Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Med Virol ; 95(2): e28503, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36655751

RESUMEN

The hepatitis B virus core antigen (HBcAg) tolerates insertion of foreign epitopes and maintains its ability to self-assemble into virus-like particles (VLPs). We constructed a ∆HBcAg-based VLP vaccine expressing three predicted severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B and T cell epitopes and determined its immunogenicity and protective efficacy. The recombinant ∆HBcAg-SARS-CoV-2 protein was expressed in Escherichia coli, purified, and shown to form VLPs. K18-hACE2 transgenic C57BL/6 mice were immunized intramuscularly with ∆HBcAg VLP control (n = 15) or ∆HBcAg-SARS-CoV-2 VLP vaccine (n = 15). One week after the 2nd booster and before virus challenge, five ∆HBcAg-SARS-CoV-2 vaccinated mice were euthanized to evaluate epitope-specific immune responses. There is a statistically significant increase in epitope-specific Immunoglobulin G (IgG) response, and statistically higher interleukin 6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) expression levels in ∆HBcAg-SARS-CoV-2 VLP-vaccinated mice compared to ∆HBcAg VLP controls. While not statistically significant, the ∆HBcAg-SARS-CoV-2 VLP mice had numerically more memory CD8+ T-cells, and 3/5 mice also had numerically higher levels of interferon gamma (IFN-γ) and tumor necrosis factor (TNF). After challenge with SARS-CoV-2, ∆HBcAg-SARS-CoV-2 immunized mice had numerically lower viral RNA loads in the lung, and slightly higher survival, but the differences are not statistically significant. These results indicate that the ∆HBcAg-SARS-CoV-2 VLP vaccine elicits epitope-specific humoral and cell-mediated immune responses but they were insufficient against SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Vacunas de Partículas Similares a Virus , Ratones , Animales , Antígenos del Núcleo de la Hepatitis B/genética , Virus de la Hepatitis B/genética , Epítopos de Linfocito T , SARS-CoV-2 , Ratones Endogámicos C57BL , Inmunidad Celular , Proteínas Recombinantes
2.
Environ Sci Technol ; 57(28): 10193-10200, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37399494

RESUMEN

The potential for masks to act as fomites in the transmission of SARS-CoV-2 has been suggested but not demonstrated experimentally or observationally. In this study, we aerosolized a suspension of SARS-CoV-2 in saliva and used a vacuum pump to pull the aerosol through six different types of masks. After 1 h at 28 °C and 80% RH, SARS-CoV-2 infectivity was not detectable on an N95 and surgical mask, was reduced by 0.7 log10 on a nylon/spandex mask, and was unchanged on a polyester mask and two different cotton masks when recovered by elution in a buffer. SARS-CoV-2 RNA remained stable for 1 h on all masks. We pressed artificial skin against the contaminated masks and detected the transfer of viral RNA but no infectious virus to the skin. The potential for masks contaminated with SARS-CoV-2 in aerosols to act as fomites appears to be less than indicated by studies involving SARS-CoV-2 in very large droplets.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Máscaras , ARN Viral , Aerosoles y Gotitas Respiratorias
3.
J Infect Dis ; 226(7): 1140-1150, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35924442

RESUMEN

Zika virus (ZIKV) is a mosquito-borne flavivirus that causes congenital defects. Sexual transmission of ZIKV was confirmed in a recent epidemic; however, mechanisms behind ZIKV infection and persistence in the male reproductive tract (MRT) are unknown. Previously, we found that approximately 33% of men with symptomatic ZIKV infections shed ZIKV RNA in semen, and some men shed ZIKV RNA for >3 months. Here, we evaluated the semen of 49 ZIKV-infected men to identify immune factors correlating with long-term ZIKV shedding in semen and ZIKV-infected cell types in semen. We found that prolonged ZIKV RNA shedding in semen was associated with MRT inflammation, indicated by higher leukocyte counts and inflammatory cytokine concentrations in semen of long-term versus short-term shedders. In addition, we found ZIKV RNA in seminal leukocytes and epithelial cells. This study of human semen from ZIKV-infected men provides critical insights into the effects of ZIKV on MRT health.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Animales , Citocinas , Humanos , Inflamación , Masculino , ARN , Semen , Esparcimiento de Virus , Virus Zika/genética
4.
N Engl J Med ; 378(15): 1377-1385, 2018 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-29641964

RESUMEN

BACKGROUND: Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that has been linked to adverse birth outcomes. Previous reports have shown that person-to-person transmission can occur by means of sexual contact. METHODS: We conducted a prospective study involving men with symptomatic ZIKV infection to determine the frequency and duration of ZIKV shedding in semen and urine and to identify risk factors for prolonged shedding in these fluids. Specimens were obtained twice per month for 6 months after illness onset and were tested by real-time reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay for ZIKV RNA and by Vero cell culture and plaque assay for infectious ZIKV. RESULTS: A total of 1327 semen samples from 184 men and 1038 urine samples from 183 men were obtained 14 to 304 days after illness onset. ZIKV RNA was detected in the urine of 7 men (4%) and in the semen of 60 (33%), including in semen samples from 22 of 36 men (61%) who were tested within 30 days after illness onset. ZIKV RNA shedding in semen decreased substantially during the 3 months after illness onset but continued for 281 days in 1 man (1%). Factors that were independently associated with prolonged RNA shedding included older age, less frequent ejaculation, and the presence of certain symptoms at the time of initial illness. Infectious ZIKV was isolated from 3 of 78 semen samples with detectable ZIKV RNA, all obtained within 30 days after illness onset and all with at least 7.0 log10 ZIKV RNA copies per milliliter of semen. CONCLUSIONS: ZIKV RNA was commonly present in the semen of men with symptomatic ZIKV infection and persisted in some men for more than 6 months. In contrast, shedding of infectious ZIKV appeared to be much less common and was limited to the first few weeks after illness onset. (Funded by the Centers for Disease Control and Prevention.).


Asunto(s)
ARN Viral/análisis , Semen/virología , Esparcimiento de Virus , Infección por el Virus Zika/virología , Virus Zika/aislamiento & purificación , Adolescente , Adulto , Factores de Edad , Anciano , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , ARN Viral/orina , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Riesgo , Factores de Tiempo , Carga Viral , Adulto Joven , Virus Zika/genética
5.
J Theor Biol ; 531: 110896, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34506809

RESUMEN

Usutu virus is an emerging zoonotic flavivirus causing high avian mortality rates and occasional severe neurological disorders in humans. Several virus strains are co-circulating and the differences in their characteristics and avian pathogenesis levels are still unknown. In this study, we use within-host mathematical models to characterize the mechanisms responsible for virus expansion and clearance in juvenile chickens challenged with four Usutu virus strains. We find heterogeneity between the virus strains, with the time between cell infection and viral production varying between 16 h and 23 h, the infected cell lifespan varying between 48 min and 9.5 h, and the basic reproductive number R0 varying between 12.05 and 19.49. The strains with high basic reproductive number have short infected cell lifespan, indicative of immune responses. The virus strains with low basic reproductive number have lower viral peaks and longer lasting viremia, due to lower infection rates and high infected cell lifespan. We discuss how the host and virus heterogeneities may differently impact the public health threat presented by these virus strains.


Asunto(s)
Infecciones por Flavivirus , Flavivirus , Animales , Número Básico de Reproducción , Pollos , Infecciones por Flavivirus/epidemiología , Infecciones por Flavivirus/veterinaria
6.
J Virol ; 91(1)2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27795432

RESUMEN

Zika virus (ZIKV; family Flaviviridae, genus Flavivirus) is a rapidly expanding global pathogen that has been associated with severe clinical manifestations, including devastating neurological disease in infants. There are currently no molecular clones of a New World ZIKV available that lack significant attenuation, hindering progress toward understanding determinants of transmission and pathogenesis. Here we report the development and characterization of a novel ZIKV reverse genetics system based on a 2015 isolate from Puerto Rico (PRVABC59). We generated a two-plasmid infectious clone system from which infectious virus was rescued that replicates in human and mosquito cells with growth kinetics representative of wild-type ZIKV. Infectious clone-derived virus initiated infection and transmission rates in Aedes aegypti mosquitoes comparable to those of the primary isolate and displayed similar pathogenesis in AG129 mice. This infectious clone system provides a valuable resource to the research community to explore ZIKV molecular biology, vaccine development, antiviral development, diagnostics, vector competence, and disease pathogenesis. IMPORTANCE: ZIKV is a rapidly spreading mosquito-borne pathogen that has been linked to Guillain-Barré syndrome in adults and congenital microcephaly in developing fetuses and infants. ZIKV can also be sexually transmitted. The viral molecular determinants of any of these phenotypes are not well understood. There is no reverse genetics system available for the current epidemic virus that will allow researchers to study ZIKV immunity, develop novel vaccines, or develop antiviral drugs. Here we provide a novel infectious clone system generated from a recent ZIKV isolated from a patient infected in Puerto Rico. This infectious clone produces virus with in vitro and in vivo characteristics similar to those of the primary isolate, providing a critical tool to study ZIKV infection and disease.


Asunto(s)
Aedes/virología , Insectos Vectores/virología , Plásmidos/metabolismo , Genética Inversa/métodos , Infección por el Virus Zika/virología , Virus Zika/genética , Animales , Línea Celular Tumoral , Chlorocebus aethiops , Células Clonales , Clonación Molecular , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Células Epiteliales/virología , Ingeniería Genética , Virus de la Hepatitis Delta/química , Hepatocitos/virología , Humanos , Ratones , Plásmidos/química , ARN Catalítico/genética , ARN Catalítico/metabolismo , Análisis de Supervivencia , Células Vero , Carga Viral , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral , Virus Zika/crecimiento & desarrollo , Infección por el Virus Zika/mortalidad
7.
PLoS Pathog ; 11(5): e1004874, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25993022

RESUMEN

Within hosts, RNA viruses form populations that are genetically and phenotypically complex. Heterogeneity in RNA virus genomes arises due to error-prone replication and is reduced by stochastic and selective mechanisms that are incompletely understood. Defining how natural selection shapes RNA virus populations is critical because it can inform treatment paradigms and enhance control efforts. We allowed West Nile virus (WNV) to replicate in wild-caught American crows, house sparrows and American robins to assess how natural selection shapes RNA virus populations in ecologically relevant hosts that differ in susceptibility to virus-induced mortality. After five sequential passages in each bird species, we examined the phenotype and population diversity of WNV through fitness competition assays and next generation sequencing. We demonstrate that fitness gains occur in a species-specific manner, with the greatest replicative fitness gains in robin-passaged WNV and the least in WNV passaged in crows. Sequencing data revealed that intrahost WNV populations were strongly influenced by purifying selection and the overall complexity of the viral populations was similar among passaged hosts. However, the selective pressures that control WNV populations seem to be bird species-dependent. Specifically, crow-passaged WNV populations contained the most unique mutations (~1.7× more than sparrows, ~3.4× more than robins) and defective genomes (~1.4× greater than sparrows, ~2.7× greater than robins), but the lowest average mutation frequency (about equal to sparrows, ~2.6× lower than robins). Therefore, our data suggest that WNV replication in the most disease-susceptible bird species is positively associated with virus mutational tolerance, likely via complementation, and negatively associated with the strength of selection. These differences in genetic composition most likely have distinct phenotypic consequences for the virus populations. Taken together, these results reveal important insights into how different hosts may contribute to the emergence of RNA viruses.


Asunto(s)
Enfermedades de las Aves/virología , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/genética , Animales , Animales Salvajes/genética , Evolución Biológica , Aves , Aptitud Genética , Mutación/genética , Especificidad de la Especie , Replicación Viral
9.
Vet Sci ; 10(7)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37505881

RESUMEN

Newcastle disease virus is a significant avian pathogen with the potential to decimate poultry populations all over the world and cause enormous economic losses. Distinct NDV genotypes are currently causing outbreaks worldwide. Due to the high genetic diversity of NDV, virulent strains that may result in a lack of vaccine protection are more likely to emerge and ultimately cause larger epidemics with massive economic losses. Thus, a more comprehensive understanding of the circulating NDV genotypes is critical to reduce Newcastle disease (ND) burden. In this study, NDV strains were isolated and characterized from backyard poultry farms from Tanzania, East Africa in 2021. Reverse-transcription polymerase chain reaction (RT-PCR) based on fusion (F) gene amplification was conducted on 79 cloacal or tracheal swabs collected from chickens during a suspected ND outbreak. Our results revealed that 50 samples out 79 (50/79; 63.3%) were NDV-positive. Sequencing and phylogenetic analyses of the selected NDV isolates showed that 39 isolates belonged to subgenotype VII.2 and only one isolate belonged to subgenotype XIII.1.1. Nucleotide sequences of the NDV F genes from Tanzania were closely related to recent NDV isolates circulating in southern Africa, suggesting that subgenotype VII.2 is the predominant subgenotype throughout Tanzania and southern Africa. Our data confirm the circulation of two NDV subgenotypes in Tanzania, providing important information to design genotype-matched vaccines and to aid ND surveillance. Furthermore, these results highlight the possibility of the spread and emergence of new NDV subgenotypes with the potential of causing future ND epizootics.

10.
mBio ; 14(2): e0345222, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37036343

RESUMEN

Efficient spread of respiratory viruses requires the virus to maintain infectivity in the environment. Environmental stability of viruses can be influenced by many factors, including temperature and humidity. Our study measured the impact of initial droplet volume (50, 5, and 1 µL) and relative humidity (RH; 40%, 65%, and 85%) on the stability of influenza A virus, bacteriophage Phi6 (a common surrogate for enveloped viruses), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) under a limited set of conditions. Our data suggest that the drying time required for the droplets to reach quasi-equilibrium (i.e., a plateau in mass) varied with RH and initial droplet volume. The macroscale physical characteristics of the droplets at quasi-equilibrium varied with RH but not with the initial droplet volume. Virus decay rates differed between the wet phase, while the droplets were still evaporating, and the dry phase. For Phi6, decay was faster in the wet phase than in the dry phase under most conditions. For H1N1pdm09, decay rates between the two phases were distinct and initial droplet volume had an effect on virus viability within 2 h. Importantly, we observed differences in virus decay characteristics by droplet size and virus. In general, influenza virus and SARS-CoV-2 decayed similarly, whereas Phi6 decayed more rapidly under certain conditions. Overall, this study suggests that virus decay in media is related to the extent of droplet evaporation, which is controlled by RH. Importantly, accurate assessment of transmission risk requires the use of physiologically relevant droplet volumes and careful consideration of the use of surrogates. IMPORTANCE During the COVID-19 pandemic, policy decisions were being driven by virus stability experiments with SARS-CoV-2 in different droplet volumes under various humidity conditions. Our study, the first of its kind, provides a model for the decay of multiple enveloped RNA viruses in cell culture medium deposited in 50-, 5-, and 1-µL droplets at 40%, 65%, and 85% RH over time. The results of our study indicate that determination of half-lives for emerging pathogens in large droplets may overestimate transmission risk for contaminated surfaces, as observed during the COVID-19 pandemic. Our study implicates the need for the use of physiologically relevant droplet sizes with use of relevant surrogates in addition to what is already known about the importance of physiologically relevant media for risk assessment of future emerging pathogens.


Asunto(s)
COVID-19 , Orthomyxoviridae , Virus , Humanos , SARS-CoV-2 , Pandemias
11.
J Virol ; 85(21): 11361-71, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21835794

RESUMEN

The Apobec3 family of cytidine deaminases can inhibit the replication of retroviruses and retrotransposons. Human and chimpanzee genomes encode seven Apobec3 paralogs; of these, Apobec3DE has the greatest sequence divergence between humans and chimpanzees. Here we show that even though human and chimpanzee Apobec3DEs are very divergent, the two orthologs similarly restrict long terminal repeat (LTR) and non-LTR retrotransposons (MusD and Alu, respectively). However, chimpanzee Apobec3DE also potently restricts two lentiviruses, human immunodeficiency virus type 1 (HIV-1) and the simian immunodeficiency virus (SIV) that infects African green monkeys (SIVagmTAN), unlike human Apobec3DE, which has poor antiviral activity against these same viruses. This difference between human and chimpanzee Apobec3DE in the ability to restrict retroviruses is not due to different levels of Apobec3DE protein incorporation into virions but rather to the ability of Apobec3DE to deaminate the viral genome in target cells. We further show that Apobec3DE rapidly evolved in chimpanzee ancestors approximately 2 to 6 million years ago and that this evolution drove the increased breadth of chimpanzee Apobec3DE antiviral activity to its current high activity against some lentiviruses. Despite a difference in target specificities between human and chimpanzee Apobec3DE, Apobec3DE is likely to currently play a role in host defense against retroelements in both species.


Asunto(s)
Citosina Desaminasa/inmunología , Citosina Desaminasa/metabolismo , Retroelementos/inmunología , Retroviridae/inmunología , Animales , Línea Celular , Análisis por Conglomerados , Humanos , Datos de Secuencia Molecular , Pan troglodytes , Filogenia , Recombinación Genética , Análisis de Secuencia de ADN , Homología de Secuencia , Replicación Viral
12.
PLoS Negl Trop Dis ; 16(6): e0010515, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35653353

RESUMEN

[This corrects the article DOI: 10.1371/journal.pntd.0008765.].

13.
bioRxiv ; 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35923308

RESUMEN

Efficient spread of respiratory viruses requires the virus to maintain infectivity in the environment. Environmental stability of viruses can be influenced by many factors, including temperature and humidity. Our study measured the impact of initial droplet volume (50, 5, and 1 µL) and relative humidity (RH: 40%, 65%, and 85%) on the stability of influenza A virus, bacteriophage, Phi6, a common surrogate for enveloped viruses, and SARS-CoV-2 under a limited set of conditions. Our data suggest that the drying time required for the droplets to reach quasi-equilibrium (i.e. a plateau in mass) varied with RH and initial droplet volume. The macroscale physical characteristics of the droplets at quasi-equilibrium varied with RH but not with initial droplet volume. We observed more rapid virus decay when the droplets were still wet and undergoing evaporation, and slower decay after the droplets had dried. Initial droplet volume had a major effect on virus viability over the first few hours; whereby the decay rate of influenza virus was faster in smaller droplets. In general, influenza virus and SARS-CoV-2 decayed similarly. Overall, this study suggests that virus decay in media is closely correlated with the extent of droplet evaporation, which is controlled by RH. Taken together, these data suggest that decay of different viruses is more similar at higher RH and in smaller droplets and is distinct at lower RH and in larger droplets. Importantly, accurate assessment of transmission risk requires use of physiologically relevant droplet volumes and careful consideration of the use of surrogates. Funding: National Institute of Allergy and Infectious Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Department of Health and Human Services; Flu Lab. Importance: During the COVID-19 pandemic, policy decisions were being driven by virus stability experiments involving SARS-CoV-2 applied to surfaces in large droplets at various humidity conditions. The results of our study indicate that determination of half-lives for emerging pathogens in large droplets likely over-estimates transmission risk for contaminated surfaces, as occurred during the COVID-19 pandemic. Our study implicates the need for the use of physiologically relevant droplet sizes with use of relevant surrogates in addition to what is already known about the importance of physiologically relevant media for risk assessment of future emerging pathogens.

14.
mSphere ; 7(6): e0029522, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36317895

RESUMEN

Usutu virus (USUV, Flaviviridae) is an emerging mosquito-borne virus that has been implicated in neuroinvasive disease in humans and epizootic deaths in wild birds. USUV is maintained in an enzootic cycle between ornithophilic mosquitoes, primarily Culex spp., and wild birds, predominantly passerine species. However, limited experimental data exist on the species competent for USUV transmission. Here, we demonstrate that house sparrows are susceptible to multiple USUV strains. Our study also revealed that Culex quinquefasciatus mosquitoes are susceptible to USUV, with a significantly higher infection rate for the Netherlands 2016 USUV strain compared to the Uganda 2012 USUV strain at 50% and 19%, respectively. To assess transmission between avian host and mosquito vector, we allowed mosquitoes to feed on either juvenile chickens or house sparrows inoculated with USUV. Both bird models transmitted USUV to C. quinquefasciatus mosquitoes. Linear regression analyses indicated that C. quinquefasciatus infection rates were positively correlated with avian viremia levels, with 3 to 4 log10 PFU/mL representing the minimum avian viremia threshold for transmission to mosquitoes. Based on the viremia required for transmission, house sparrows were estimated to more readily transmit the Netherlands 2016 strain compared to the Uganda 2012 strain. These studies provide insights on a competent reservoir host of USUV. IMPORTANCE Usutu virus (USUV) is a zoonotic mosquito-borne virus that can cause neuroinvasive disease, including meningitis and encephalitis, in humans and has resulted in hundreds of thousands of deaths in wild birds. The perpetuation of USUV in nature is dependent on transmission between Culex spp. mosquitoes and various avian species. To date, few experimental data exist for determining which bird species are important for the maintenance of USUV. Our studies showed that house sparrows can transmit infectious Usutu virus, indicating their role as a competent host species. By identifying reservoir species of USUV, we can predict areas of USUV emergence and mitigate its impacts on global human and wildlife health.


Asunto(s)
Culex , Culicidae , Humanos , Animales , Viremia , Pollos , Pueblos de América del Norte
15.
Virology ; 563: 98-106, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34509029

RESUMEN

The COVID-19 pandemic has paralyzed the global economy and resulted in millions of deaths globally. People with co-morbidities like obesity, diabetes and hypertension are at an increased risk for severe COVID-19 illness. This is of overwhelming concern because 42% of Americans are obese, 30% are pre-diabetic and 9.4% have clinical diabetes. Here, we investigated the effect of obesity on disease severity following SARS-CoV-2 infection using a well-established mouse model of diet-induced obesity. Diet-induced obese and lean control C57BL/6 N mice, transduced for ACE2 expression using replication-defective adenovirus, were infected with SARS-CoV-2, and monitored for lung pathology, viral titers, and cytokine expression. No significant differences in tissue pathology or viral replication was observed between AdV transduced lean and obese groups, infected with SARS-CoV-2, but certain cytokines were expressed more significantly in infected obese mice compared to the lean ones. Notably, significant weight loss was observed in obese mice treated with the adenovirus vector, independent of SARS-CoV-2 infection, suggesting an obesity-dependent morbidity induced by the vector. These data indicate that the adenovirus-transduced mouse model of SARS-CoV-2 infection, as described here and elsewhere, may be inappropriate for nutrition studies.


Asunto(s)
COVID-19/epidemiología , Modelos Animales de Enfermedad , Obesidad/epidemiología , Animales , Chlorocebus aethiops , Comorbilidad , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Morbilidad , Células Vero
16.
mBio ; 12(5): e0252721, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34663099

RESUMEN

Respiratory viruses such as SARS-CoV-2 are transmitted in respiratory droplets and aerosol particles, which are released during talking, breathing, coughing, and sneezing. Noncontact transmission of SARS-CoV-2 has been demonstrated, suggesting transmission via virus carried through the air. Here, we demonstrate that golden Syrian hamsters produce infectious SARS-CoV-2 in aerosol particles prior to and concurrent with the onset of mild clinical signs of disease. The average emission rate in this study was 25 infectious virions/hour on days 1 and 2 postinoculation, with average viral RNA levels 200-fold higher than infectious virus in aerosol particles. The majority of virus was contained within particles <5 µm in size. Thus, we provide direct evidence that, in hamsters, SARS-CoV-2 is an airborne virus. IMPORTANCE SARS-CoV-2 is a respiratory virus and has been isolated from the air near COVID-19 patients. Here, using a hamster model of infection, we demonstrate that SARS-CoV-2 is emitted in aerosol particles prior to and concurrent with the onset of mild disease. Virus is contained primarily within aerosol particles <5 µm in size, which can remain airborne and be inhaled. These findings indicate that SARS-CoV-2 is an airborne virus and support the use of ventilation to reduce SARS-CoV-2 transmission.


Asunto(s)
Aerosoles , COVID-19/transmisión , SARS-CoV-2/patogenicidad , Animales , COVID-19/metabolismo , Chlorocebus aethiops , Cricetinae , Mesocricetus , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Vero
17.
Virology ; 554: 28-36, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33352463

RESUMEN

Usutu virus (USUV; genus Flavivirus; family Flaviviridae) is a mosquito-borne, positive-sense RNA virus that is currently causing significant die-offs in numerous bird species throughout Europe and has caused infections in humans. Currently, there are no molecular clones for USUV, hence, hindering studies on the pathogenesis and transmission of USUV. Here, we demonstrate the development and characterization of infectious clones for two modern strains of USUV isolated from Europe and Africa. We show that the infectious clone-derived viruses replicated similarly to the parental strains in mammalian and insect cells. Additionally, we observed similar levels of replication and disease in two mouse models. These clones will aid the study of USUV infection, transmission, diagnostics, and vaccines.


Asunto(s)
Infecciones por Flavivirus/virología , Flavivirus/genética , Flavivirus/fisiología , Animales , Línea Celular , Clonación Molecular , Modelos Animales de Enfermedad , Flavivirus/clasificación , Flavivirus/patogenicidad , Humanos , Masculino , Ratones , Mutación , Filogenia , Viremia , Replicación Viral
18.
Viruses ; 13(12)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34960621

RESUMEN

West Nile virus (WNV) and Usutu virus (USUV) are mosquito-borne flaviviruses that can cause neuroinvasive disease in humans. WNV and USUV circulate in both Africa and Europe and are closely related. Due to antigenic similarity, WNV-specific antibodies and USUV-specific antibodies have the potential to bind heterologous viruses; however, it is unclear whether this interaction may offer protection against infection. To investigate how prior WNV exposure would influence USUV infection, we used an attenuated WNV vaccine that contains the surface proteins of WNV in the backbone of a dengue virus 2 vaccine strain and protects against WNV disease. We hypothesized that vaccination with this attenuated WNV vaccine would protect against USUV infection. Neutralizing responses against WNV and USUV were measured in vitro using sera following vaccination. Sera from vaccinated CD-1 and Ifnar1-/- mice cross-neutralized with WNV and USUV. All mice were then subsequently challenged with an African or European USUV strain. In CD-1 mice, there was no difference in USUV titers between vaccinated and mock-vaccinated mice. However, in the Ifnar1-/- model, vaccinated mice had significantly higher survival rates and significantly lower USUV viremia compared to mock-vaccinated mice. Our results indicate that exposure to an attenuated form of WNV protects against severe USUV disease in mice and elicits a neutralizing response to both WNV and USUV. Future studies will investigate the immune mechanisms responsible for the protection against USUV infection induced by WNV vaccination, providing critical insight that will be essential for USUV and WNV vaccine development.


Asunto(s)
Infecciones por Flavivirus/prevención & control , Flavivirus/inmunología , Vacunas contra el Virus del Nilo Occidental/administración & dosificación , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Femenino , Masculino , Ratones , Ratones Noqueados , Vacunación
19.
Virology ; 560: 43-53, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34023724

RESUMEN

Zika virus (ZIKV) can infect developing fetuses in utero and cause severe congenital defects independent of route of maternal infection. Infected men can shed ZIKV RNA in semen for over six months. Whether prolonged viral RNA shedding in semen indicates a persistent infection in the male reproductive tract is unknown. We hypothesized that if ZIKV establishes a persistent infection in the male reproductive tract (MRT), then immunosuppressant treatment should stimulate ZIKV replication and seminal shedding. Male mice were infected with ZIKV and immunosuppressed when they shed viral RNA but not infectious virus in ejaculates. Following immunosuppression, we did not detect infectious virus in ejaculates. However, we did detect ZIKV positive and negative sense RNA in the epididymal lumens of mice treated with cyclophosphamide, suggesting that ZIKV persists in the epididymis. This study provides insight into the mechanisms behind ZIKV sexual transmission, which may inform public health decisions regarding ZIKV risks.


Asunto(s)
Epidídimo/virología , Huésped Inmunocomprometido/inmunología , ARN Viral/aislamiento & purificación , Infección por el Virus Zika/transmisión , Virus Zika/aislamiento & purificación , Animales , Línea Celular , Chlorocebus aethiops , Ciclofosfamida/farmacología , Tolerancia Inmunológica/inmunología , Inmunosupresores/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Infección Persistente/virología , ARN Viral/genética , Recurrencia , Semen/virología , Enfermedades Virales de Transmisión Sexual/transmisión , Células Vero , Esparcimiento de Virus/genética , Virus Zika/genética
20.
Emerg Microbes Infect ; 10(1): 725-738, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33769213

RESUMEN

Usutu virus (USUV; family: Flaviviridae, genus: Flavivirus), is an emerging zoonotic arbovirus that causes severe neuroinvasive disease in humans and has been implicated in the loss of breeding bird populations in Europe. USUV is maintained in an enzootic cycle between ornithophilic mosquitos and wild birds. As a member of the Japanese encephalitis serocomplex, USUV is closely related to West Nile virus (WNV) and St. Louis encephalitis virus (SLEV), both neuroinvasive arboviruses endemic in wild bird populations in the United States. An avian model for USUV is essential to understanding zoonotic transmission. Here we describe the first avian models of USUV infection with the development of viremia. Juvenile commercial ISA Brown chickens were susceptible to infection by multiple USUV strains with evidence of cardiac lesions. Juvenile chickens from two chicken lines selected for high (HAS) or low (LAS) antibody production against sheep red blood cells showed markedly different responses to USUV infection. Morbidity and mortality were observed in the LAS chickens, but not HAS chickens. LAS chickens had significantly higher viral titers in blood and other tissues, as well as oral secretions, and significantly lower development of neutralizing antibody responses compared to HAS chickens. Mathematical modelling of virus-host interactions showed that the viral clearance rate is a stronger mitigating factor for USUV viremia than neutralizing antibody response in this avian model. These chicken models provide a tool for further understanding USUV pathogenesis in birds and evaluating transmission dynamics between avian hosts and mosquito vectors.


Asunto(s)
Infecciones por Flavivirus/virología , Flavivirus/fisiología , Flavivirus/patogenicidad , Enfermedades de las Aves de Corral/virología , Esparcimiento de Virus , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Pollos , Culicidae/fisiología , Culicidae/virología , Flavivirus/genética , Infecciones por Flavivirus/inmunología , Infecciones por Flavivirus/mortalidad , Interacciones Huésped-Patógeno , Humanos , Modelos Teóricos , Mosquitos Vectores/fisiología , Mosquitos Vectores/virología , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/mortalidad , Ovinos , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA