Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Therm Biol ; 123: 103892, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38941824

RESUMEN

Phenotypic links are the potential for "carryover" of effects of experience during one life history stage into performance and selection at subsequent stages. They reflect plastic responses to the environment experienced during an early phase on the phenotype of subsequent phases. We are studying these effects by following individuals of the shrimp Palaemon serratus from the embryonic (eggs carried by females) through the larval phase (pelagic) to the juvenile phase (benthic). In experiment 1, we investigated the effects of larval prey concentration (10, 4 and 2 Artemia/mL) and larval incubation temperature (16 and 22 °C) on larval performance (metamorphosis rate, developmental duration and growth) and then on juvenile performance (survival and Specific Growth Rate, SGR, at 18 and 24 °C in 14 days). In experiment 2, we investigated the effects of embryonic incubation temperature (larval biomass and lipid content of newly hatched larvae from embryos incubated at 12 and 18 °C) and larval prey concentration on larval performance and then on juvenile performance. In both experiments, the larvae plastically increased their development time in response to the reduction in temperature and prey concentration, whereas their survival decreased with temperature and prey concentration. The quantity of lipids available at hatching decreased with decreasing embryonic incubation temperature, which reduced the larval performance, particularly with a low concentration of prey. Survival at 14 days post-metamorphosis was significantly reduced when the embryos were incubated at 12 °C compared with those incubated at 18 °C, regardless of the subsequent larval incubation conditions, revealing phenotypic links between overconsumption of embryonic yolk reserves and post-metamorphic fitness. Overall, juveniles had a better SGR at 24 than at 18 °C, and even better when incubated under stressful embryo-larval conditions (temperature and prey concentration). This study highlighted phenotypic links between developmental stages and over developmental periods of several months.

2.
J Therm Biol ; 119: 103796, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38306780

RESUMEN

Seasonal variations in environmental conditions determine the success of decapod larval development, and females transmit more energy in sub-optimal conditions to maximise the fitness of their offspring. The objective of this study was to focus on the combined effects of temperature (14, 18 and 22 °C) and food quality on the performance of larvae produced by 5 young (0+) and 5 old (I+) Palaemon serratus females. We prepared 3 diets based on Artemia, in decreasing order of total fatty acid content: freshly hatched nauplii (N), unenriched metanauplii (M) and metanauplii enriched with a mixture of microalgae (ME). At hatching, the larvae produced by I+ females had a higher biomass but a similar fatty acid concentration to those produced by 0+ females. Larvae survived better and developed relatively faster as temperature increased, and the longer they waited to metamorphose, the greater their weight at metamorphosis. These performances were diet-dependent, with more survival and more growth in less time with diet N than with the other two. Larvae from I+ females performed better than those from 0+ females, especially under the most stressful conditions. The greater biomass of the larvae of I+ females seems to have enabled them to follow a shorter, and therefore faster, development path than those of 0+ females. The larvae's diet also had an impact on post-metamorphic composition: larvae eating a diet richer in fatty acids produced richer juveniles and those eating a poorer diet produced juveniles with slightly more essential fatty acids. This study supports the high plasticity of caridean shrimp larval development and the importance of maternal effects on the fitness of offspring.


Asunto(s)
Palaemonidae , Animales , Femenino , Larva , Temperatura , Dieta , Ácidos Grasos
3.
J Environ Manage ; 358: 120784, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38603847

RESUMEN

Nowadays, biomarkers are recognized as valuable tools to complement chemical and ecological assessments in biomonitoring programs. They provide insights into the effects of contaminant exposures on individuals and establish connections between environmental pressure and biological response at higher levels. In the last decade, strong improvements in the design of experimental protocols and the result interpretation facilitated the use of biomarker across wide geographical areas, including aquatic continua. Notably, the statistical establishment of reference values and thresholds enabled the discrimination of contamination effects in environmental conditions, allowed interspecies comparisons, and eliminated the need of a reference site. The aim of this work was to study freshwater-estuarine-coastal water continua by applying biomarker measurements in multi-species caged organisms. During two campaigns, eight sentinel species, encompassing fish, mollusks, and crustaceans, were deployed to cover 25 sites from rivers to the sea. As much as possible, a common methodology was employed for biomarker measurements (DNA damage and phagocytosis efficiency) and data interpretation based on guidelines established using reference values and induction/inhibition thresholds (establishment of three effect levels). The methodology was successfully implemented and allowed us to assess the environmental quality. Employing multiple species per site enhances confidence in observed trends. The results highlight the feasibility of integrating biomarker-based environmental monitoring programs across a continuum scale. Biomarker results align with Water Framework Directive indicators in cases of poor site quality. Additionally, when discrepancies arise between chemical and ecological statuses, biomarker findings offer a comprehensive perspective to elucidate the disparities. Presented as a pilot project, this work contributes to gain insights into current biomonitoring needs, providing new questions and perspectives.


Asunto(s)
Biomarcadores , Monitoreo del Ambiente , Especies Centinela , Monitoreo del Ambiente/métodos , Biomarcadores/análisis , Francia , Animales , Peces
4.
J Therm Biol ; 110: 103343, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36462878

RESUMEN

In a seasonal environment, variation in larval phenotype and developmental plasticity allow crustacean larvae to maximise survival by lengthening or shortening their development. The aim of this study is to investigate the effects of temperature, laying season and their interaction on larval developmental pathways (larval instars and larval stages). We monitored the different larval stages and calculated the number of larval instars reached during the development of winter and summer larvae of Palaemon serratus incubated at 12, 16 or 20 °C. We observed a great variability in the larval development (6-13 larval instars and 6 to 11 larval stages). A higher temperature decreases the development time and the number of larval instars. At a given temperature, the development time of winter and summer larvae was not different. Two larval stages were considered supernumerary (zoea 4 and 6), as they were more frequent at low temperatures. At higher temperatures, some larvae started to develop pleopods as early as the third instar, larval stage which had never been described (named here zoea 3'). This phenomenon was more common in winter larvae than in summer larvae. These results provide new insights into the expression of developmental plasticity in decapod larvae.


Asunto(s)
Palaemonidae , Animales , Estaciones del Año , Temperatura , Larva , Frío
5.
J Exp Biol ; 224(Pt 7)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33789987

RESUMEN

Thymus plasticity following gonadectomy or sex hormone replacement has long since exemplified sex hormone effects on the immune system in mammals and, to a lesser extent, in 'lower vertebrates', including amphibians and fish. Nevertheless, the underlying physiological significances as well as the ontogenetic establishment of this crosstalk remain largely unknown. Here, we used a teleost fish, the European sea bass, Dicentrarchus labrax, to investigate: (1) whether the regulation of thymus plasticity relies on resource trade-off with somatic growth and reproductive investment and (2) if the gonad-thymus interaction takes place during gonadal differentiation and development. Because gonadal development and, supposedly, thymus function in sea bass depend on environmental changes associated with the winter season, we evaluated thymus changes (foxn1 expression, and thymocyte and T cell content) in juvenile D. labrax raised for 1 year under either constant or fluctuating photoperiod and temperature. Importantly, in both conditions, intensive gonadal development following sex differentiation coincided with a halt of thymus growth, while somatic growth continued. To the best of our knowledge, this is the first study showing that gonadal development during prepuberty regulates thymus plasticity. This finding may provide an explanation for the initiation of the thymus involution related to ageing in mammals. Comparing fixed and variable environmental conditions, our work also demonstrates that the extent of the effects on the thymus, which are related to reproduction, depend on ecophysiological conditions, rather than being directly related to sexual maturity and sex hormone levels.


Asunto(s)
Lubina , Gónadas , Animales , Fotoperiodo , Reproducción , Diferenciación Sexual
6.
J Exp Biol ; 224(7)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34424970

RESUMEN

Thymus plasticity following gonadectomy or sex hormone replacement has long since exemplified sex hormone effects on the immune system in mammals and, to a lesser extent, in 'lower vertebrates', including amphibians and fish. Nevertheless, the underlying physiological significances as well as the ontogenetic establishment of this crosstalk remain largely unknown. Here, we used a teleost fish, the European sea bass, Dicentrarchus labrax, to investigate: (1) whether the regulation of thymus plasticity relies on resource trade-off with somatic growth and reproductive investment and (2) if the gonad-thymus interaction takes place during gonadal differentiation and development. Because gonadal development and, supposedly, thymus function in sea bass depend on environmental changes associated with the winter season, we evaluated thymus changes (foxn1 expression, and thymocyte and T cell content) in juvenile D. labrax raised for 1 year under either constant or fluctuating photoperiod and temperature. Importantly, in both conditions, intensive gonadal development following sex differentiation coincided with a halt of thymus growth, while somatic growth continued. To the best of our knowledge, this is the first study showing that gonadal development during prepuberty regulates thymus plasticity. This finding may provide an explanation for the initiation of the thymus involution related to ageing in mammals. Comparing fixed and variable environmental conditions, our work also demonstrates that the extent of the effects on the thymus, which are related to reproduction, depend on ecophysiological conditions, rather than being directly related to sexual maturity and sex hormone levels.


Asunto(s)
Lubina , Gónadas , Animales , Fotoperiodo , Reproducción , Diferenciación Sexual
7.
Artículo en Inglés | MEDLINE | ID: mdl-33677047

RESUMEN

Chitinolytic enzymes fulfil a key role in the moulting process of crustaceans, in degrading the endocuticle during apolysis. Measuring the enzyme activity is an interesting manner to monitor the moult process at sub-individual level, complementary to the classical observation of the integument morphogenesis, ecdysis success, or moult cycle duration. The present study aimed to optimise the methodology of using N-acetyl-ß-D-glucosaminidase (NAGase) activity to monitor moulting in the marine prawn Palaemon serratus, and to compare NAGase activity levels along the moult cycle of both male and female specimens. First, to optimise protocols for five different organs, different reaction medium compositions were tested, considering the type buffer, concentration of the substrate, and the load in enzymatic extract. Second, levels of NAGase activity were closely monitored during eight moulting stages in male prawns. Variations in NAGase activity were observed during the moult cycle, with an increase in activity in the late premoult phase of approximately 2.4-fold the level of the intermoult phase. This response profile was observed for each tested organ. The levels of NAGase activity of male and female specimens were compared during three stages of the premoult phase. The patterns observed for both sexes were similar for all the tested organs.


Asunto(s)
Acetilglucosaminidasa/metabolismo , Palaemonidae/enzimología , Animales , Femenino , Masculino , Muda/fisiología
8.
Fish Shellfish Immunol ; 86: 713-723, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30513382

RESUMEN

Besides their obvious role in sex determination and reproduction, oestrogens display a prominent and complex immunomodulatory role across all vertebrates. To date, our knowledge on the oestrogenic immunomodulation in non-mammalian species is, however, scarce. In both teleosts and mammals, the direct immunomodulatory function of oestrogen is underscored by the presence of multiple oestrogen receptor subtypes in the various immune cells. For a better understanding of the regulatory processes, we investigated the oestrogen receptor expression in two major lymphoid organs of European sea bass: the head-kidney and the spleen. All oestrogen receptor subtypes, including nuclear and membrane oestrogen receptors, were present in both immune organs as well as in the isolated leucocytes. The same findings have been previously made for the thymus. To determine the oestrogen responsiveness of the different immune cell populations and to evaluate the importance of non-genomic and genomic pathways, we assessed the kinetics and the concentration dependent effects of 17ß-oestradiol on isolated leucocytes from the head-kidney, the spleen and the thymus in vitro. Given the importance of reactive oxygen species as signalling and defence components in mammalian immune cells, the oxidative burst capacity, the redox status and the viability of both lymphoid and myeloid cells were measured by flow cytometry. The treatment with 17ß-oestradiol specifically modulated these parameters depending on (1) the time kinetic, (2) the concentration of 17ß-oestradiol, (3) the immune cell population (lymphoid and myeloid cells) as well as (4) the lymphoid organs from which they originated. The observed in vitro oestrogenic effects as well the presence of various oestrogen receptor subtypes in the immune cells of sea bass suggest a complex and direct oestrogenic action via multiple interconnected oestrogen-signalling pathways. Additionally, our study suggests that the oestrogenic regulation of the sea bass immune function involves a direct and tissue specific modulation of the immune cell redox biology comprising redox signalling, NADPH-oxidase activity and H2O2-permeability, thus changing oxidative burst capacity and immature T cell fate because oestrogen impacted thymocyte viability. Importantly, immune cells from both primary and secondary lymphoid organs have shown specific in vitro oestrogen-responsiveness. As established in mammals, oestrogen is likely to be specifically and directly involved in immature T cell differentiation and mature immunocompetent cell function in sea bass too.


Asunto(s)
Lubina/inmunología , Estrógenos/inmunología , Leucocitos/efectos de los fármacos , Células Mieloides/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Animales , Diferenciación Celular , Estradiol/farmacología , Estrógenos/farmacología , Riñón Cefálico/efectos de los fármacos , Riñón Cefálico/inmunología , Peróxido de Hidrógeno/metabolismo , Factores Inmunológicos , Activación de Linfocitos/efectos de los fármacos , Receptores de Estrógenos/efectos de los fármacos , Receptores de Estrógenos/genética , Estallido Respiratorio , Timo/efectos de los fármacos , Timo/inmunología
9.
Neurobiol Dis ; 96: 312-322, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27663142

RESUMEN

CAG triplet expansions in Ataxin-2 gene (ATXN2) cause spinocerebellar ataxia type 2 and have a role that remains to be clarified in Parkinson's disease (PD). To study the molecular events associated with these expansions, we sequenced them and analyzed the transcriptome from blood cells of controls and three patient groups diagnosed with spinocerebellar ataxia type 2 (herein referred to as SCA2c) or PD with or without ATXN2 triplet expansions (named SCA2p). The transcriptome profiles of these 40 patients revealed three main observations: i) a specific pattern of pathways related to cellular contacts, proliferation and differentiation associated with SCA2p group, ii) similarities between the SCA2p and sporadic PD groups in genes and pathways known to be altered in PD such as Wnt, Ephrin and Leukocyte extravasation signaling iii) RNA metabolism disturbances with "RNA-binding" and "poly(A) RNA-binding" as a common feature in all groups. Remarkably, disturbances of ALS signaling were shared between SCA2p and sporadic PD suggesting common molecular dysfunctions in PD and ALS including CACNA1, hnRNP, DDX and PABPC gene family perturbations. Interestingly, the transcriptome profiles of patients with parkinsonian phenotypes were prevalently associated with alterations of translation while SCA2c and PD patients presented perturbations of splicing. While ATXN2 RNA expression was not perturbed, its protein expression in immortalized lymphoblastoid cells was significantly decreased in SCA2c and SCA2p versus control groups assuming post-transcriptional biological perturbations. In conclusion, the transcriptome data do not exclude the role of ATXN2 mutated alleles in PD but its decrease protein expression in both SCA2c and SCA2p patients suggest a potential involvement of this gene in PD. The perturbations of "RNA-binding" and "poly(A) RNA-binding" molecular functions in the three patient groups as well as gene deregulations of factors not yet described in PD but known to be deleterious in other neurological conditions, suggest the existence of RNA-binding disturbances as a continuum between spinocerebellar ataxia type 2 and Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , ARN/metabolismo , Ataxias Espinocerebelosas/complicaciones , Ataxias Espinocerebelosas/metabolismo , Adulto , Anciano , Ataxina-2/metabolismo , Estudios de Casos y Controles , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Análisis por Micromatrices , Persona de Mediana Edad , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN/metabolismo , Transcriptoma , Expansión de Repetición de Trinucleótido/genética
10.
J Appl Toxicol ; 36(6): 815-26, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26278277

RESUMEN

An increasing body of evidence suggests that sex steroids play an important role in the development and regulation of vertebrate immune defense. Therefore, compounds with estrogenic activity may influence the immune system via receptor-mediated pathways. The presence of estrogen receptors in immune cells and organs during the early stages of development may indicate that female steroid hormones are involved in the maturation of the fish immune system. This is of particular importance, as some marine fish are probably exposed to sources of exogenous estrogens while they reside in their estuarine nursery grounds. In this study, the influence of 17ß-estradiol (E2) on estrogen receptor and cytokine gene expression was assessed in juvenile sea bass (Dicentrarchus labrax) together with characterization of the head kidney leukocyte populations and corresponding phagocytic activity during organ regionalization from 98 to 239 dph. E2 exposure, beginning at 90 dph resulted in indirect and delayed modifications of interleukin 1ß and estrogen receptor α gene expression, which may affect B-lymphocyte proliferation in the sea bass head kidney. The E2 treatment of 120 dph fish led to an increase in estrogen receptor ß2 and a decrease in transforming growth factor ß1 gene expression, which coincided with decreased phagocytic activity of head kidney lymphocytes and monocytes/macrophages. Additionally, these changes were observed during developmental periods described as critical phases for B-lymphocyte development in mammals. Consequently, exogenous estrogens have the potential to modify the innate immune response in juvenile sea bass and to exert detrimental effects on head kidney development. Copyright © 2015 John Wiley & Sons, Ltd.


Asunto(s)
Lubina , Disruptores Endocrinos/toxicidad , Estradiol/toxicidad , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Sistema Inmunológico/efectos de los fármacos , Riñón/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Adaptación Fisiológica/efectos de los fármacos , Animales , Acuicultura , Lubina/crecimiento & desarrollo , Lubina/inmunología , Lubina/metabolismo , Receptor beta de Estrógeno/agonistas , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Proteínas de Peces/agonistas , Proteínas de Peces/antagonistas & inhibidores , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Explotaciones Pesqueras , Francia , Sistema Inmunológico/crecimiento & desarrollo , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Inmunidad Innata/efectos de los fármacos , Riñón/crecimiento & desarrollo , Riñón/inmunología , Riñón/metabolismo , Leucocitos/efectos de los fármacos , Leucocitos/inmunología , Leucocitos/metabolismo , Organogénesis/efectos de los fármacos , Fagocitos/efectos de los fármacos , Fagocitos/inmunología , Fagocitos/metabolismo , Fagocitosis/efectos de los fármacos , Subunidades de Proteína/agonistas , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Factores de Tiempo , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
11.
Neurobiol Dis ; 63: 165-70, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24269915

RESUMEN

The leucine-rich repeat kinase 2 (LRRK2) G2019S mutation is a common genetic cause of Parkinson's disease (PD). Although patients with sporadic PD and individuals with LRRK2-linked PD display the classical PD phenotype, it is not known whether or not the same biological pathways are deregulated in each context. By using transcriptome profiling, we investigated the deregulation of various biological pathways in a total of 47 peripheral blood mononuclear cell (PBMC) samples from patients with sporadic PD, patients heterozygous for the LRRK2 G2019S mutation compared to healthy controls. We found that the deregulation patterns were indeed similar in PBMCs obtained from patients with sporadic PD and from LRRK2 G2019S carriers, with dysfunctions in mitochondrial pathways, cell survival signaling, cancerization, endocytosis signaling and iron metabolism. Analysis of our PBMC data and other publicly available transcriptome datasets (for whole blood samples) showed that deregulation of the immune system, endocytosis and eukaryotic initiation factor 2 (EIF2) signaling are the main features of transcriptome profiles in PD (since they are also present in the transcriptome of dopaminergic neurons from patients). Transcriptome analysis of PBMCs is thus valuable for (i) characterizing the pathophysiological pathways shared by genetic and sporadic forms of PD and (ii) identifying potential biomarkers and therapeutic targets. This minimally invasive approach opens up tremendous perspectives for better diagnosis and therapy of neurodegenerative diseases because it can be applied from the earliest stages of the disease onwards.


Asunto(s)
Endocitosis/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Sistema Inmunológico/fisiopatología , Enfermedad de Parkinson , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Perfilación de la Expresión Génica , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Masculino , Persona de Mediana Edad , Mutación/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/inmunología , Enfermedad de Parkinson/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética
12.
Am J Hum Genet ; 89(3): 398-406, 2011 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-21907011

RESUMEN

Genome-wide analysis of a multi-incident family with autosomal-dominant parkinsonism has implicated a locus on chromosomal region 3q26-q28. Linkage and disease segregation is explained by a missense mutation c.3614G>A (p.Arg1205His) in eukaryotic translation initiation factor 4-gamma (EIF4G1). Subsequent sequence and genotype analysis identified EIF4G1 c.1505C>T (p.Ala502Val), c.2056G>T (p.Gly686Cys), c.3490A>C (p.Ser1164Arg), c.3589C>T (p.Arg1197Trp) and c.3614G>A (p.Arg1205His) substitutions in affected subjects with familial parkinsonism and idiopathic Lewy body disease but not in control subjects. Despite different countries of origin, persons with EIF4G1 c.1505C>T (p.Ala502Val) or c.3614G>A (p.Arg1205His) mutations appear to share haplotypes consistent with ancestral founders. eIF4G1 p.Ala502Val and p.Arg1205His disrupt eIF4E or eIF3e binding, although the wild-type protein does not, and render mutant cells more vulnerable to reactive oxidative species. EIF4G1 mutations implicate mRNA translation initiation in familial parkinsonism and highlight a convergent pathway for monogenic, toxin and perhaps virally-induced Parkinson disease.


Asunto(s)
Cromosomas Humanos Par 3/genética , Factor 4G Eucariótico de Iniciación/genética , Enfermedad de Parkinson/genética , Biosíntesis de Proteínas/genética , Secuencia de Bases , Clonación Molecular , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Citometría de Flujo , Ligamiento Genético , Genotipo , Humanos , Inmunoprecipitación , Mitocondrias/fisiología , Datos de Secuencia Molecular , Mutación Missense/genética , Linaje
13.
Chemosphere ; 362: 142601, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38880263

RESUMEN

In response to the need for the diversification of regulatory bioassays to screen estrogen-like endocrine disrupting chemical (EEDC) in the environment, we propose the use of a reporter gene assay involving all nuclear estrogen receptors from Dicentrarchus labrax (i.e., sbEsr1, sbEsr2a, or sbEsr2b). Named DLES test (D. labrax estrogen screen), it aims at complementing existing standardized in vitro tests by implementing more estrogen receptors notably those that do not originate from humans. Positive responses were obtained with all three estrogen receptors, and-consistently with observations from other species-variations in sensitivity to E2 were measured. Sensitivity and EC50 values could be classified as follows: sbEsr2b < sbEsr2a < sbEsr1. The pharmacological characterization with a human estrogen receptor antagonist (fulvestrant) successfully validated the specific involvement of each sbEsr and evidenced the capacity of the DLES test to highlight antagonist interactions. The DLES test was applied to WWTP contaminant extracts. A positive response was detected in the inflow sample in accordance with the YES test, but not in the outflow sample. Notwithstanding, the DLES test (sbEsr2b) exhibited greater sensitivity for the screening of those samples. This study demonstrates the need for more comprehensive testing including representatives of marine species for a better detection of EEDCs. The DLES test appears as a pertinent tool to predict adverse effects and to widen the scope of screening and hazard assessment of EEDCs in the environment.

14.
Harmful Algae ; 135: 102628, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38830707

RESUMEN

Diatoms of the genus Pseudo-nitzschia are widespread in marine waters. Some of them can produce the toxin domoic acid (DA) which can be responsible for amnesic shellfish poisoning (ASP) when transferred into the food web. These ASP events are of major concern, due to their ecological and socio-economic repercussions, particularly on the shellfish industry. Many studies have focused on the influence of abiotic factors on DA induction, less on the role of biotic interactions. Recently, the presence of predators has been shown to increase DA production in several Pseudo-nitzschia species, in particular in Arctic areas. In order to investigate the relationship between Pseudo-nitzschia species and grazers from the French coast, exposures between one strain of three species (P. australis, P. pungens, P. fraudulenta) and the copepod Temora longicornis were conducted for 5 days. Cellular and dissolved DA content were enhanced by 1,203 % and 1,556 % respectively after the 5-days exposure of P.australis whereas no DA induction was observed in P. pungens and P. fraudulenta. T. longicornis consumed all three Pseudo-nitzschia species. The copepod survival was not related to DA content. This study is an essential first step to better understanding the interactions between planktonic species from the French coast and highlights the potential key role of copepods in the Pseudo-nitzschia bloom events in the temperate ecosystems.


Asunto(s)
Copépodos , Diatomeas , Ácido Kaínico , Ácido Kaínico/análogos & derivados , Ácido Kaínico/metabolismo , Copépodos/fisiología , Copépodos/metabolismo , Diatomeas/metabolismo , Diatomeas/fisiología , Animales , Francia , Toxinas Marinas/metabolismo
15.
Data Brief ; 48: 109038, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36950560

RESUMEN

The prawn Palaemon serratus exhibits a large distribution (occurring along the Northeastern Atlantic coast to the Mediterranean), and has thus been found suitable as model organism valuable for various ecotoxicological studies. However, little is still known about the potential input of its metabolome and particularly concerning a potential molecular sexual dimorphism observable in the different tissues of this organism. In an ecotoxicological point of view, inter-sex and inter-organ differences of the metabolomes may introduce analytical bias and impact the robustness of the analysis and its interpretation. To explore such possibilities, we obtained qualitative metabolomic data from the analysis of different organs of mature male and female Palaemon serratus. We used ultra-high-performance liquid chromatography-electrospray ionization-high resolution tandem mass spectrometry (UHPLC-ESI-HRMS on positive mode) to characterize the 75%-extracted metabolome of both gills, hepatopancreas, nervous gland, muscle and gonads. The data were dereplicated using specific metabolomic software (MetaboScape 4) and 2,782 features were extracted, 1,720 of them being also analysed on MS/MS mode, supporting molecular networking investigations with Metgem 1.3.6. These metabolites were thus putatively identified using GNPS (Global Natural Product Social) Molecular Networking databases for de-novo annotation followed by manual curation of 84 metabolites. This data provides essential information on the important sexual dimorphism occurring at the molecular level in the different organs and supports further research on physiology and ecotoxicology in common European prawn.

16.
Environ Pollut ; 336: 122482, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37660773

RESUMEN

Compared to freshwater ecosystems, the health status of estuarine waters remains little studied despite their importance for many species. They represent a zone of interest for Human settlements that make them the final sink of pollution in both the water column and sediment. Once in sediments, pollutants could represent a threat to benthic as well as pelagic estuarine species through resuspension events. In the Seine estuary, the copepod Eurytemora affinis has been previously presented as a relevant species to assess resuspended sediment contamination through fitness-related effects at the individual level. The aim of the present study was to use E. affinis copepods to assess estuarine sediment-derived elutriates toxicity at environmental concentrations of particles using a molecular (i.e. transcriptomics) and a behavioral approach. Two sites along the Seine estuary were sampled. The analysis of sediments reveals that both sites have the same granulometric composition and close contamination profiles with the detection of PCBs, PAHs and pyrethroid insecticides. The transcriptomic analysis reveals that exposure to elutriates from both sites triggers the dysregulation of genes involved in biological function as defense response, immunity, ecdysone pathway or neurotoxicity with 66% and 36% of shared genes at the highest concentration for Tancarville and Fatouville. This analysis also reveals a higher count of dysregulated genes in the Fatouville site compared to the Tancarville (271 vs 148) despite their close contamination profile. These results emphasize the molecular approach sensitivity to assess environmental matrix toxicity with E. affinis. The analysis of the swimming behavior of E. affinis did not highlight significant effects after elutriate exposure. However, our strategy to assess E. affinis swimming behavior allows the discrimination of basal swimming behavior i.e. dark/light velocity changes and strong thigmotaxis behavior. Thus, it represents a promising standardized tool to assess copepods swimming behavior in ecotoxicological studies.

17.
Environ Toxicol Chem ; 42(4): 846-858, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36692111

RESUMEN

N-acetyl-ß-D-glucosaminidase (NAGase) is important for crustaceans because the enzyme activity is necessary for the molting process. The present study aimed to assess the sensitivity of Palaemon serratus NAGase activity to a set of compounds of diverse chemical families in the context of in vitro exposures. Compounds representing different chemical families were selected according to their abundance, impact in the environment, and relevance as disruptors of the molting process. In a first step, four solvents (dimethylsulfoxide [DMSO], methanol, acetone, and ethanol) were tested to determine their suitability to dissolve hydrophobic compounds without affecting NAGase activity. Exclusively, ethanol had no effect on enzyme activity and on the integrity of the proteins present in the enzyme extract. The 18 other compounds were tested and four of these compounds, pentoxifylline, fenoxycarb, dithiocarbamate, and RH5849, showed a specific alteration on the activity of NAGase, without affecting the protein content. However, cadmium, zinc, and glyphosate showed a nonspecific alteration, affecting both the enzyme activity and the proteins, whereas ibuprofen exclusively altered the protein content. Finally, 10 of the 22 tested compounds (including DMSO, acetone, and methanol) showed a direct alteration of NAGase activity. Environ Toxicol Chem 2023;42:846-858. © 2023 SETAC.


Asunto(s)
Decápodos , Palaemonidae , Humanos , Animales , Acetilglucosaminidasa/química , Acetilglucosaminidasa/metabolismo , Palaemonidae/metabolismo , Acetona , Dimetilsulfóxido , Metanol
18.
Artículo en Inglés | MEDLINE | ID: mdl-38085477

RESUMEN

Due to its role in the crustacean moulting process, N-acetyl-ß-D-glucosaminidase (NAGase) is interesting to monitor the good proceeding of the moult cycle, as well as relevant in assessing changes in the moulting process caused by stressors. The present study aimed to measure the NAGase activity to monitor the moulting process of the freshwater amphipod Gammarus fossarum. Firstly, an optimised protocol measuring the NAGase activity was made, allowing a robustness and reproducibility of measurements. Then, intrinsic variability of NAGase response was checked under two physiological factors: the gammarid moult cycle and gender. For both genders, a significative increase of activity was observed during premoult, instead of a basal activity detected during postmoult and intermoult. However, the NAGase female profile was preconised to study since it was defined with more precision. Finally, a 16-day exposure of female gammarids to different levels of treated or non-treated wastewater effluents was made. If delays of tissue development appeared on effluent exposed specimens, NAGase activity was similar between the different conditions. This apparent desynchronization between tissue and molecular activities accentuates the diagnostic of moult impairment and raises the interest to use markers at different organisational levels.

19.
Aquat Toxicol ; 259: 106546, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37120957

RESUMEN

Chemical contamination is a common threat to biota thriving in estuarine and coastal ecosystems. Of particular importance is that trace metals tend to accumulate and exert deleterious effects on small invertebrates such as zooplankton, which are essential trophic links between phytoplankton and higher-level consumers in aquatic food webs. Beyond the direct effects of the contamination, we hypothesized that metal exposure could also affect the zooplankton microbiota, which in turn might further impair host fitness. To assess this assumption, copepods (Eurytemora affinis) were sampled in the oligo-mesohaline zone of the Seine estuary and exposed to dissolved copper (25 µg.L-1) over a 72-hour time period. The copepod response to copper treatment was assessed by determining transcriptomic changes in E. affinis and the alteration of its microbiota. Unexpectedly, very few genes were differentially expressed in the copper-treated copepods compared to the controls for both male and female samples, while a clear dichotomy between sex was highlighted with 80% of the genes showing sex-biased expression. In contrast, copper increased the taxonomic diversity of the microbiota and resulted in substantial compositional changes at both the phyla and genus levels. Phylogenetic reconstruction of the microbiota further suggested that copper mitigated the phylogenetic relatedness of taxa at the basal tree structure of the phylogeny, whereas it strengthened it at the terminal branches. Increased terminal phylogenetic clustering in the copper-treated copepods coincided with higher proportions of bacterial genera previously identified as copper resistant (e.g., Pseudomonas, Acinetobacter, Alkanindiges, Colwellia) and a higher relative abundance of the copAox gene encoding a periplasmic inducible multi-copper oxidase. The enrichment in micro-organisms likely to perform copper sequestration and/or enzymatic transformation processes, underlines the need to consider the microbial component during evaluation of the vulnerability of zooplankton to metallic stress.


Asunto(s)
Copépodos , Microbiota , Contaminantes Químicos del Agua , Animales , Transcriptoma , Contaminantes Químicos del Agua/toxicidad , Filogenia
20.
Sci Data ; 10(1): 643, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735452

RESUMEN

Proteogenomic methodologies have enabled the identification of protein sequences in wild species without annotated genomes, shedding light on molecular mechanisms affected by pollution. However, proteomic resources for sentinel species are limited, and organ-level investigations are necessary to expand our understanding of their molecular biology. This study presents proteomic resources obtained from proteogenomic analyses of key organs (hepatopancreas, gills, hemolymph) from three established aquatic sentinel invertebrate species of interest in ecotoxicological/ecological research and environmental monitoring: Gammarus fossarum, Dreissena polymorpha, and Palaemon serratus. Proteogenomic analyses identified thousands of proteins for each species, with over 90% of them being annotated to putative function. Functional analysis validated the relevance of the proteomic atlases by revealing similarities in functional annotation of catalogues of proteins across analogous organs in the three species, while deep contrasts between functional profiles are delimited across different organs in the same organism. These organ-level proteomic atlases are crucial for future research on these sentinel animals, aiding in the evaluation of aquatic environmental risks and providing a valuable resource for ecotoxicological studies.


Asunto(s)
Invertebrados , Proteogenómica , Animales , Secuencia de Aminoácidos , Proteómica , Especies Centinela
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA