Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mikrochim Acta ; 191(7): 382, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38858269

RESUMEN

A promising electrochemical sensing platform for the detection of ponceau 4R in food has been fabricated based on the carboxylated graphene oxide (GO-COOH), metal-organic framework (MOF) UIO-66-NH2, and poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). To this end GO-COOH was covalently coupled with UIO-66-NH2 through amide reaction, endowing the material (GO-CONH-UIO-66) unique hierarchical pores and high chemical stability and as a result improving the conductivity of MOF and the dispersion of GO. After the addition of PEDOT:PSS into GO-CONH-UIO-66, the continuity and conductivity of the composite (PEDOT:PSS/GO-CONH-UIO-66) have been further enhanced, due to the high conductivity, favorable film-forming, and hydrophilic properties of PEDOT:PSS. Systematic electrochemical experiments confirm that the PEDOT:PSS/GO-CONH-UIO-66/GCE shows satisfactory electrochemical sensing properties towards the detection of ponceau 4R, with a wide linear detection range of 0.01-30 µM, a low limit of detection of 3.33 nM, and a high sensitivity of 0.606 µA µM-1 cm-2. The PEDOT:PSS/GO-CONH-UIO-66 sensing platform was successfully used to detect ponceau 4R in beverage, and the detection results were compared with  high-performance liquid chromatography. As a result, the PEDOT:PSS/GO-CONH-UIO-66 composite shows a promising application prospect for rapid detection of ponceau 4R in food and will play significant role in food safety detection and supervision.

2.
J Comput Aided Mol Des ; 37(3): 157-166, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36849761

RESUMEN

The mutant KRAS was considered as an "undruggable" target for decades, especially KRASG12D. It is a great challenge to develop the inhibitors for KRASG12D which lacks the thiol group for covalently binding ligands. The discovery of MRTX1133 solved the dilemma. Interestingly, MRTX1133 can bind to both the inactive and active states of KRASG12D. The binding mechanism of MRTX1133 with KRASG12D, especially how MRTX1133 could bind the active state KRASG12D without triggering the active function of KRASG12D, has not been fully understood. Here, we used a combination of all-atom molecular dynamics simulations and Markov state model (MSM) to understand the inhibition mechanism of MRTX1133 and its analogs. The stationary probabilities derived from MSM show that MRTX1133 and its analogs can stabilize the inactive or active states of KRASG12D into different conformations. More remarkably, by scrutinizing the conformational differences, MRTX1133 and its analogs were hydrogen bonded to Gly60 to stabilize the switch II region and left switch I region in a dynamically inactive conformation, thus achieving an inhibitory effect. Our simulation and analysis provide detailed inhibition mechanism of KRASG12D induced by MRTX1133 and its analogs. This study will provide guidance for future design of novel small molecule inhibitors of KRASG12D.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas Proto-Oncogénicas p21(ras) , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Fúngicas , Compuestos de Sulfhidrilo
3.
Mikrochim Acta ; 191(1): 58, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38153564

RESUMEN

Metal ions have great significance for agricultural development, food safety, and human health. In turn, there exists an imperative need for the development of novel, sensitive, and reliable sensing techniques for various metal ions. Agricultural sensors for the diagnosis of both agricultural safety and nutritional health can establish quality and safety traceability systems of both agro-products and food to guarantee human health, even life safety. Metal-organic frameworks (MOFs) are utilized widely for the design of diversified sensors due to their distinctive structural characteristics and extraordinary optical and electrical properties. To serve agricultural sensors better, this review is dedicated to providing a brief overview of the synthesis of MOFs, the modification of MOFs, the fabrication of MOF-based film electrodes, the applications of MOF-based agricultural sensors for metal ions, which are centered on electrochemical sensors and optical sensors, and current challenges of MOF-based agricultural sensors. In addition, this review also provides potential future opportunities for the development and practical application of agricultural sensors.

4.
Mikrochim Acta ; 190(3): 98, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36806988

RESUMEN

Graphdiyne (GDY) has attracted a lot of interest in electrochemical sensing application with the advantages of a large conjugation system, porous structure, and high structure defects. Herein, to further improve the sensing effect of GDY, conductive MWCNTs were chosen as the signal accelerator. To get a stable composite material, polydopamine (PDA) was employed as connecting bridge between GDY and MWCNTs-NH2, where DA was firstly polymerized onto GDY, followed by covalently linking MWCNTs-NH2 with PDA through Michael-type reaction. The formed GDY@PDA/MWCNTs-NH2 composite was then explored as an electrochemical sensor for benomyl (Ben) determination. GDY assists the adsorption and accumulation of Ben molecules to the sensing surface, while MWCNTs-NH2 can enhance the electrical conductivity and electrocatalytic activity, all of which contributing to the significantly improved performance. The proposed sensor displays an obvious oxidation peak at 0.72 V (vs. Hg|Hg2Cl2) and reveals a wide linear range from 0.007 to 10.0 µM and a low limit of detection (LOD) of 1.8 nM (S/N = 3) toward Ben detection. In addition, the sensor shows high stability, repeatability, reproducibility, and selectivity. The feasibility of this sensor was demonstrated by detecting Ben in apple and cucumber samples with a recovery of 94-106% and relative standard deviations (RSDs) less than 2.3% (n = 5). A sensitive electrochemical sensing platform was reported for benomyl (Ben) determination based on a highly stable GDY@PDA/MWCNTs-NH2 composite.


Asunto(s)
Nanotubos de Carbono , Nanotubos de Carbono/química , Técnicas Electroquímicas , Benomilo , Reproducibilidad de los Resultados
5.
Arch Pharm (Weinheim) ; 356(9): e2300175, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37421212

RESUMEN

Four new ruthenium polypyridyl complexes with prenyl groups, [Ru(bpy)2 (MHIP)](PF6 )2 (Ru(II)-1), [Ru(dtb)2 (MHIP)](PF6 )2 (Ru(II)-2), [Ru(dmb)2 (MHIP)](PF6 )2 (Ru(II)-3), and [Ru(dmob)2 (MHIP)](PF6 )2 (Ru(II)-4) (bpy = 2,2'-bipyridine, dtb = 4,4'-di-tert-butyl-2,2'-bipyridine, dmb = 4,4'-dimethyl-2,2'-bipyridine, dmob = 4,4'-dimethoxy-2,2'-bipyridine, and MHIP = 2-(2,6-dimethylhepta-1,5-dien-1-yl)-1H-imidazo[4,f][1,10]phenanthroline), were synthesized and characterized. Their antibacterial activities against Staphylococcus aureus were assessed, and the minimum inhibition concentration (MIC) value of Ru(II)-2 against S. aureus was only 0.5 µg/mL, showing the best antibacterial activity among them. S. aureus could be quickly killed by Ru(II)-2 in 30 min and Ru(II)-2 displayed an obvious inhibitive effect on the formation of a biofilm, which was essential to avoid the development of drug-resistance. Meanwhile, Ru(II)-2 exhibited a stable MIC value against antibiotic-resistant bacteria. The antibacterial mechanism of Ru(II)-2 was probably related to depolarization of the cell membrane, and a change of permeability was associated with the formation of reactive oxygen species, leading to leakage of nucleic acid and bacterial death. Furthermore, Ru(II)-2 hardly showed toxicity to mammalian cells and the Galleria mellonella worm. Finally, murine infection studies also illustrated that Ru(II)-2 was highly effective against S. aureus in vivo.


Asunto(s)
Rutenio , Staphylococcus aureus , Animales , Ratones , Antibacterianos/farmacología , Rutenio/farmacología , Relación Estructura-Actividad , 2,2'-Dipiridil/farmacología , ADN , Mamíferos/metabolismo
6.
Molecules ; 28(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37050025

RESUMEN

In this work, TiO2-MXene/poly (3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) composite was utilized as an electrode material for the sensitive electrochemical detection of baicalein. The in-situ growth of TiO2 nanoparticles on the surface of MXene nanosheets can effectively prevent their aggregation, thus presenting a significantly large specific surface area and abundant active sites. However, the partial oxidation of MXene after calcination could reduce its conductivity. To address this issue, herein, PEDOT:PSS films were introduced to disperse the TiO2-MXene materials. The uniform and dense films of PEDOT:PSS not only improved the conductivity and dispersion of TiO2-MXene but also enhanced its stability and electrocatalytic activity. With the advantages of a composite material, TiO2-MXene/PEDOT:PSS as an electrode material demonstrated excellent electrochemical sensing ability for baicalein determination, with a wide linear response ranging from 0.007 to 10.0 µM and a lower limit of detection of 2.33 nM. Furthermore, the prepared sensor displayed good repeatability, reproducibility, stability and selectivity, and presented satisfactory results for the determination of baicalein in human urine sample analysis.


Asunto(s)
Flavanonas , Humanos , Reproducibilidad de los Resultados , Flavanonas/orina
7.
Anal Bioanal Chem ; 414(14): 4119-4127, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35449471

RESUMEN

In this work, carbon nanohorn (CNH)-decorated multi-walled carbon nanotube (MWCNT) (CNH@MWCNT) composite was prepared and used to modify glass carbon electrode (GCE) as sensitive electrochemical sensor for niclosamide (NA) determination. Herein, the decoration of CNHs induces higher dispersibility for MWCNTs, and endows the composite with better conductivity, larger surface area, and higher catalytic activity, which leads to significantly enhanced electrochemical behavior toward NA oxidation. The parameters such as mass ratios of CNHs and MWCHTs, the amount of composite materials, the accumulation time, and the solution pH are systematically optimized. Under optimized conditions, the developed electrochemical sensor exhibits a low detection limit of 2.0 nM with a wide linear range of 7.0 nM-10.0 µM and high anti-interference ability. In addition, the sensor displays good stability, repeatability, and reproducibility. The feasibility of the assay was verified by testing NA in brown rice and rice field water samples.


Asunto(s)
Técnicas Electroquímicas , Nanotubos de Carbono , Electrodos , Límite de Detección , Niclosamida , Reproducibilidad de los Resultados
8.
Molecules ; 27(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36296450

RESUMEN

In this work, a two-dimensional leaf-like framework-L embedded electrochemically reduced graphene oxide (ERGO@ZIF-L) was proposed as an outstanding electrode material for the sensitive electrochemical sensing of benomyl (BM). ZIF-L is surrounded by ERGO, which could effectively ensure the stability and dispersion of ZIF-L. With this unique combination, the prepared ERGO@ZIF-L displayed excellent synergistic characteristics with a large surface area, excellent conductivity, plentiful active sites, and high electrocatalytic properties, thus endowing it with high sensitivity for BM determination. The experimental parameters, such as solution pH, material volume, and accumulation time, were optimized. Under optimal conditions, the BM sensor showed a wide linear range (0.009-10.0 µM) and low-limit detection (3.0 nM). Moreover, the sensor displayed excellent stability, repeatability, and reproducibility, and good anti-interference capability. The method was successfully applied to detect BM in real-world samples.


Asunto(s)
Benomilo , Grafito , Técnicas Electroquímicas/métodos , Reproducibilidad de los Resultados , Grafito/química , Electrodos
9.
Org Biomol Chem ; 19(13): 2901-2906, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33725070

RESUMEN

A copper-catalyzed direct C-H chalcogenation of N-aryl-azaindoles with disulfides is described. This transformation was performed using Earth abundant Cu(OAc)2 as a catalyst, benzoic acid as an additive, air as a terminal oxidant, and readily available diaryl and dialkyldisulfides (or diselenide) as chalcogenation reagents. High functional group tolerance and excellent regioselectivity are demonstrated by the efficient preparation of a wide range of ortho-sulfenylation-7-azaindoles.

10.
Nanotechnology ; 32(26)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33730698

RESUMEN

Herein, Ti3C2TxMXene/N-doped reduced graphene oxide (MXene/N-rGO) composite was employed as the electrocatalyst to construct a new electrochemical sensing platform for the determination of adrenaline (AD). The MXene/N-rGO was synthesized via a facile one-step hydrothermal method, where ethylenediamine acted as a reducing agent and N source. The doped N in rGO served as a bridge between MXene and rGO through tight hydrogen bonds. Scanning electron microscopy showed that large numbers of MXenes with accordion-like morphology were distributed on the surface of the N-rGO. The MXene/N-rGO composite displayed a synergetic catalytic effect for oxidizing AD, originating from the unique catalytic activity of N-rGO and the large surface area and satisfactory conductivity of MXene. These characteristics of composite material led to a remarkable effect on signal amplification for the detection of AD, with a wide linear range from 10.0 nM to 90.0µM and a low detection limit of 3.0 nM based on a signal to noise ratio of 3. Moreover, the MXene/N-rGO electrode displayed good stability, repeatability, and reproducibility. Additionally, the proposed sensor was successfully applied for voltammetric sensing of AD in urine with recoveries from 97.75% to 103.0%.


Asunto(s)
Técnicas Biosensibles , Epinefrina/análisis , Grafito/síntesis química , Carbono/química , Técnicas Electroquímicas , Nitrógeno/química , Silicio/química , Titanio/química
11.
Mikrochim Acta ; 188(12): 420, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34782933

RESUMEN

A novel molecularly imprinted sensor was developed for the voltammetric determination of adrenaline (AD). MXene/carbon nanohorn (MXene/CNH) composite with good electric conductivity and enormous accessible active sites was firstly introduced as catalytic substrate. Subsequently, molecularly imprinted polymer (MIP) film was fabricated in mixed solutions containing hydroxymethyl-3,4-ethylenedioxythiophene (functional monomer) and AD (template) through electro-polymerization process. A molecularly imprinted sensor was formed after removing the template. The morphology and elemental composition of the prepared composites were studied by scanning electron microscopy and X-ray photoelectron spectroscopy. Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) were used to investigate the electrochemical performance of the molecularly imprinted sensors. Under optimized conditions, the designed sensor displays a wide linear range from 1.0 nM to 60.0 µM and a low limit of detection of 0.3 nM. The developed sensor also presents good selectivity, reproducibility and long-term stability, and satisfactory feasibility in practical sample analysis. MXene/carbon nanohorns decorated with conductive molecularly imprinted poly(hydroxymethyl-3,4-ethylenedioxythiophene) was proposed for highly sensitive and selective detection of adrenaline.


Asunto(s)
Carbono/química , Técnicas Electroquímicas/métodos , Epinefrina/química , Impresión Molecular/métodos
12.
J Biol Inorg Chem ; 25(5): 747-757, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32564223

RESUMEN

There is clearly a need for the development of new classes of antimicrobials to fight against multidrug-resistant bacteria. Here, we designed and synthesized of three ruthenium polypyridyl complexes: [Ru(bpy)2(BTPIP)](ClO4)2 (Ru(II)-1), [Ru(bpy)2(ETPIP)](ClO4)2 (Ru(II)-2) and [Ru(bpy)2(CAPIP)](ClO4)2 (Ru(II)-3) (N-N = bpy = 2,2'-bipyridine), their antimicrobial activities against S. aureus were assessed. The lead complexes of this set, Ru(II)-1(MIC = 0.016 mg/mL), was tested against biofilm. We also investigated whether bacteria can easily develop resistance to Ru(II)-1. The result demonstrated that S. aureus could not easily develop resistance to the ruthenium complexes. In addition, aimed to test whether ruthenium complexes treatment could increase the susceptibility of S. aureus to antibiotics, the synergism between Ru(II)-1 and common antibiotics against S. aureus were investigated using the checkerboard method. Interesting, Ru(II)-1 could increased the susceptibility of S. aureus to some aminoglycoside antibiotics(kanamycin and gentamicin). Finally, in vivo bacterial infection treatment studies were also conducted through murine skin infection model. These results confirmed ruthenium complexes have good antimicrobial activity in vitro and in vivo.


Asunto(s)
Antibacterianos/farmacología , Complejos de Coordinación/farmacología , Polímeros/farmacología , Piridinas/farmacología , Rutenio/farmacología , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Biopelículas/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Polímeros/química , Piridinas/química , Rutenio/química
13.
Mikrochim Acta ; 186(3): 171, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30756239

RESUMEN

This review (with 155 refs.) summarizes the progress made in the past few years in the field of electrochemical sensors based on graphene-derived materials for the determination of heavy metal ions. Following an introduction of this field and a discussion of the various kinds of modified graphenes including graphene oxide and reduced graphene oxide, the review covers graphene based electrodes modified (or doped) with (a) heteroatoms, (b) metal nanoparticles, (c) metal oxides, (d) small organic molecules, (e) polymers, and (f) ternary nanocomposites. Tables are provided that afford an overview of representative methods and materials for fabricating electrochemical sensors. Furthermore, sensing mechanisms are discussed. A concluding section presents new perspectives, opportunities and current challenges. Graphical Abstract Schematic illustration of electrochemical sensor for heavy metal ion sensing based on heteroatom-doped graphene, metal-modified graphene, metal-oxide-modified graphene, organically modified graphene, polymer-modified graphene, and ternary graphene based nanocomposites.

14.
Mikrochim Acta ; 186(12): 772, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31720849

RESUMEN

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a readily available copolymer that comes as an aqueous dispersion with good processability. A flexible voltammetric sensor for the widely used food stabilizer tert.-butylhydroquinone (TBHQ) was constructed by using a film of PEDOT:PSS. The electron transfer efficiency of the electrode was enhanced by doping with dimethyl sulfoxide (DMSO), and mass transport at the electrode-electrolyte interface was increased by adding the cationic surfactant cetyltrimethylammonium bromide (CTAB) which acts as a sorbent for TBHQ. SEM, AFM, XPS, UV - vis and electrochemical analysis were conducted to characterize the properties of the electrode. After optimization of the experimental conditions, the electrode operated at a working potential of 0.17 V (vs. SCE) has a linear response in the 0.5-200 µM TBHQ concentration range and a lower detection limit of 0.15 µM (at S/N = 3). It was applied for the determination of TBHQ in spiked real samples, and recoveries ranged between 96.85 and 103.41%. Graphical abstractSchematic representation of an electrochemical flexible electrode for the determination of tert.-butylhydroquinone based on the use of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate).

15.
Nanotechnology ; 29(16): 165502, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29443006

RESUMEN

In this paper, piperazine-grafted reduced graphene oxide (NH-rGO) was synthesized via a simple and green two-step procedure: (i) opening of the resulting epoxides of graphene oxide (GO) with piperazine (NH) through nucleophilic substitution; (ii) reduction of GO with ascorbic acid. Its structure and morphology were characterized by scanning electron microscopy and x-ray photoelectron spectroscopy. The NH-rGO modified glassy carbon electrode was explored as an electrochemical sensor for the determination of Hg(II) using a differential pulse anodic stripping voltammetry technique. Hg(II) can be efficiently accumulated and deposited on the surface of a modified electrode by strong coordination chemical bonds formed between Hg(II) and NH. And then the anodic stripping current can be significantly enhanced by rGO with the merits of large specific surface area and high conductivity, which served as a signal amplifier, finally realizing the highly sensitive determination of Hg(II). The experimental parameters including the pH value of the acetate buffer, deposition potential and deposition time were optimized. Under optimal conditions, the developed sensor exhibited a wide linear range from 0.4-12 000 nM with a low limit of detection of 0.2 nM, which is well below the guideline value in drinking water set by the WHO. Moreover, the practical application of this method was confirmed by an assay of Hg(II) in tap water samples with acceptable results.

16.
Anal Chem ; 89(18): 9695-9702, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28809103

RESUMEN

The development of electrochemical methods for enantioselective recognition is a focus of research in pharmaceuticals and biotechnology. In this study, a pair of water-soluble chiral 3,4-ethylenedioxythiophene (EDOT) derivatives, (R)-2'-hydroxymethyl-3,4-ethylenedioxythiophene ((R)-EDTM) and (S)-2'-hydroxymethyl-3,4-ethylenedioxythiophene ((S)-EDTM), were synthesized and electrodeposited on the surface of a glassy carbon electrode (GCE) via current-time (I-t) polymerization in an aqueous LiClO4 electrolyte. These chiral PEDOT polymers were used to fabricate chiral sensors and to investigate the enantioselective recognition of d-/l-3,4-dihydroxyphenylalanine, d-/l-tryptophan, and (R)-/(S)-propranolol enantiomers, respectively. The results indicated that the (R)-PEDTM/GCE sensor showed a higher peak current response toward the levo or (S) forms of the tested enantiomers, while the opposite phenomenon occurred for (S)-PEDTM/GCE. The mechanism of the stereospecific interaction between these enantiomers and the chiral polymers was determined. Therefore, a model of the chiral recognition by the chiral conducting polymer electrodes and an electrochemical method was proposed. The chirality of the enantiomers was confirmed by two parameters: the chirality of the electrode and the peak current response. These findings pave the way for the application of chiral PEDOT as electrode modification material in the electrochemical chiral recognition field.

17.
Eur J Med Chem ; 270: 116378, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38604098

RESUMEN

Infections caused by Staphylococcus aureus (S. aureus) are increasing difficult to treat because this pathogen is easily resistant to antibiotics. However, the development of novel antibacterial agents with high antimicrobial activity and low frequency of resistance remains a huge challenge. Here, building on the coupling strategy, an adamantane moiety was linked to the membrane-active Ru-based structure and then developed three novel metalloantibiotics: [Ru(bpy)2(L)](PF6)2 (Ru1) (bpy = 2,2-bipyridine, L = amantadine modified ligand), [Ru(dmb)2(L)](PF6)2 (Ru2) (dmb = 4,4'-dimethyl-2,2'-bipyridine) and [Ru(dpa)2(L)](PF6)2 (Ru3), (dpa = 2,2'-dipyridylamine). Notably, complex Ru1 was identified to be the best candidate agent, showing greater efficacy against S. aureus than most of clinical antibiotics and low resistance frequencies. Mechanism studies demonstrated that Ru1 could not only increase the permeability of bacterial cell membrane and then caused the leakage of bacterial contents, but also promoted the production of reactive oxygen species (ROS) in bacteria. Importantly, complex Ru1 inhibited the biofilm formation, exotoxin secretion and increased the potency of some clinical used antibiotics. In addition, Ru1 showed low toxic in vivo and excellent anti-infective efficacy in two animal infection model. Thus, Ru-based metalloantibiotic bearing adamantane moiety are promising antibacterial agents, providing a certain research basis for the future antibiotics research.


Asunto(s)
Adamantano , Complejos de Coordinación , Rutenio , Animales , Antibacterianos/farmacología , Adamantano/farmacología , Staphylococcus aureus , Rutenio/farmacología , Rutenio/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/química
18.
Food Chem ; 456: 140063, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38878547

RESUMEN

Precisely detecting trace pesticides and their residues in food products is crucial for ensuring food safety. Herein, a high-performance electrochemical sensing platform was developed for the detection of carbendazim (CBZ) using Co,N co-doped hollow carbon nanocage@carbon nanotubes (Co,N-HC@CNTs) obtained from core-shell ZIF-8@ZIF-67 combined with a poly(3,4-ethylenedioxythiophene) (PEDOT) molecularly imprinted polymer (MIP). The Co,N-HC@CNTs exhibited excellent electrocatalytic performance, benefitting from the synergistic effect of CNTs that provide a large specific surface area and excellent electrical conductivity, Co,N co-doped carbon nanocages that offer high electrocatalytic activity and hollow nanocage structures that ensure rapid diffusion kinetics. The conductive PEDOT-MIP provided specific binding sites for CBZ detection and significantly amplified the detection signal. The sensor showed superior selectivity for CBZ with an extremely low detection limit of 1.67 pmol L-1. Moreover, the method was successfully applied to detect CBZ in tomato, orange and apple samples, achieving satisfactory recovery and accuracy, thus demonstrating its practical feasibility.


Asunto(s)
Bencimidazoles , Compuestos Bicíclicos Heterocíclicos con Puentes , Carbamatos , Técnicas Electroquímicas , Electrodos , Contaminación de Alimentos , Nanotubos de Carbono , Polímeros , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Técnicas Electroquímicas/instrumentación , Nanotubos de Carbono/química , Carbamatos/análisis , Carbamatos/química , Polímeros/química , Contaminación de Alimentos/análisis , Bencimidazoles/química , Bencimidazoles/análisis , Polímeros Impresos Molecularmente/química , Límite de Detección , Impresión Molecular , Malus/química , Solanum lycopersicum/química , Citrus sinensis/química
19.
RSC Med Chem ; 14(4): 700-709, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37122548

RESUMEN

Three new Ru(ii) complexes, [Ru(dtb)2PPAD](PF6)2 (Ru-1), [Ru(dmob)2PPAD](PF6)2 (Ru-2) and [Ru(bpy)2PPAD](PF6)2 (Ru-3) (dtb = 4,4'-di-tert-butyl-2,2'-bipyridine, dmob = 4,4'-dimethyl-2,2'-bipyridine, bpy = 2,2'-bipyridine and PPAD = 2-(pyridine-3-yl)-1H-imidazo[4,5f][1.10]phenanthracene-9,10-dione), were synthesized and characterized by 1H NMR and 13C NMR spectroscopy, HRMS and HPLC. Among them, Ru-1 showed excellent antimicrobial activity against Gram-positive bacteria Staphylococcus aureus (minimum inhibitory concentration (MIC) = 1 µg mL-1) and low hemolytic and cytotoxic activity. In addition, Ru-1 showed obviously rapid bactericidal activity, low resistance rate, bacterial biofilm destroying activity and high biosafety in vivo. Moreover, skin infection models and a mouse model of sepsis indicated that the anti-infective efficacy of Ru-1 was comparable to that of vancomycin. Mechanism exploration results showed that the antibacterial behavior is probably related with targeting of the bacterial cell membrane and inhibiting topoisomerase I.

20.
J Inorg Biochem ; 249: 112385, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37774565

RESUMEN

Staphylococcus aureus (S. aureus), one of the Gram-positive bacteria, is easily to develop drug-resistance. Drug-resistant S. aureus infection leads to high morbidity and mortality. The complexes, namely [Ru(dpa)2(PSPIP)](PF6)2 (Ru1), [Ru(dpa)2(TSPIP)](PF6)2 (Ru2), and [Ru(dpa)2(TBPIP)](PF6)2 (Ru3), were synthesized using 2, 2'-dipyridylamine as an auxiliary ligand and three main ligands PSPIP, TSPIP, TBPIP. In vitro studies demonstrated that the Ru1-3 exhibited excellent antibacterial activity against S. aureus while showing low hemolytic toxicity to rabbit red blood cells. Notably, Ru3 was found to disrupt the bacterial cell membrane and alter its permeability through fluorescence staining and scanning electron microscopy (SEM) analysis. Furthermore, Ru3 displayed low toxicity in G. mellonella Larvae. Ru3 exhibited good activity against S. aureus in G. mellonella Larvae infection model and mouse skin infection model.To some extent, Ru3 inhibited biofilm formation on S. aureus as well as hemolytic toxin production, thereby attenuating the development of drug resistance without cross-resistance with other antibiotics. In addition, complex Ru3 exhibited a synergistic effect when combined with antibiotics amikacin, kanamycin, tobramycin and chloramphenicol, making it a valuable antibiotics adjuvant.


Asunto(s)
Complejos de Coordinación , Staphylococcus aureus Resistente a Meticilina , Rutenio , Animales , Ratones , Conejos , Antibacterianos/farmacología , Staphylococcus aureus , Rutenio/farmacología , Complejos de Coordinación/farmacología , Resistencia a Medicamentos , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA