Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 40(5): e105912, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33283287

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which may result in acute respiratory distress syndrome (ARDS), multiorgan failure, and death. The alveolar epithelium is a major target of the virus, but representative models to study virus host interactions in more detail are currently lacking. Here, we describe a human 2D air-liquid interface culture system which was characterized by confocal and electron microscopy and single-cell mRNA expression analysis. In this model, alveolar cells, but also basal cells and rare neuroendocrine cells, are grown from 3D self-renewing fetal lung bud tip organoids. These cultures were readily infected by SARS-CoV-2 with mainly surfactant protein C-positive alveolar type II-like cells being targeted. Consequently, significant viral titers were detected and mRNA expression analysis revealed induction of type I/III interferon response program. Treatment of these cultures with a low dose of interferon lambda 1 reduced viral replication. Hence, these cultures represent an experimental model for SARS-CoV-2 infection and can be applied for drug screens.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , COVID-19/metabolismo , Modelos Biológicos , Organoides/metabolismo , SARS-CoV-2/fisiología , Replicación Viral , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/virología , Animales , COVID-19/virología , Chlorocebus aethiops , Regulación de la Expresión Génica , Humanos , Interferón Tipo I/biosíntesis , Interferones/biosíntesis , Organoides/patología , Organoides/virología , Células Vero , Interferón lambda
2.
J Am Chem Soc ; 144(9): 4057-4070, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35196454

RESUMEN

Supramolecular materials based on the self-assembly of benzene-1,3,5-tricarboxamide (BTA) offer an approach to mimic fibrous self-assembled proteins found in numerous natural systems. Yet, synthetic methods to rapidly build complexity, scalability, and multifunctionality into BTA-based materials are needed. The diversity of BTA structures is often hampered by the limited flexibility of existing desymmetrization routes and the purification of multifunctional BTAs. To alleviate this bottleneck, we have developed a desymmetrization method based on activated ester coupling of a symmetric synthon. We created a small library of activated ester synthons and found that a pentafluorophenol benzene triester (BTE) enabled effective desymmetrization and creation of multifunctional BTAs in good yield with high reaction fidelity. This new methodology enabled the rapid synthesis of a small library of BTA monomers with hydrophobic and/or orthogonal reactive handles and could be extended to create polymeric BTA hydrogelators. These BTA hydrogelators self-assembled in water to create fiber and fibrous sheet-like structures as observed by cryo-TEM, and the identity of the BTA conjugated can tune the mechanical properties of the hydrogel. These hydrogelators display high cytocompatibility for chondrocytes, indicating potential for the use of these systems in 3D cell culture and tissue engineering applications. This newly developed synthetic strategy facilitates the simple and rapid creation of chemically diverse BTA supramolecular polymers, and the newly developed and scalable hydrogels can unlock exploration of BTA based materials in a wider variety of tissue engineering applications.


Asunto(s)
Benceno , Ésteres , Benzamidas/química , Hidrogeles , Polímeros/química
3.
J Pathol ; 255(3): 270-284, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34309874

RESUMEN

Activation of the mechanistic target of rapamycin (mTOR) pathway is frequently found in cancer, but mTOR inhibitors have thus far failed to demonstrate significant antiproliferative efficacy in the majority of cancer types. Besides cancer cell-intrinsic resistance mechanisms, it is conceivable that mTOR inhibitors impact on non-malignant host cells in a manner that ultimately supports resistance of cancer cells. Against this background, we sought to analyze the functional consequences of mTOR inhibition in hepatocytes for the growth of metastatic colon cancer. To this end, we established liver epithelial cell (LEC)-specific knockout (KO) of mTOR (mTORLEC ) mice. We used these mice to characterize the growth of colorectal liver metastases with or without partial hepatectomy to model different clinical settings. Although the LEC-specific loss of mTOR remained without effect on metastasis growth in intact liver, partial liver resection resulted in the formation of larger metastases in mTORLEC mice compared with wildtype controls. This was accompanied by significantly enhanced inflammatory activity in LEC-specific mTOR KO livers after partial liver resection. Analysis of NF-ĸB target gene expression and immunohistochemistry of p65 displayed a significant activation of NF-ĸB in mTORLEC mice, suggesting a functional importance of this pathway for the observed inflammatory phenotype. Taken together, we show an unexpected acceleration of liver metastases upon deletion of mTOR in LECs. Our results support the notion that non-malignant host cells can contribute to resistance against mTOR inhibitors and encourage testing whether anti-inflammatory drugs are able to improve the efficacy of mTOR inhibitors for cancer therapy. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias del Colon/patología , Hepatocitos/metabolismo , Neoplasias Hepáticas/secundario , Serina-Treonina Quinasas TOR/metabolismo , Animales , Neoplasias Hepáticas/metabolismo , Ratones , Ratones Noqueados , Metástasis de la Neoplasia/patología
4.
J Cell Mol Med ; 21(12): 3277-3287, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28608983

RESUMEN

The use of doxorubicin (DOXO) as a chemotherapeutic drug has been hampered by cardiotoxicity leading to cardiomyopathy and heart failure. Folic acid (FA) is a modulator of endothelial nitric oxide (NO) synthase (eNOS), which in turn is an important player in diseases associated with NO insufficiency or NOS dysregulation, such as pressure overload and myocardial infarction. However, the role of FA in DOXO-induced cardiomyopathy is poorly understood. The aim of this study was to test the hypothesis that FA prevents DOXO-induced cardiomyopathy by modulating eNOS and mitochondrial structure and function. Male C57BL/6 mice were randomized to a single dose of DOXO (20 mg/kg intraperitoneal) or sham. FA supplementation (10 mg/day per oral) was started 7 days before DOXO injection and continued thereafter. DOXO resulted in 70% mortality after 10 days, with the surviving mice demonstrating a 30% reduction in stroke volume compared with sham groups. Pre-treatment with FA reduced mortality to 45% and improved stroke volume (both P < 0.05 versus DOXO). These effects of FA were underlain by blunting of DOXO-induced cardiomyocyte atrophy, apoptosis, interstitial fibrosis and impairment of mitochondrial function. Mechanistically, pre-treatment with FA prevented DOXO-induced increases in superoxide anion production by reducing the eNOS monomer:dimer ratio and eNOS S-glutathionylation, and attenuated DOXO-induced decreases in superoxide dismutase, eNOS phosphorylation and NO production. Enhancing eNOS function by restoring its coupling and subsequently reducing oxidative stress with FA may be a novel therapeutic approach to attenuate DOXO-induced cardiomyopathy.


Asunto(s)
Antioxidantes/farmacología , Cardiomiopatías/prevención & control , Cardiotónicos/farmacología , Cardiotoxicidad/prevención & control , Doxorrubicina/antagonistas & inhibidores , Doxorrubicina/toxicidad , Ácido Fólico/farmacología , Animales , Antibióticos Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Cardiomiopatías/inducido químicamente , Cardiomiopatías/enzimología , Cardiomiopatías/mortalidad , Cardiotoxicidad/enzimología , Cardiotoxicidad/mortalidad , Cardiotoxicidad/patología , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mitocondrias/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Volumen Sistólico/efectos de los fármacos , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxidos/antagonistas & inhibidores , Superóxidos/metabolismo , Análisis de Supervivencia
5.
Am J Pathol ; 186(10): 2559-68, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27658713

RESUMEN

Myasthenia gravis (MG) is an autoimmune disease mediated by autoantibodies that target proteins at the neuromuscular junction, primarily the acetylcholine receptor (AChR) and the muscle-specific kinase. Because downstream of kinase 7 (Dok-7) is essential for the full activation of muscle-specific kinase and consequently for dense clustering of AChRs, we hypothesized that reduced levels of Dok-7 increase the susceptibility to passive transfer MG. To test this hypothesis, Dok-7 expression was reduced by transfecting shRNA-coding plasmids into the tibialis anterior muscle of adult rats by in vivo electroporation. Subclinical MG was subsequently induced with a low dose of anti-AChR monoclonal antibody 35. Neuromuscular transmission was significantly impaired in Dok-7-siRNA-electroporated legs compared with the contralateral control legs, which correlated with a reduction of AChR protein levels at the neuromuscular junction (approximately 25%) in Dok-7-siRNA-electroporated muscles, compared with contralateral control muscles. These results suggest that a reduced expression of Dok-7 may play a role in the susceptibility to passive transfer MG, by rendering AChR clusters less resistant to the autoantibody attack.


Asunto(s)
Autoanticuerpos/inmunología , Proteínas Musculares/genética , Miastenia Gravis Autoinmune Experimental/genética , Animales , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Regulación hacia Abajo , Femenino , Silenciador del Gen , Genes Reporteros , Células HEK293 , Humanos , Proteínas Musculares/metabolismo , Músculo Esquelético/inmunología , Músculo Esquelético/fisiopatología , Miastenia Gravis Autoinmune Experimental/inmunología , Miastenia Gravis Autoinmune Experimental/fisiopatología , Unión Neuromuscular/inmunología , Unión Neuromuscular/fisiopatología , Ratas , Ratas Endogámicas Lew , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Transmisión Sináptica
6.
J Immunol ; 193(3): 1055-1063, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24973445

RESUMEN

Bortezomib is a potent inhibitor of proteasomes currently used to eliminate malignant plasma cells in multiple myeloma patients. It is also effective in depleting both alloreactive plasma cells in acute Ab-mediated transplant rejection and their autoreactive counterparts in animal models of lupus and myasthenia gravis (MG). In this study, we demonstrate that bortezomib at 10 nM or higher concentrations killed long-lived plasma cells in cultured thymus cells from nine early-onset MG patients and consistently halted their spontaneous production not only of autoantibodies against the acetylcholine receptor but also of total IgG. Surprisingly, lenalidomide and dexamethasone had little effect on plasma cells. After bortezomib treatment, they showed ultrastructural changes characteristic of endoplasmic reticulum stress after 8 h and were no longer detectable at 24 h. Bortezomib therefore appears promising for treating MG and possibly other Ab-mediated autoimmune or allergic disorders, especially when given in short courses at modest doses before the standard immunosuppressive drugs have taken effect.


Asunto(s)
Autoanticuerpos/metabolismo , Ácidos Borónicos/farmacología , Células Plasmáticas/inmunología , Complejo de la Endopetidasa Proteasomal/inmunología , Complejo de la Endopetidasa Proteasomal/metabolismo , Pirazinas/farmacología , Timo/inmunología , Adolescente , Adulto , Edad de Inicio , Antineoplásicos/farmacología , Autoanticuerpos/biosíntesis , Autoanticuerpos/efectos de los fármacos , Bortezomib , Células Cultivadas , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/inmunología , Femenino , Humanos , Masculino , Células Plasmáticas/efectos de los fármacos , Células Plasmáticas/ultraestructura , Cultivo Primario de Células , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Timo/efectos de los fármacos , Timo/ultraestructura , Adulto Joven
7.
Exp Cell Res ; 319(1): 64-74, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23022369

RESUMEN

In the present study an in vitro bilayer model system of the pulmonary alveolocapillary barrier was established to investigate the role of the microvascular endothelium on re-epithelialization. The model system, confluent monolayer cultures on opposing sides of a porous membrane, consisted of a human microvascular endothelial cell line (HPMEC-ST1.6R) and an alveolar type II like cell line (A549), stably expressing EGFP and mCherry, respectively. These fluorescent proteins allowed the real time assessment of the integrity of the monolayers and the automated analysis of the wound healing process after a scratch injury. The HPMECs significantly attenuated the speed of re-epithelialization, which was associated with the proximity to the A549 layer. Examination of cross-sectional transmission electron micrographs of the model system revealed protrusions through the membrane pores and close contact between the A549 cells and the HPMECs. Immunohistochemical analysis showed that these close contacts consisted of heterocellular gap-, tight- and adherens-junctions. Additional analysis, using a fluorescent probe to assess gap-junctional communication, revealed that the HPMECs and A549 cells were able to exchange the fluorophore, which could be abrogated by disrupting the gap junctions using connexin mimetic peptides. These data suggest that the pulmonary microvascular endothelium may impact the re-epithelialization process.


Asunto(s)
Lesión Pulmonar Aguda/patología , Técnicas de Cultivo de Célula/métodos , Células Endoteliales/citología , Alveolos Pulmonares/irrigación sanguínea , Alveolos Pulmonares/citología , Mucosa Respiratoria/irrigación sanguínea , Lesión Pulmonar Aguda/fisiopatología , Línea Celular Tumoral , Técnicas de Cocultivo , Células Endoteliales/patología , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/fisiopatología , Alveolos Pulmonares/patología , Mucosa Respiratoria/citología , Mucosa Respiratoria/patología
8.
Int J Nanomedicine ; 19: 3497-3511, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628433

RESUMEN

Purpose: Kidney transplantation is the optimal treatment for patients with end-stage kidney disease. Donor-specific urinary extracellular vesicles (uEVs) hold potential as biomarkers for assessing allograft status. We aimed to develop a method for identifying donor-specific uEVs based on human leukocyte antigen (HLA) mismatching with the kidney transplant recipients (KTRs). Patients and Methods: Urine and plasma were obtained from HLA-A2+ donors and HLA-A2- KTRs pre-transplant. CD9 (tetraspanin, EV marker) and HLA-A2 double-positive (CD9+ HLA-A2+) EVs were quantified using isolation-free imaging flow cytometry (IFCM). Healthy individuals' urine was used to investigate CD9+ HLA-class-I+ uEV quantification using IFCM, time-resolved fluoroimmunoassay (TR-FIA), and immunogold staining cryo-electron microscopy (cryo-EM). Culture-derived CD9+ HLA-class-I+ EVs were spiked into the urine to investigate urine matrix effects on uEV HLA detection. Deceased donor kidneys and peritumoral kidney tissue were used for HLA class I detection with histochemistry. Results: The concentrations of CD9+ HLA-A2+ EVs in both donor and recipient urine approached the negative (detergent-treated) control levels for IFCM and were significantly lower than those observed in donor plasma. In parallel, universal HLA class I+ uEVs were similarly undetectable in the urine and uEV isolates compared with plasma, as verified by IFCM, TR-FIA, and cryogenic electron microscopy. Culture supernatant containing HLA class I+ vesicles from B, T, and human proximal tubule cells were spiked into the urine, and these EVs remained stable at 37°C for 8 hours. Immunohistochemistry revealed that HLA class I was predominantly expressed on the basolateral side of renal tubules, with limited expression on their urine/apical side. Conclusion: The detection of donor-specific uEVs is hindered by the limited release of HLA class I+ EVs from the kidney into the urine, primarily due to the polarized HLA class I expression on renal tubules. Identifying donor-specific uEVs requires further advancements in recognizing transplant-specific uEVs and urine-associated markers.


Asunto(s)
Vesículas Extracelulares , Antígeno HLA-A2 , Humanos , Microscopía por Crioelectrón , Antígeno HLA-A2/metabolismo , Vesículas Extracelulares/metabolismo , Riñón , Biomarcadores/metabolismo
9.
J Immunol ; 186(4): 2503-13, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21239719

RESUMEN

Bortezomib, an inhibitor of proteasomes, has been reported to reduce autoantibody titers and to improve clinical condition in mice suffering from lupus-like disease. Bortezomib depletes both short- and long-lived plasma cells; the latter normally survive the standard immunosuppressant treatments targeting T and B cells. These findings encouraged us to test whether bortezomib is effective for alleviating the symptoms in the experimental autoimmune myasthenia gravis (EAMG) model for myasthenia gravis, a disease that is characterized by autoantibodies against the acetylcholine receptor (AChR) of skeletal muscle. Lewis rats were immunized with saline (control, n = 36) or Torpedo AChR (EAMG, n = 54) in CFA in the first week of an experimental period of 8 wk. After immunization, rats received twice a week s.c. injections of bortezomib (0.2 mg/kg in saline) or saline injections. Bortezomib induced apoptosis in bone marrow cells and reduced the amount of plasma cells in the bone marrow by up to 81%. In the EAMG animals, bortezomib efficiently reduced the rise of anti-AChR autoantibody titers, prevented ultrastructural damage of the postsynaptic membrane, improved neuromuscular transmission, and decreased myasthenic symptoms. This study thus underscores the potential of the therapeutic use of proteasome inhibitors to target plasma cells in Ab-mediated autoimmune diseases.


Asunto(s)
Autoanticuerpos/efectos de los fármacos , Ácidos Borónicos/farmacología , Miastenia Gravis Autoinmune Experimental/tratamiento farmacológico , Miastenia Gravis Autoinmune Experimental/inmunología , Células Plasmáticas/efectos de los fármacos , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasoma , Pirazinas/farmacología , Animales , Autoanticuerpos/biosíntesis , Bortezomib , Femenino , Depleción Linfocítica/métodos , Miastenia Gravis Autoinmune Experimental/enzimología , Células Plasmáticas/enzimología , Células Plasmáticas/patología , Ratas , Ratas Endogámicas Lew
10.
Adv Mater ; 35(24): e2207053, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36858040

RESUMEN

Traditional synthetic covalent hydrogels lack the native tissue dynamics and hierarchical fibrous structure found in the extracellular matrix (ECM). These dynamics and fibrous nanostructures are imperative in obtaining the correct cell/material interactions. Consequently, the challenge to engineer functional dynamics in a fibrous hydrogel and recapitulate native ECM properties remains a bottle-neck to biomimetic hydrogel environments. Here, the molecular tuning of a supramolecular benzene-1,3,5-tricarboxamide (BTA) hydrogelator via simple modulation of hydrophobic substituents is reported. This tuning results in fibrous hydrogels with accessible viscoelasticity over 5 orders of magnitude, while maintaining a constant equilibrium storage modulus. BTA hydrogelators are created with systematic variations in the number of hydrophobic carbon atoms, and this is observed to control the viscoelasticity and stress-relaxation timescales in a logarithmic fashion. Some of these BTA hydrogels are shear-thinning, self-healing, extrudable, and injectable, and can be 3D printed into multiple layers. These hydrogels show high cell viability for chondrocytes and human mesenchymal stem cells, establishing their use in tissue engineering applications. This simple molecular tuning by changing hydrophobicity (with just a few carbon atoms) provides precise control over the viscoelasticity and 3D printability in fibrillar hydrogels and can be ported onto other 1D self-assembling structures. The molecular control and design of hydrogel network dynamics can push the field of supramolecular chemistry toward the design of new ECM-mimicking hydrogelators for numerous cell-culture and tissue-engineering applications and give access toward highly biomimetic bioinks for bioprinting.


Asunto(s)
Bioimpresión , Hidrogeles , Humanos , Hidrogeles/química , Biomimética , Matriz Extracelular/química , Ingeniería de Tejidos/métodos , Bioimpresión/métodos , Impresión Tridimensional
11.
Mater Today Bio ; 23: 100844, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38033367

RESUMEN

A challenge in regenerative medicine is creating the three-dimensional organic and inorganic in vitro microenvironment of bone, which would allow the study of musculoskeletal disorders and the generation of building blocks for bone regeneration. This study presents a microwell-based platform for creating spheroids of human mesenchymal stromal cells, which are then mineralized using ionic calcium and phosphate supplementation. The resulting mineralized spheroids promote an osteogenic gene expression profile through the influence of the spheroids' biophysical environment and inorganic signaling and require less calcium or phosphate to achieve mineralization compared to a monolayer culture. We found that mineralized spheroids represent an in vitro model for studying small molecule perturbations and extracellular mediated calcification. Furthermore, we demonstrate that understanding pathway signaling elicited by the spheroid environment allows mimicking these pathways in traditional monolayer culture, enabling similar rapid mineralization events. In sum, this study demonstrates the rapid generation and employment of a mineralized cell model system for regenerative medicine applications.

12.
ACS Nano ; 17(16): 15836-15846, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37531407

RESUMEN

Cryogenic electron microscopy can provide high-resolution reconstructions of macromolecules embedded in a thin layer of ice from which atomic models can be built de novo. However, the interaction between the ionizing electron beam and the sample results in beam-induced motion and image distortion, which limit the attainable resolutions. Sample charging is one contributing factor of beam-induced motions and image distortions, which is normally alleviated by including part of the supporting conducting film within the beam-exposed region. However, routine data collection schemes avoid strategies whereby the beam is not in contact with the supporting film, whose rationale is not fully understood. Here we characterize electrostatic charging of vitreous samples, both in imaging and in diffraction mode. We mitigate sample charging by depositing a single layer of conductive graphene on top of regular EM grids. We obtained high-resolution single-particle analysis (SPA) reconstructions at 2 Å when the electron beam only irradiates the middle of the hole on graphene-coated grids, using data collection schemes that previously failed to produce sub 3 Å reconstructions without the graphene layer. We also observe that the SPA data obtained with the graphene-coated grids exhibit a higher b factor and reduced particle movement compared to data obtained without the graphene layer. This mitigation of charging could have broad implications for various EM techniques, including SPA and cryotomography, and for the study of radiation damage and the development of future sample carriers. Furthermore, it may facilitate the exploration of more dose-efficient, scanning transmission EM based SPA techniques.

13.
Adv Mater ; 35(35): e2301242, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37370137

RESUMEN

Synthetic hydrogels often lack the load-bearing capacity and mechanical properties of native biopolymers found in tissue, such as cartilage. In natural tissues, toughness is often imparted via the combination of fibrous noncovalent self-assembly with key covalent bond formation. This controlled combination of supramolecular and covalent interactions remains difficult to engineer, yet can provide a clear strategy for advanced biomaterials. Here, a synthetic supramolecular/covalent strategy is investigated for creating a tough hydrogel that embodies the hierarchical fibrous architecture of the extracellular matrix (ECM). A benzene-1,3,5-tricarboxamide (BTA) hydrogelator is developed with synthetically addressable norbornene handles that self-assembles to form a and viscoelastic hydrogel. Inspired by collagen's covalent cross-linking of fibrils, the mechanical properties are reinforced by covalent intra- and interfiber cross-links. At over 90% water, the hydrogels withstand up to 550% tensile strain, 90% compressive strain, and dissipated energy with recoverable hysteresis. The hydrogels are shear-thinning, can be 3D bioprinted with good shape fidelity, and can be toughened via covalent cross-linking. These materials enable the bioprinting of human mesenchymal stromal cell (hMSC) spheroids and subsequent differentiation into chondrogenic tissue. Collectively, these findings highlight the power of covalent reinforcement of supramolecular fibers, offering a strategy for the bottom-up design of dynamic, yet tough, hydrogels and bioinks.


Asunto(s)
Bioimpresión , Hidrogeles , Humanos , Hidrogeles/química , Biomimética , Matriz Extracelular/química , Polímeros/análisis , Ingeniería de Tejidos , Impresión Tridimensional
14.
PLoS One ; 18(1): e0279944, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36662718

RESUMEN

Extracellular histones are cytotoxic molecules involved in experimental acute kidney injury. In patients receiving a renal transplant from donors after circulatory death, who suffer from additional warm ischemia, worse graft outcome is associated with higher machine perfusate extracellular histone H3 concentrations. We now investigated temperature-dependent extracellular histone release in an ex vivo porcine renal perfusion model, and subsequently studied histone release in the absence and presence of non-anticoagulant heparin. Seven pairs of ischemically damaged porcine kidneys were machine perfused at 4°C (cold ischemia) or 28°C (warm ischemia). Perfusate histone H3 concentration was higher after warm as compared to cold ischemia (median (IQR) = 0.48 (0.20-0.83) µg/mL vs. 0.02 (0.00-0.06) µg/mL; p = .045, respectively). Employing immune-electron microscopy (EM), histone containing cytoplasmic protrusions of tubular and endothelial cells were found after warm ischemic injury. Furthermore, abundant histone localization was detected in debris surrounding severely damaged glomerular cells, in a "buck shot" pattern. In vitro, histones were cytotoxic to endothelial and kidney epithelial cells in a temperature-dependent manner. In a separate ex vivo experiment, addition of heparin did not change the total histone H3 levels observed in the perfusate but revealed a continuous increase in the level of a lower molecular weight histone H3 variant. Our findings show that ischemically damaged kidneys release more extracellular histones in warm ischemia, which by EM was due to histone release by renal cells. Blocking of histone-mediated damage during transplantation may be beneficial in prevention of renal injury.


Asunto(s)
Lesión por Frío , Histonas , Porcinos , Animales , Células Endoteliales , Preservación de Órganos , Perfusión , Riñón , Isquemia , Isquemia Tibia
15.
Histochem Cell Biol ; 137(2): 205-16, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22127648

RESUMEN

Perilipin 5 (PLIN5/OXPAT) is a lipid droplet (LD) coat protein mainly present in tissues with a high fat-oxidative capacity, suggesting a role for PLIN5 in facilitating fatty acid oxidation. Here, we investigated the role of PLIN5 in fat oxidation in skeletal muscle. In human skeletal muscle, we observed that PLIN5 (but not PLIN2) protein content correlated tightly with OXPHOS content and in rat muscle PLIN5 content correlated with mitochondrial respiration rates on a lipid-derived substrate. This prompted us to examine PLIN5 protein expression in skeletal muscle mitochondria by means of immunogold electron microscopy and Western blots in isolated mitochondria. These data show that PLIN5, in contrast to PLIN2, not only localizes to LD but also to mitochondria, possibly facilitating fatty acid oxidation. Unilateral overexpression of PLIN5 in rat anterior tibialis muscle augmented myocellular fat storage without increasing mitochondrial density as indicated by the lack of change in protein content of five components of the OXPHOS system. Mitochondria isolated from PLIN5 overexpressing muscles did not possess increased fatty acid respiration. Interestingly though, (14)C-palmitate oxidation assays in muscle homogenates from PLIN5 overexpressing muscles revealed a 44.8% (P = 0.05) increase in complete fatty acid oxidation. Thus, in mitochondrial isolations devoid of LD, PLIN5 does not augment fat oxidation, while in homogenates containing PLIN5-coated LD, fat oxidation is higher upon PLIN5 overexpression. The presence of PLIN5 in mitochondria helps to understand why PLIN5, in contrast to PLIN2, is of specific importance in fat oxidative tissues. Our data suggests involvement of PLIN5 in directing fatty acids from the LD to mitochondrial fatty acid oxidation.


Asunto(s)
Ácidos Grasos/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas/metabolismo , Adulto , Animales , Proteínas Portadoras/metabolismo , Técnicas de Cultivo de Célula , Células HEK293 , Humanos , Metabolismo de los Lípidos , Masculino , Oxidación-Reducción , Perilipina-1 , Perilipina-5 , Fosfoproteínas/metabolismo , Ratas
16.
Am J Pathol ; 179(4): 2001-15, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21839061

RESUMEN

Adeno-associated virus (AAV)-mediated expression of wild-type or mutant P301L protein tau produces massive degeneration of pyramidal neurons without protein tau aggregation. We probed this novel model for genetic and structural factors and early parameters of pyramidal neurodegeneration. In yellow fluorescent protein-expressing transgenic mice, intracerebral injection of AAV-tauP301L revealed early damage to apical dendrites of CA1 pyramidal neurons, whereas their somata remained normal. Ultrastructurally, more and enlarged autophagic vacuoles were contained in degenerating dendrites and manifested as dark, discontinuous, vacuolated processes surrounded by activated astrocytes. Dendritic spines were lost in AAV-tauP301L-injected yellow fluorescent protein-expressing transgenic mice, and ultrastructurally, spines appeared dark and degenerating. In CX3CR1(EGFP/EGFP)-deficient mice, microglia were recruited early to neurons expressing human tau. The inflammatory response was accompanied by extravasation of plasma immunoglobulins. α2-Macroglobulin, but neither albumin nor transferrin, became lodged in the brain parenchyma. Large proteins, but not Evans blue, entered the brain of mice injected with AAV-tauP301L. Ultrastructurally, brain capillaries were constricted and surrounded by swollen astrocytes with extensions that contacted degenerating dendrites and axons. Together, these data corroborate the hypothesis that neuroinflammation participates essentially in tau-mediated neurodegeneration, and the model recapitulates early dendritic defects reminiscent of "dendritic amputation" in Alzheimer's disease.


Asunto(s)
Dendritas/patología , Inflamación/patología , Degeneración Nerviosa/patología , Sistema Nervioso/irrigación sanguínea , Sistema Nervioso/patología , Proteínas tau/metabolismo , Animales , Axones/patología , Axones/ultraestructura , Biomarcadores/metabolismo , Vasos Sanguíneos/patología , Vasos Sanguíneos/ultraestructura , Barrera Hematoencefálica/patología , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/ultraestructura , Dendritas/ultraestructura , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamación/complicaciones , Masculino , Ratones , Degeneración Nerviosa/complicaciones , Estrés Oxidativo , Permeabilidad , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Sinapsis/patología , Sinapsis/ultraestructura
17.
Pathology ; 53(2): 220-228, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33143903

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a widespread liver disease in Western society, but its multifactorial pathogenesis is not yet fully understood. Ultrastructural analysis of liver sinusoidal endothelial cells (LSECs) in animal models and in vitro studies shows defenestration early in the course of NAFLD, promoting steatosis. LSECs and fenestrae are important in the transport of lipids across the sinusoids. However, human ultrastructural data, especially on LSECs and fenestrae, are scarce. This study aimed to explore the ultrastructural changes in perfusion type fixed liver biopsies of NAFLD patients with and without non-alcoholic steatohepatitis (NASH), with a special focus on LSECs and their fenestration. Liver biopsies from patients with NAFLD were fixed using two perfusion techniques, jet and injection fixation, for needle and wedge biopsies, respectively. Ultrastructural changes were studied using transmission electron microscopy. NASH was diagnosed by bright-field microscopy using the SAF score (steatosis, activity, fibrosis). Thirty-seven patients were included, of which 12 (32.4%) had NASH. Significantly less defenestration was found in NASH compared to noNASH samples (p=0.002). Other features, i.e., giant mitochondria and fenestrae size did not differ between groups. Furthermore, we described new structures, i.e., single cell steatonecrosis and inflammatory fat follicles (IFF) that were observed in both groups. Concluding, defenestration was more common in noNASH compared to NASH in human liver samples. Defenestration was not related to the degree of steatosis or fibrosis. We speculate that defenestration can be a protective mechanism in simple steatosis which is lacking in NASH.


Asunto(s)
Hígado , Enfermedad del Hígado Graso no Alcohólico/patología , Biopsia , Células Endoteliales/patología , Células Endoteliales/ultraestructura , Femenino , Humanos , Hígado/patología , Hígado/ultraestructura , Masculino , Microscopía Electrónica/métodos , Perfusión
18.
J Extracell Vesicles ; 10(14): e12166, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34859607

RESUMEN

Tumour hypoxia is a hallmark of solid tumours and contributes to tumour progression, metastasis development and therapy resistance. In response to hypoxia, tumour cells secrete pro-angiogenic factors to induce blood vessel formation and restore oxygen supply to hypoxic regions. Extracellular vesicles (EVs) are emerging as mediators of intercellular communication in the tumour microenvironment. Here we demonstrate that increased expression of the LC3/GABARAP protein family member GABARAPL1, is required for endosomal maturation, sorting of cargo to endosomes and the secretion of EVs. Silencing GABARAPL1 results in a block in the early endosomal pathway and impaired secretion of EVs with pro-angiogenic properties. Tumour xenografts of doxycycline inducible GABARAPL1 knockdown cells display impaired vascularisation that results in decreased tumour growth, elevated tumour necrosis and increased therapy efficacy. Moreover, our data show that GABARAPL1 is expressed on the EV surface and targeting GABARAPL1+ EVs with GABARAPL1 targeting antibodies results in blockade of pro-angiogenic effects in vitro. In summary, we reveal that GABARAPL1 is required for EV cargo loading and secretion. GABARAPL1+ EVs are detectable and targetable and are therefore interesting to pursue as a therapeutic target.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Hipoxia de la Célula/fisiología , Vesículas Extracelulares/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Humanos
20.
Science ; 369(6499): 50-54, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32358202

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause coronavirus disease 2019 (COVID-19), an influenza-like disease that is primarily thought to infect the lungs with transmission through the respiratory route. However, clinical evidence suggests that the intestine may present another viral target organ. Indeed, the SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) is highly expressed on differentiated enterocytes. In human small intestinal organoids (hSIOs), enterocytes were readily infected by SARS-CoV and SARS-CoV-2, as demonstrated by confocal and electron microscopy. Enterocytes produced infectious viral particles, whereas messenger RNA expression analysis of hSIOs revealed induction of a generic viral response program. Therefore, the intestinal epithelium supports SARS-CoV-2 replication, and hSIOs serve as an experimental model for coronavirus infection and biology.


Asunto(s)
Betacoronavirus/fisiología , Enterocitos/virología , Íleon/virología , Replicación Viral , Enzima Convertidora de Angiotensina 2 , Betacoronavirus/ultraestructura , Técnicas de Cultivo de Célula , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Medios de Cultivo , Enterocitos/metabolismo , Enterocitos/ultraestructura , Expresión Génica , Humanos , Íleon/metabolismo , Íleon/ultraestructura , Pulmón/virología , Masculino , Organoides , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Virales/genética , Receptores Virales/metabolismo , Mucosa Respiratoria/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA