Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 110(18): 186806, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23683235

RESUMEN

Quantum coherent transport of surface states in a mesoscopic nanowire of the three-dimensional topological insulator Bi(2}Se(3) is studied in the weak-disorder limit. At very low temperatures, many harmonics are evidenced in the Fourier transform of Aharonov-Bohm oscillations, revealing the long phase coherence length of spin-chiral Dirac fermions. Remarkably, from their exponential temperature dependence, we infer an unusual 1/T power law for the phase coherence length L(φ)(T). This decoherence is typical for quasiballistic fermions weakly coupled to their environment.

2.
Phys Rev Lett ; 104(20): 206802, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20867050

RESUMEN

We report on an Hanbury Brown-Twiss experiment probing the statistics of microwave photons emitted by a tunnel junction in the shot-noise regime at low temperature. By measuring the cross correlation of the fluctuations of the occupation numbers of the photon modes of both detection branches, we show that while the statistics of electrons is Poissonian, the photons obey chaotic statistics. This is observed even for low photon occupation number when the voltage across the junction is close to hν/e.

3.
Sci Rep ; 7: 45276, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28374744

RESUMEN

Disorder remains a key limitation in the search for robust signatures of topological superconductivity in condensed matter. Whereas clean semiconducting quantum wires gave promising results discussed in terms of Majorana bound states, disorder makes the interpretation more complex. Quantum wires of 3D topological insulators offer a serious alternative due to their perfectly-transmitted mode. An important aspect to consider is the mixing of quasi-1D surface modes due to the strong degree of disorder typical for such materials. Here, we reveal that the energy broadening γ of such modes is much smaller than their energy spacing Δ, an unusual result for highly-disordered mesoscopic nanostructures. This is evidenced by non-universal conductance fluctuations in highly-doped and disordered Bi2Se3 and Bi2Te3 nanowires. Theory shows that such a unique behavior is specific to spin-helical Dirac fermions with strong quantum confinement, which retain ballistic properties over an unusually large energy scale due to their spin texture. Our result confirms their potential to investigate topological superconductivity without ambiguity despite strong disorder.

4.
Nat Commun ; 4: 1371, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23340411

RESUMEN

The discovery of two-dimensional electron gases at the heterointerface between two insulating perovskite-type oxides, such as LaAlO(3) and SrTiO(3), provides opportunities for a new generation of all-oxide electronic devices. Key challenges remain for achieving interfacial electron mobilities much beyond the current value of approximately 1,000 cm(2) V(-1) s(-1) (at low temperatures). Here we create a new type of two-dimensional electron gas at the heterointerface between SrTiO(3) and a spinel γ-Al(2)O(3) epitaxial film with compatible oxygen ions sublattices. Electron mobilities more than one order of magnitude higher than those of hitherto-investigated perovskite-type interfaces are obtained. The spinel/perovskite two-dimensional electron gas, where the two-dimensional conduction character is revealed by quantum magnetoresistance oscillations, is found to result from interface-stabilized oxygen vacancies confined within a layer of 0.9 nm in proximity to the interface. Our findings pave the way for studies of mesoscopic physics with complex oxides and design of high-mobility all-oxide electronic devices.

5.
Phys Rev Lett ; 98(2): 027204, 2007 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-17358644

RESUMEN

Mesoscopic transport measurements reveal a large effective phase coherence length in epitaxial GaMnAs ferromagnets, contrary to usual 3d-metal ferromagnets. Universal conductance fluctuations of single nanowires are compared for epilayers with a tailored anisotropy. At large magnetic fields, quantum interferences are due to structural disorder only, and an unusual behavior related to hole-induced ferromagnetism is evidenced, for both quantum interferences and decoherence. At small magnetic fields, phase coherence is shown to persist down to zero field, even in presence of magnons, and an additional spin disorder contribution to quantum interferences is observed under domain walls nucleation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA