Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Neurosci ; 56(2): 3875-3888, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35636970

RESUMEN

Although several observations suggest that the constitutive biological, genetic or physiological changes leading to autism spectrum disorders (ASD) start in utero, their early impact on the number and density of neurons in the brain remains unknown. Using genetic fate mapping associated with the immunollabeling-enabled three-dimensional imaging of solvent-cleared organs (iDISCO) clearing method we identified and counted a selective population of neocortical and hippocampal pyramidal neurons in the in utero valproate (VPA) mouse model of autism. We report that 1 day before birth, the number of pyramidal neurons born at E14.5 in the neocortex and hippocampus of VPA mice is smaller than in age-matched controls. VPA also induced a reduction of the neocortical-but not hippocampal-volume 1 day before birth. Interestingly, VPA mice present an increase in both neocortical and hippocampal volumes 2 days after birth compared with controls. These results suggest that the VPA-exposed hippocampus and neocortex differ substantially from controls during the highly complex perinatal period, and specially 1 day before birth, reflecting the early pathogenesis of ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Efectos Tardíos de la Exposición Prenatal , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Embarazo , Células Piramidales/fisiología , Ácido Valproico/farmacología
2.
Cereb Cortex ; 26(2): 838-854, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26574502

RESUMEN

Understanding the structural and functional mechanisms underlying the development of individual brain microcircuits is critical for elucidating their computational properties. As synapses are the key structures defining a given microcircuit, it is imperative to investigate their development and precise structural features. Here, synapses in cortical layer 4 were analyzed throughout the first postnatal month using high-end electron microscopy to generate realistic quantitative 3D models. Besides their overall geometry, the size of active zones and the pools of synaptic vesicles were analyzed. At postnatal day 2 only a few shaft synapses were found, but spine synapses steadily increased with ongoing corticogenesis. From postnatal day 2 to 30 synaptic boutons significantly decreased in size whereas that of active zones remained nearly unchanged despite a reshaping. During the first 2 weeks of postnatal development, a rearrangement of synaptic vesicles from a loose distribution toward a densely packed organization close to the presynaptic density was observed, accompanied by the formation of, first a putative readily releasable pool and later a recycling and reserve pool. The quantitative 3D reconstructions of synapses will enable the comparison of structural and functional aspects of signal transduction thus leading to a better understanding of networks in the developing neocortex.


Asunto(s)
Terminales Presinápticos/fisiología , Corteza Somatosensorial/citología , Corteza Somatosensorial/crecimiento & desarrollo , Sinapsis/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Procesamiento de Imagen Asistido por Computador , Microscopía Electrónica , Red Nerviosa/ultraestructura , Terminales Presinápticos/ultraestructura , Ratas , Ratas Wistar , Sinapsis/ultraestructura , Vesículas Sinápticas/ultraestructura
3.
J Physiol ; 588(Pt 7): 1097-115, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20156844

RESUMEN

Using combined morphological and electrophysiological approaches, we have determined the composition of inhibitory synapses of the nucleus tractus solitarii (NTS), a brainstem structure that is a gateway for many visceral sensory afferent fibres. Immunohistochemical experiments demonstrate that, in adult rat, GABA axon terminals are present throughout the NTS while mixed GABA-glycine axon terminals are strictly located to the lateral part of the NTS within subnuclei surrounding the tractus solitarius. Purely glycine axon terminals are rare in the lateral part of the NTS and hardly detected in its medial part. Electrophysiological experiments confirm the predominance of GABA inhibition throughout the NTS and demonstrate the existence of a dual inhibition involving the co-release of GABA and glycine restricted to the lateral part of NTS. Since GABA(A) and glycine receptors are co-expressed postsynaptically in virtually all the inhibitory axon terminals throughout the NTS, it suggests that the inhibition phenotype relies on the characteristics of the axon terminals. Our results also demonstrate that glycine is mostly associated with GABA within axon terminals and raise the possibility of a dynamic regulation of GABA/glycine release at the presynaptic level. Our data provide new information for understanding the mechanisms involved in the processing of visceral information by the central nervous system in adult animals.


Asunto(s)
Glicina/fisiología , Receptores de GABA/fisiología , Receptores de Glicina/fisiología , Núcleo Solitario/fisiología , Sinapsis/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Masculino , Neuronas Aferentes/fisiología , Terminales Presinápticos/fisiología , Ratas , Ratas Wistar , Aferentes Viscerales/fisiología
4.
Eur J Neurosci ; 32(4): 538-49, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20718854

RESUMEN

The nucleus tractus solitarii (NTS) plays a key role in the central control of the autonomic nervous system. In adult rats, both GABA and glycine are used as inhibitory neurotransmitter in the NTS. Using a quantitative morphological approach, we have investigated the perinatal development of inhibitory synapses in the NTS. The density of both inhibitory axon terminals and synapses increased from embryonic day 20 until the end of the second postnatal week (postnatal day 14). Before birth, only GABAergic axon terminals developed and their number increased during the first postnatal week. Mixed GABA/glycine axon terminals appeared at birth and their number increased during the first postnatal week. This suggests the development of a mixed GABA/glycine inhibition in parallel to pure GABA inhibition. However, whereas GABAergic axon terminals were distributed throughout the NTS, mixed GABA/glycine axon terminals were strictly located in the lateral part of the NTS. Established at birth, this specific topography remained in the adult rat. From birth, GABA(A) receptors, glycine receptors and gephyrin were clustered in inhibitory synapses throughout the NTS, revealing a neurotransmitter-receptor mismatch within the medial part of the NTS. Together these results suggest that NTS inhibitory networks develop and mature until postnatal day 14. Developmental changes in NTS synaptic inhibition may play an important role in shaping neural network activity during a time of maturation of autonomic functions. The first two postnatal weeks could represent a critical period where the impact of the environment influences the physiological phenotypes of adult rats.


Asunto(s)
Receptores de GABA-A/metabolismo , Núcleo Solitario/embriología , Núcleo Solitario/crecimiento & desarrollo , Núcleo Solitario/ultraestructura , Sinapsis/fisiología , Animales , Proteínas Portadoras/metabolismo , Glutamato Descarboxilasa/metabolismo , Glicina/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratas , Ratas Wistar , Receptores de Glicina/metabolismo , Núcleo Solitario/metabolismo , Sinapsis/química , Sinapsis/ultraestructura , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Ácido gamma-Aminobutírico/metabolismo
5.
J Comp Neurol ; 526(2): 275-284, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28971478

RESUMEN

The neuronal population of the subthalamic nucleus (STN) has the ability to prolong incoming cortical excitation. This could result from intra-STN feedback excitation. The combination of inducible genetic fate mapping techniques with in vitro targeted patch-clamp recordings, allowed identifying a new type of STN neurons that possess a highly collateralized intrinsic axon. The time window of birth dates was found to be narrow (E10.5-E14.5) with very few STN neurons born at E10.5 or E14.5. The fate mapped E11.5-12.5 STN neuronal population included 20% of neurons with profuse axonal branching inside the nucleus and a dendritic arbor that differed from that of STN neurons without local axon collaterals. They had intrinsic electrophysiological properties and in particular, the ability to generate plateau potentials, similar to that of STN neurons without local axon collaterals and more generally to that of classically described STN neurons. This suggests that a subpopulation of STN neurons forms a local glutamatergic network, which together with plateau potentials, allow amplification of hyperdirect cortical inputs and synchronization of the STN neuronal population.


Asunto(s)
Axones/fisiología , Neuronas/citología , Núcleo Subtalámico/citología , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biotina/análogos & derivados , Biotina/metabolismo , Proteínas de Unión al Calcio/metabolismo , Embrión de Mamíferos , Femenino , Técnicas In Vitro , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Técnicas de Placa-Clamp , Núcleo Subtalámico/embriología , Núcleo Subtalámico/crecimiento & desarrollo
6.
Nat Neurosci ; 17(4): 549-58, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24584052

RESUMEN

Astrocytes play active roles in brain physiology by dynamic interactions with neurons. Connexin 30, one of the two main astroglial gap-junction subunits, is thought to be involved in behavioral and basic cognitive processes. However, the underlying cellular and molecular mechanisms are unknown. We show here in mice that connexin 30 controls hippocampal excitatory synaptic transmission through modulation of astroglial glutamate transport, which directly alters synaptic glutamate levels. Unexpectedly, we found that connexin 30 regulated cell adhesion and migration and that connexin 30 modulation of glutamate transport, occurring independently of its channel function, was mediated by morphological changes controlling insertion of astroglial processes into synaptic clefts. By setting excitatory synaptic strength, connexin 30 plays an important role in long-term synaptic plasticity and in hippocampus-based contextual memory. Taken together, these results establish connexin 30 as a critical regulator of synaptic strength by controlling the synaptic location of astroglial processes.


Asunto(s)
Astrocitos/patología , Movimiento Celular/fisiología , Conexinas/metabolismo , Ácido Glutámico/metabolismo , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Astrocitos/metabolismo , Conducta Animal , Conexina 30 , Femenino , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Memoria/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Plasticidad Neuronal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA