMEN

Quantum simulation of 1D relativistic quantum mechanics has been achieved in well-controlled systems like trapped ions, but properties like spin dynamics and response to external magnetic fields that appear only in higher dimensions remain unexplored. Here we simulate the dynamics of a 2D Weyl particle. We show the linear dispersion relation of the free particle and the discrete Landau levels in a magnetic field, and we explicitly measure the spatial and spin dynamics from which the conservation of helicity and properties of antiparticles can be verified. Our work extends the application of an ion trap quantum simulator in particle physics with the additional spatial and spin degrees of freedom.

9.
Phys Rev Lett ; 127(9): 090501, 2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34506190

RESUMEN

Non-Hermitian topological phases exhibit a number of exotic features that have no Hermitian counterparts, including the skin effect and breakdown of the conventional bulk-boundary correspondence. Here, we implement the non-Hermitian Su-Schrieffer-Heeger Hamiltonian, which is a prototypical model for studying non-Hermitian topological phases, with a solid-state quantum simulator consisting of an electron spin and a ^{13}C nuclear spin in a nitrogen-vacancy center in a diamond. By employing a dilation method, we realize the desired nonunitary dynamics for the electron spin and map out its spin texture in the momentum space, from which the corresponding topological invariant can be obtained directly. From the measured spin textures with varying parameters, we observe both integer and fractional winding numbers. The non-Hermitian topological phase with fractional winding number cannot be continuously deformed to any Hermitian topological phase and is intrinsic to non-Hermitian systems. Our result paves the way for further exploiting and understanding the intriguing properties of non-Hermitian topological phases with solid-state spins or other quantum simulation platforms.

10.
Phys Rev Lett ; 127(14): 143201, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34652176

RESUMEN

Trapped ions are one of the leading platforms in quantum information science. For quantum computing with large circuit depth and quantum simulation with long evolution time, it is of crucial importance to cool large ion crystals at runtime without affecting the internal states of the computational qubits, thus the necessity of sympathetic cooling. Here, we report multi-ion sympathetic cooling on a long ion chain using a narrow cooling beam focused on two adjacent ions, and optimize the choice of the cooling ions according to the collective oscillation modes of the chain. We show that, by cooling a small fraction of ions, cooling effects close to the global Doppler cooling limit can be achieved. This experiment therefore demonstrates an important enabling step for quantum information processing with large ion crystals.

11.
Phys Rev Lett ; 127(6): 060505, 2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34420337

RESUMEN

Cross-resonance (CR) gates have emerged as a promising scheme for fault-tolerant quantum computation with fixed-frequency qubits. We experimentally implement an entangling CR gate by using a microwave-only control in a tunable coupling superconducting circuit, where the tunable coupler provides extra degrees of freedom to verify optimal conditions for constructing a CR gate. By developing a three-qubit Hamiltonian tomography protocol, we systematically investigate the dependency of gate fidelities on spurious qubit interactions and present the first experimental approach to the evaluation of the perturbation impact arising from spectator qubits. Our results reveal that the spectator qubits lead to reductions in CR gate fidelity dependent on ZZ interactions and particular frequency detunings between spectator and gate qubits. The target spectator demonstrates a more serious impact than the control spectator under a standard echo pulse scheme, whereas the degradation of gate fidelity is observed up to 22.5% as both the spectators are present with a modest ZZ coupling to the computational qubits. Our experiments uncover an optimal CR operation regime, and the method we develop here can readily be applied to improving other kinds of two-qubit gates in large-scale quantum circuits.

12.
Phys Rev Lett ; 126(15): 152502, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33929212

RESUMEN

A new α-emitting isotope ^{214}U, produced by the fusion-evaporation reaction ^{182}W(^{36}Ar,4n)^{214}U, was identified by employing the gas-filled recoil separator SHANS and the recoil-α correlation technique. More precise α-decay properties of even-even nuclei ^{216,218}U were also measured in the reactions of ^{40}Ar, ^{40}Ca beams with ^{180,182,184}W targets. By combining the experimental data, improved α-decay reduced widths δ^{2} for the even-even Po-Pu nuclei in the vicinity of the magic neutron number N=126 are deduced. Their systematic trends are discussed in terms of the N_{p}N_{n} scheme in order to study the influence of proton-neutron interaction on α decay in this region of nuclei. It is strikingly found that the reduced widths of ^{214,216}U are significantly enhanced by a factor of two as compared with the N_{p}N_{n} systematics for the 84≤Z≤90 and N<126 even-even nuclei. The abnormal enhancement is interpreted by the strong monopole interaction between the valence protons and neutrons occupying the π1f_{7/2} and ν1f_{5/2} spin-orbit partner orbits, which is supported by the large-scale shell model calculation.

13.
Phys Rev Lett ; 124(4): 043001, 2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32058743

RESUMEN

Dynamical quantum phase transitions are closely related to equilibrium quantum phase transitions for ground states. Here, we report an experimental observation of a dynamical quantum phase transition in a spinor condensate with correspondence in an excited state phase diagram, instead of the ground state one. We observe that the quench dynamics exhibits a nonanalytical change with respect to a parameter in the final Hamiltonian in the absence of a corresponding phase transition for the ground state there. We make a connection between this singular point and a phase transition point for the highest energy level in a subspace with zero spin magnetization of a Hamiltonian. We further show the existence of dynamical phase transitions for finite magnetization corresponding to the phase transition of the highest energy level in the subspace with the same magnetization. Our results open a door for using dynamical phase transitions as a tool to probe physics at higher energy eigenlevels of many-body Hamiltonians.

14.
Phys Rev Lett ; 124(24): 240504, 2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32639803

RESUMEN

The use of multiplexed atomic quantum memories (MAQM) can significantly enhance the efficiency to establish entanglement in a quantum network. In the previous experiments, individual elements of a quantum network, such as the generation, storage, and transmission of quantum entanglement have been demonstrated separately. Here we report an experiment to show the compatibility and integration of these basic operations. Specifically, we generate photon-atom entanglement from any chosen pair of memory cells in a 6×5 MAQM, convert the spin-wave to time-bin photonic excitation after a controllable storage time, and then store and retrieve the photon in a second MAQM for another controllable storage time. The preservation of quantum information in this process is verified by measuring the state fidelity. We also demonstrate that higher dimension quantum states can be transferred between the two distant MAQMs.

15.
Phys Rev Lett ; 125(3): 032502, 2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32745401

RESUMEN

A new, very short-lived neutron-deficient isotope ^{222}Np was produced in the complete-fusion reaction ^{187}Re(^{40}Ar,5n)^{222}Np, and observed at the gas-filled recoil separator SHANS. The new isotope ^{222}Np was identified by employing a recoil-α correlation measurement, and six α-decay chains were established for it. The decay properties of ^{222}Np with E_{α}=10016(33) keV and T_{1/2}=380_{-110}^{+260} ns were determined experimentally. The α-decay systematics of Np isotopes is improved by adding the new data for ^{222}Np, which validates the N=126 shell effect in Np isotopes. The evolution of the N=126 shell closure is discussed in the neutron-deficient nuclei up to Np within the framework of α-decay reduced width.

16.
Nature ; 514(7520): 72-5, 2014 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-25279920

RESUMEN

Experimental realization of a universal set of quantum logic gates is the central requirement for the implementation of a quantum computer. In an 'all-geometric' approach to quantum computation, the quantum gates are implemented using Berry phases and their non-Abelian extensions, holonomies, from geometric transformation of quantum states in the Hilbert space. Apart from its fundamental interest and rich mathematical structure, the geometric approach has some built-in noise-resilience features. On the experimental side, geometric phases and holonomies have been observed in thermal ensembles of liquid molecules using nuclear magnetic resonance; however, such systems are known to be non-scalable for the purposes of quantum computing. There are proposals to implement geometric quantum computation in scalable experimental platforms such as trapped ions, superconducting quantum bits and quantum dots, and a recent experiment has realized geometric single-bit gates in a superconducting system. Here we report the experimental realization of a universal set of geometric quantum gates using the solid-state spins of diamond nitrogen-vacancy centres. These diamond defects provide a scalable experimental platform with the potential for room-temperature quantum computing, which has attracted strong interest in recent years. Our experiment shows that all-geometric and potentially robust quantum computation can be realized with solid-state spin quantum bits, making use of recent advances in the coherent control of this system.

17.
Zhonghua Nei Ke Za Zhi ; 59(7): 528-534, 2020 Jul 01.
Artículo en Zh | MEDLINE | ID: mdl-32594686

RESUMEN

Objective: To investigate the significance of plasma pentraxin 3 (PTX3) in patients with secondary hemophagocytic lymphohistiocytosis (sHLH). Methods: Plasma PTX3 levels were tested by ELISA in 48 newly diagnosed sHLH patients, 18 healthy volunteers and 9 lymphoma controls in the First Affiliated Hospital of Nanjing Medical University from January 2017 to July 2019. Clinical parameters were collected, and the correlations with PTX3 levels were analyzed. Results: PTX3 level in newly diagnosed group was significantly higher than that of healthy control group [16.29(1.17-66.00) vs. 0.76(0.01-7.86) µg/L, P<0.01]. Patients with lymphoma-associated HLH(LHLH) had higher plasma level of PTX3 than Fhose with infection-associated HLH (IHLH) [24.29(3.36-66.00) vs. 9.56(1.17-36.50)µg/L, P<0.05]. Plasma PTX3 levels in 48 sHLH patients were positively correlated with serum ferritin (P<0.05). Receiver operating characteristic (ROC) curve for plasma PTX3 levels of sHLH and healthy controls produced a cutoff value at 3.9 µg/L, with its 86.7% sensitivity and 94.4% specificity. And ROC analysis showed that PTX3 17.5 µg/L was the critical value for diagnosis of LHLH from non-LHLH group, that the sensitivity and specificity were 63.0% and 76.2% respectively. The 1-year overall survival (OS) rate in patients with PTX3≥17.5 µg/L was significantly lower in those with PTX3<17.5 µg/L (18.5% vs. 75.8%, P<0.01). Conclusion: These results indicate the potential of PTX3 as a biomarker for diagnosis and prognosis in patients with sHLH.


Asunto(s)
Proteína C-Reactiva , Linfohistiocitosis Hemofagocítica , Componente Amiloide P Sérico , Biomarcadores de Tumor , Proteína C-Reactiva/análisis , Humanos , Linfohistiocitosis Hemofagocítica/diagnóstico , Curva ROC , Sensibilidad y Especificidad , Componente Amiloide P Sérico/análisis
18.
Phys Rev Lett ; 123(14): 140602, 2019 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-31702220

RESUMEN

We elucidate the relation between out-of-time-order correlators (OTOCs) and quantum phase transitions via analytically studying the OTOC dynamics in a degenerate spectrum. Our method points to key ingredients to dynamically detect quantum phases via out-of-time-order correlators for a wide range of quantum phase transitions and explains the existing numerical results in the literature. We apply our method to a critical model, the XXZ model that numerically confirms our predictions.

19.
Phys Rev Lett ; 123(7): 076401, 2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31491126

RESUMEN

We study amorphous systems with completely random sites and find that, through constructing and exploring a concrete model Hamiltonian, such a system can host an exotic phase of topological amorphous metal in three dimensions. In contrast to the traditional Weyl semimetals, topological amorphous metals break translational symmetry, and thus they cannot be characterized by the first Chern number defined based on the momentum space band structures. Instead, their topological properties will manifest in the Bott index and the Hall conductivity as well as the surface states. By studying the energy band and quantum transport properties, we find that topological amorphous metals exhibit a diffusive metal behavior. We further introduce a practical experimental proposal with electric circuits where the predicted phenomena can be observed using state-of-the-art technologies. Our results open the door to exploring topological gapless phenomena in amorphous systems.

20.
Phys Rev Lett ; 122(1): 010503, 2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-31012688

RESUMEN

We experimentally realize a universal set of single-bit and two-bit geometric quantum gates by adiabatically controlling solid-state spins in a diamond defect. Compared with the nonadiabatic approach, the adiabatic scheme for geometric quantum computation offers a unique advantage of inherent robustness to parameter variations, which is explicitly demonstrated in our experiment by showing that the single-bit gates remain unchanged when the driving field amplitude varies by a factor of 2 or the detuning fluctuates in a range comparable to the inverse of the gate time. The reported adiabatic control technique and its convenient implementation offer a paradigm for achieving quantum computation through robust geometric quantum gates, which is important for quantum information systems with parameter-fluctuation noise such as those from the inhomogeneous coupling or the spectral diffusion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA