Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 37(7-8): 261-276, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36990510

RESUMEN

Congenital genetic disorders affecting limb morphology in humans and other mammals are particularly well described, due to both their rather high frequencies of occurrence and the ease of their detection when expressed as severe forms. In most cases, their molecular and cellular etiology remained unknown long after their initial description, often for several decades, and sometimes close to a century. Over the past 20 yr, however, experimental and conceptual advances in our understanding of gene regulation, in particular over large genomic distances, have allowed these cold cases to be reopened and, eventually, for some of them to be solved. These investigations led not only to the isolation of the culprit genes and mechanisms, but also to the understanding of the often complex regulatory processes that are disturbed in such mutant genetic configurations. Here, we present several cases in which dormant regulatory mutations have been retrieved from the archives, starting from a historical perspective up to their molecular explanations. While some cases remain open, waiting for new tools and/or concepts to bring their investigations to an end, the solutions to others have contributed to our understanding of particular features often found in the regulation of developmental genes and hence can be used as benchmarks to address the impact of noncoding variants in the future.


Asunto(s)
Genoma , Mamíferos , Animales , Humanos , Mutación
2.
Genes Dev ; 35(21-22): 1490-1509, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34711654

RESUMEN

Mammalian Hox gene clusters contain a range of CTCF binding sites. In addition to their importance in organizing a TAD border, which isolates the most posterior genes from the rest of the cluster, the positions and orientations of these sites suggest that CTCF may be instrumental in the selection of various subsets of contiguous genes, which are targets of distinct remote enhancers located in the flanking regulatory landscapes. We examined this possibility by producing an allelic series of cumulative in cis mutations in these sites, up to the abrogation of CTCF binding in the five sites located on one side of the TAD border. In the most impactful alleles, the global chromatin architecture of the locus was modified, yet not drastically, illustrating that CTCF sites located on one side of a strong TAD border are sufficient to organize at least part of this insulation. Spatial colinearity in the expression of these genes along the major body axis was nevertheless maintained, despite abnormal expression boundaries. In contrast, strong effects were scored in the selection of target genes responding to particular enhancers, leading to the misregulation of Hoxd genes in specific structures. Altogether, while most enhancer-promoter interactions can occur in the absence of this series of CTCF sites, the binding of CTCF in the Hox cluster is required to properly transform a rather unprecise process into a highly discriminative mechanism of interactions, which is translated into various patterns of transcription accompanied by the distinctive chromatin topology found at this locus. Our allelic series also allowed us to reveal the distinct functional contributions for CTCF sites within this Hox cluster, some acting as insulator elements, others being necessary to anchor or stabilize enhancer-promoter interactions, and some doing both, whereas they all together contribute to the formation of a TAD border. This variety of tasks may explain the amazing evolutionary conservation in the distribution of these sites among paralogous Hox clusters or between various vertebrates.


Asunto(s)
Cromatina , Elementos de Facilitación Genéticos , Animales , Sitios de Unión , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Cromatina/genética , Elementos de Facilitación Genéticos/genética , Genes Homeobox/genética , Mamíferos/genética , Ratones , Mutagénesis
3.
Cell ; 147(5): 1132-45, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22118467

RESUMEN

The evolution of digits was an essential step in the success of tetrapods. Among the key players, Hoxd genes are coordinately regulated in developing digits, where they help organize growth and patterns. We identified the distal regulatory sites associated with these genes by probing the three-dimensional architecture of this regulatory unit in developing limbs. This approach, combined with in vivo deletions of distinct regulatory regions, revealed that the active part of the gene cluster contacts several enhancer-like sequences. These elements are dispersed throughout the nearby gene desert, and each contributes either quantitatively or qualitatively to Hox gene transcription in presumptive digits. We propose that this genetic system, which we call a "regulatory archipelago," provides an inherent flexibility that may partly underlie the diversity in number and morphology of digits across tetrapods, as well as their resilience to drastic variations.


Asunto(s)
Elementos de Facilitación Genéticos , Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Secuencias Reguladoras de Ácidos Nucleicos , Transcripción Genética , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Extremidades/fisiología , Proteínas de Homeodominio , Humanos , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas , Xenopus
4.
Development ; 149(12)2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35770682

RESUMEN

Modifications in gene regulation are driving forces in the evolution of organisms. Part of these changes involve cis-regulatory elements (CREs), which contact their target genes through higher-order chromatin structures. However, how such architectures and variations in CREs contribute to transcriptional evolvability remains elusive. We use Hoxd genes as a paradigm for the emergence of regulatory innovations, as many relevant enhancers are located in a regulatory landscape highly conserved in amniotes. Here, we analysed their regulation in murine vibrissae and chicken feather primordia, two skin appendages expressing different Hoxd gene subsets, and compared the regulation of these genes in these appendages with that in the elongation of the posterior trunk. In the two former structures, distinct subsets of Hoxd genes are contacted by different lineage-specific enhancers, probably as a result of using an ancestral chromatin topology as an evolutionary playground, whereas the gene regulation that occurs in the mouse and chicken embryonic trunk partially relies on conserved CREs. A high proportion of these non-coding sequences active in the trunk have functionally diverged between species, suggesting that transcriptional robustness is maintained, despite considerable divergence in enhancer sequences.


Asunto(s)
Pollos , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Pollos/genética , Cromatina/genética , Desarrollo Embrionario/genética , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ratones , Secuencias Reguladoras de Ácidos Nucleicos/genética
5.
Genes Dev ; 31(14): 1406-1416, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28860158

RESUMEN

Collinear regulation of Hox genes in space and time has been an outstanding question ever since the initial work of Ed Lewis in 1978. Here we discuss recent advances in our understanding of this phenomenon in relation to novel concepts associated with large-scale regulation and chromatin structure during the development of both axial and limb patterns. We further discuss how this sequential transcriptional activation marks embryonic stem cell-like axial progenitors in mammals and, consequently, how a temporal genetic system is further translated into spatial coordinates via the fate of these progenitors. In this context, we argue the benefit and necessity of implementing this unique mechanism as well as the difficulty in evolving an alternative strategy to deliver this critical positional information.


Asunto(s)
Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Animales , Cromatina/metabolismo , Células Madre Embrionarias/metabolismo , Evolución Molecular , Extremidades/embriología , Genómica , Activación Transcripcional , Vertebrados/genética
6.
Genes Dev ; 31(22): 2264-2281, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29273679

RESUMEN

The mammalian HoxD cluster lies between two topologically associating domains (TADs) matching distinct enhancer-rich regulatory landscapes. During limb development, the telomeric TAD controls the early transcription of Hoxd genes in forearm cells, whereas the centromeric TAD subsequently regulates more posterior Hoxd genes in digit cells. Therefore, the TAD boundary prevents the terminal Hoxd13 gene from responding to forearm enhancers, thereby allowing proper limb patterning. To assess the nature and function of this CTCF-rich DNA region in embryos, we compared chromatin interaction profiles between proximal and distal limb bud cells isolated from mutant stocks where various parts of this boundary region were removed. The resulting progressive release in boundary effect triggered inter-TAD contacts, favored by the activity of the newly accessed enhancers. However, the boundary was highly resilient, and only a 400-kb deletion, including the whole-gene cluster, was eventually able to merge the neighboring TADs into a single structure. In this unified TAD, both proximal and distal limb enhancers nevertheless continued to work independently over a targeted transgenic reporter construct. We propose that the whole HoxD cluster is a dynamic TAD border and that the exact boundary position varies depending on both the transcriptional status and the developmental context.


Asunto(s)
Genes Homeobox , Familia de Multigenes , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Elementos de Facilitación Genéticos , Esbozos de los Miembros/metabolismo , Ratones , Eliminación de Secuencia , Transcripción Genética , Cohesinas
8.
Nature ; 562(7726): 272-276, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30283134

RESUMEN

The emergence of multiple axes is an essential element in the establishment of the mammalian body plan. This process takes place shortly after implantation of the embryo within the uterus and relies on the activity of gene regulatory networks that coordinate transcription in space and time. Whereas genetic approaches have revealed important aspects of these processes1, a mechanistic understanding is hampered by the poor experimental accessibility of early post-implantation stages. Here we show that small aggregates of mouse embryonic stem cells (ESCs), when stimulated to undergo gastrulation-like events and elongation in vitro, can organize a post-occipital pattern of neural, mesodermal and endodermal derivatives that mimic embryonic spatial and temporal gene expression. The establishment of the three major body axes in these 'gastruloids'2,3 suggests that the mechanisms involved are interdependent. Specifically, gastruloids display the hallmarks of axial gene regulatory systems as exemplified by the implementation of collinear Hox transcriptional patterns along an extending antero-posterior axis. These results reveal an unanticipated self-organizing capacity of aggregated ESCs and suggest that gastruloids could be used as a complementary system to study early developmental events in the mammalian embryo.


Asunto(s)
Tipificación del Cuerpo , Gástrula/citología , Gástrula/embriología , Células Madre Embrionarias de Ratones/citología , Organoides/citología , Organoides/embriología , Animales , Tipificación del Cuerpo/genética , Gástrula/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox/genética , Técnicas In Vitro , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Organoides/metabolismo , Factores de Tiempo
9.
PLoS Genet ; 17(7): e1009691, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34292939

RESUMEN

Mammalian genomes are partitioned into sub-megabase to megabase-sized units of preferential interactions called topologically associating domains or TADs, which are likely important for the proper implementation of gene regulatory processes. These domains provide structural scaffolds for distant cis regulatory elements to interact with their target genes within the three-dimensional nuclear space and architectural proteins such as CTCF as well as the cohesin complex participate in the formation of the boundaries between them. However, the importance of the genomic context in providing a given DNA sequence the capacity to act as a boundary element remains to be fully investigated. To address this question, we randomly relocated a topological boundary functionally associated with the mouse HoxD gene cluster and show that it can indeed act similarly outside its initial genomic context. In particular, the relocated DNA segment recruited the required architectural proteins and induced a significant depletion of contacts between genomic regions located across the integration site. The host chromatin landscape was re-organized, with the splitting of the TAD wherein the boundary had integrated. These results provide evidence that topological boundaries can function independently of their site of origin, under physiological conditions during mouse development.


Asunto(s)
Cromatina/fisiología , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/fisiología , Animales , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/genética , Cromatina/genética , Ensamble y Desensamble de Cromatina , ADN/genética , Elementos de Facilitación Genéticos/genética , Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Redes Reguladoras de Genes/genética , Genoma/genética , Genoma/fisiología , Genómica/métodos , Ratones , Ratones Transgénicos
10.
Genes Dev ; 30(10): 1172-86, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27198226

RESUMEN

During vertebrate limb development, Hoxd genes are regulated following a bimodal strategy involving two topologically associating domains (TADs) located on either side of the gene cluster. These regulatory landscapes alternatively control different subsets of Hoxd targets, first into the arm and subsequently into the digits. We studied the transition between these two global regulations, a switch that correlates with the positioning of the wrist, which articulates these two main limb segments. We show that the HOX13 proteins themselves help switch off the telomeric TAD, likely through a global repressive mechanism. At the same time, they directly interact with distal enhancers to sustain the activity of the centromeric TAD, thus explaining both the sequential and exclusive operating processes of these two regulatory domains. We propose a model in which the activation of Hox13 gene expression in distal limb cells both interrupts the proximal Hox gene regulation and re-enforces the distal regulation. In the absence of HOX13 proteins, a proximal limb structure grows without any sign of wrist articulation, likely related to an ancestral fish-like condition.


Asunto(s)
Tipificación del Cuerpo/genética , Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Genes Homeobox/genética , Proteínas de Homeodominio/metabolismo , Dominios Proteicos/genética , Animales , Embrión de Pollo , Elementos de Facilitación Genéticos/genética , Proteínas de Homeodominio/genética , Deformidades Congénitas de las Extremidades/genética , Ratones , Ratones Transgénicos , Mutación , Unión Proteica/genética
11.
Dev Biol ; 484: 75-87, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35182536

RESUMEN

Ever since their first report in 1984, Antennapedia-type homeobox (Hox) genes have been involved in such a series of interesting observations, in particular due to their conserved clustered organization between vertebrates and arthropods, that one may legitimately wonder about the origin of this heuristic value. In this essay, I first consider different examples where Hox gene clusters have been instrumental in providing conceptual advances, taken from various fields of research and mostly involving vertebrate embryos. These examples touch upon our understanding of genomic evolution, the revisiting of 19th century views on the relationships between development and evolution and the building of a new framework to understand long-range and pleiotropic gene regulation during development. I then discuss whether the high value of the Hox gene family, when considered as an epistemic object, is related to its clustered structure (and the absence thereof in some animal species) and, if so, what is it in such particular genetic oddities that made them so generous in providing the scientific community with interesting information.


Asunto(s)
Genes Homeobox , Heurística , Animales , Evolución Molecular , Genes Homeobox/genética , Genoma , Familia de Multigenes/genética , Vertebrados/genética
12.
Development ; 147(3)2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32014867

RESUMEN

Regulatory landscapes have been defined in vertebrates as large DNA segments containing diverse enhancer sequences that produce coherent gene transcription. These genomic platforms integrate multiple cellular signals and hence can trigger pleiotropic expression of developmental genes. Identifying and evaluating how these chromatin regions operate may be difficult as the underlying regulatory mechanisms can be as unique as the genes they control. In this brief article and accompanying poster, we discuss some of the ways in which regulatory landscapes operate, illustrating these mechanisms using genes important for vertebrate development as examples. We also highlight some of the techniques available to researchers for analysing regulatory landscapes.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genes del Desarrollo , Transcripción Genética , Animales , Cromatina/genética , Cromatina/metabolismo , ADN/genética , ADN/metabolismo , Elementos de Facilitación Genéticos/genética , Evolución Molecular , Sitios Genéticos , Humanos , Ratones , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Proc Natl Acad Sci U S A ; 117(49): 31231-31241, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33229569

RESUMEN

The HoxD gene cluster is critical for proper limb formation in tetrapods. In the emerging limb buds, different subgroups of Hoxd genes respond first to a proximal regulatory signal, then to a distal signal that organizes digits. These two regulations are exclusive from one another and emanate from two distinct topologically associating domains (TADs) flanking HoxD, both containing a range of appropriate enhancer sequences. The telomeric TAD (T-DOM) contains several enhancers active in presumptive forearm cells and is divided into two sub-TADs separated by a CTCF-rich boundary, which defines two regulatory submodules. To understand the importance of this particular regulatory topology to control Hoxd gene transcription in time and space, we either deleted or inverted this sub-TAD boundary, eliminated the CTCF binding sites, or inverted the entire T-DOM to exchange the respective positions of the two sub-TADs. The effects of such perturbations on the transcriptional regulation of Hoxd genes illustrate the requirement of this regulatory topology for the precise timing of gene activation. However, the spatial distribution of transcripts was eventually resumed, showing that the presence of enhancer sequences, rather than either their exact topology or a particular chromatin architecture, is the key factor. We also show that the affinity of enhancers to find their natural target genes can overcome the presence of both a strong TAD border and an unfavorable orientation of CTCF sites.


Asunto(s)
Factor de Unión a CCCTC/genética , Desarrollo Embrionario/genética , Elementos de Facilitación Genéticos/genética , Genes Homeobox/genética , Animales , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Extremidades/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Esbozos de los Miembros/crecimiento & desarrollo , Ratones
14.
Proc Natl Acad Sci U S A ; 117(48): 30509-30519, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33199643

RESUMEN

Vertebrate Hox genes are critical for the establishment of structures during the development of the main body axis. Subsequently, they play important roles either in organizing secondary axial structures such as the appendages, or during homeostasis in postnatal stages and adulthood. Here, we set up to analyze their elusive function in the ectodermal compartment, using the mouse limb bud as a model. We report that the HoxC gene cluster was co-opted to be transcribed in the distal limb ectoderm, where it is activated following the rule of temporal colinearity. These ectodermal cells subsequently produce various keratinized organs such as nails or claws. Accordingly, deletion of the HoxC cluster led to mice lacking nails (anonychia), a condition stronger than the previously reported loss of function of Hoxc13, which is the causative gene of the ectodermal dysplasia 9 (ECTD9) in human patients. We further identified two mammalian-specific ectodermal enhancers located upstream of the HoxC gene cluster, which together regulate Hoxc gene expression in the hair and nail ectodermal organs. Deletion of these regulatory elements alone or in combination revealed a strong quantitative component in the regulation of Hoxc genes in the ectoderm, suggesting that these two enhancers may have evolved along with the mammalian taxon to provide the level of HOXC proteins necessary for the full development of hair and nail.


Asunto(s)
Ectodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Folículo Piloso/metabolismo , Uñas/metabolismo , Animales , Biomarcadores , Ectodermo/embriología , Folículo Piloso/embriología , Humanos , Ratones , Ratones Noqueados , Uñas/embriología
15.
Dev Dyn ; 251(9): 1550-1575, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34254395

RESUMEN

BACKGROUND: The development of the amniote limb has been an important model system to study patterning mechanisms and morphogenesis. For proper growth and patterning, it requires the interaction between the distal sub-apical mesenchyme and the apical ectodermal ridge (AER) that involve the separate implementation of coordinated and tissue-specific genetic programs. RESULTS: Here, we produce and analyze the transcriptomes of both distal limb mesenchymal progenitors and the overlying ectodermal cells, following time-coursed dissections that cover from limb bud initiation to fully patterned limbs. The comparison of transcriptomes within each layer as well as between layers over time, allowed the identification of specific transcriptional signatures for each of the developmental stages. Special attention was given to the identification of genes whose transcription dynamics suggest a previously unnoticed role in the context of limb development and also to signaling pathways enriched between layers. CONCLUSION: We interpret the transcriptomic data in light of the known development pattern and we conclude that a major transcriptional transition occurs in distal limb buds between E9.5 and E10.5, coincident with the switch from an early phase continuation of the signature of trunk progenitors, related to the initial proximo distal specification, to a late intrinsic phase of development.


Asunto(s)
Esbozos de los Miembros , Transcriptoma , Animales , Ectodermo/metabolismo , Extremidades , Regulación del Desarrollo de la Expresión Génica , Esbozos de los Miembros/metabolismo , Mesodermo , Ratones , Transducción de Señal
16.
Mol Biol Evol ; 38(6): 2260-2272, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33528505

RESUMEN

In the course of evolution, pecorans (i.e., higher ruminants) developed a remarkable diversity of osseous cranial appendages, collectively referred to as "headgear," which likely share the same origin and genetic basis. However, the nature and function of the genetic determinants underlying their number and position remain elusive. Jacob and other rare populations of sheep and goats are characterized by polyceraty, the presence of more than two horns. Here, we characterize distinct POLYCERATE alleles in each species, both associated with defective HOXD1 function. We show that haploinsufficiency at this locus results in the splitting of horn bud primordia, likely following the abnormal extension of an initial morphogenetic field. These results highlight the key role played by this gene in headgear patterning and illustrate the evolutionary co-option of a gene involved in the early development of bilateria to properly fix the position and number of these distinctive organs of Bovidae.


Asunto(s)
Evolución Biológica , Cabras/genética , Proteínas de Homeodominio/genética , Cuernos , Ovinos/genética , Animales , Biometría , Regulación del Desarrollo de la Expresión Génica , Cabras/embriología , Cabras/metabolismo , Proteínas de Homeodominio/metabolismo , Masculino , Ratones Transgénicos , Mutación , Ovinos/embriología , Ovinos/metabolismo
17.
Proc Natl Acad Sci U S A ; 116(27): 13424-13433, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31209053

RESUMEN

In many animal species with a bilateral symmetry, Hox genes are clustered either at one or at several genomic loci. This organization has a functional relevance, as the transcriptional control applied to each gene depends upon its relative position within the gene cluster. It was previously noted that vertebrate Hox clusters display a much higher level of genomic organization than their invertebrate counterparts. The former are always more compact than the latter, they are generally devoid of repeats and of interspersed genes, and all genes are transcribed by the same DNA strand, suggesting that particular factors constrained these clusters toward a tighter structure during the evolution of the vertebrate lineage. Here, we investigate the importance of uniform transcriptional orientation by engineering several alleles within the HoxD cluster, such as to invert one or several transcription units, with or without a neighboring CTCF site. We observe that the association between the tight structure of mammalian Hox clusters and their regulation makes inversions likely detrimental to the proper implementation of this complex genetic system. We propose that the consolidation of Hox clusters in vertebrates, including transcriptional polarity, evolved in conjunction with the emergence of global gene regulation via the flanking regulatory landscapes, to optimize a coordinated response of selected subsets of target genes in cis.


Asunto(s)
Genes Homeobox/genética , Familia de Multigenes/genética , Alelos , Animales , Factor de Unión a CCCTC/metabolismo , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Edición Génica , Regulación de la Expresión Génica/genética , Sitios Genéticos/genética , Proteínas de Homeodominio/genética , Mamíferos/genética , Ratones , Inversión de Secuencia , Factores de Transcripción/genética , Transcripción Genética/genética
18.
Dev Dyn ; 250(9): 1280-1299, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33497014

RESUMEN

BACKGROUND: During tetrapod limb development, the HOXA13 and HOXD13 transcription factors are critical for the emergence and organization of the autopod, the most distal aspect where digits will develop. Since previous work had suggested that the Dbx2 gene is a target of these factors, we set up to analyze in detail this potential regulatory interaction. RESULTS: We show that HOX13 proteins bind to mammalian-specific sequences at the vicinity of the Dbx2 locus that have enhancer activity in developing digits. However, the functional inactivation of the DBX2 protein did not elicit any particular phenotype related to Hox genes inactivation in digits, suggesting either redundant or compensatory mechanisms. We report that the neighboring Nell2 and Ano6 genes are also expressed in distal limb buds and are in part controlled by the same Dbx2 enhancers despite being localized into two different topologically associating domains (TADs) flanking the Dbx2 locus. CONCLUSIONS: We conclude that Hoxa13 and Hoxd genes cooperatively activate Dbx2 expression in developing digits through binding to mammalian specific regulatory sequences in the Dbx2 neighborhood. Furthermore, these enhancers can overcome TAD boundaries in either direction to co-regulate a set of genes located in distinct chromatin domains.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Animales , Extremidades , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Esbozos de los Miembros/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
PLoS Biol ; 16(11): e3000004, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30475793

RESUMEN

In all tetrapods examined thus far, the development and patterning of limbs require the activation of gene members of the HoxD cluster. In mammals, they are regulated by a complex bimodal process that controls first the proximal patterning and then the distal structure. During the shift from the former to the latter regulation, this bimodal regulatory mechanism allows the production of a domain with low Hoxd gene expression, at which both telomeric (T-DOM) and centromeric regulatory domains (C-DOM) are silent. These cells generate the future wrist and ankle articulations. We analyzed the implementation of this regulatory mechanism in chicken, i.e., in an animal for which large morphological differences exist between fore- and hindlimbs. We report that although this bimodal regulation is globally conserved between the mouse and the chick, some important modifications evolved at least between these two model systems, in particular regarding the activity of specific enhancers, the width of the TAD boundary separating the two regulations, and the comparison between the forelimb versus hindlimb regulatory controls. At least one aspect of these regulations seems to be more conserved between chick and bats than with mouse, which may relate to the extent to which forelimbs and hindlimbs of these various animals differ in their morphologies.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Genes Homeobox/genética , Genes Homeobox/fisiología , Animales , Embrión de Pollo , Pollos/genética , Elementos de Facilitación Genéticos/genética , Extremidades/embriología , Extremidades/fisiología , Miembro Anterior/embriología , Miembro Posterior/embriología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones/embriología , Ratones/genética , Ratones Endogámicos C57BL , Organogénesis , Transcripción Genética/genética
20.
Nature ; 511(7507): 46-51, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24990743

RESUMEN

The large spectrum of limb morphologies reflects the wide evolutionary diversification of the basic pentadactyl pattern in tetrapods. In even-toed ungulates (artiodactyls, including cattle), limbs are adapted for running as a consequence of progressive reduction of their distal skeleton to symmetrical and elongated middle digits with hoofed phalanges. Here we analyse bovine embryos to establish that polarized gene expression is progressively lost during limb development in comparison to the mouse. Notably, the transcriptional upregulation of the Ptch1 gene, which encodes a Sonic hedgehog (SHH) receptor, is disrupted specifically in the bovine limb bud mesenchyme. This is due to evolutionary alteration of a Ptch1 cis-regulatory module, which no longer responds to graded SHH signalling during bovine handplate development. Our study provides a molecular explanation for the loss of digit asymmetry in bovine limb buds and suggests that modifications affecting the Ptch1 cis-regulatory landscape have contributed to evolutionary diversification of artiodactyl limbs.


Asunto(s)
Evolución Biológica , Extremidades/anatomía & histología , Extremidades/embriología , Proteínas Hedgehog/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Tipificación del Cuerpo , Bovinos , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Esbozos de los Miembros/anatomía & histología , Esbozos de los Miembros/embriología , Masculino , Mesodermo/metabolismo , Ratones , Ratones Transgénicos , Receptores Patched , Receptor Patched-1 , Receptores de Superficie Celular/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA