Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(26): e2204084119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35727972

RESUMEN

Discovery of deafness genes and elucidating their functions have substantially contributed to our understanding of hearing physiology and its pathologies. Here we report on DNA variants in MINAR2, encoding membrane integral NOTCH2-associated receptor 2, in four families underlying autosomal recessive nonsyndromic deafness. Neurologic evaluation of affected individuals at ages ranging from 4 to 80 y old does not show additional abnormalities. MINAR2 is a recently annotated gene with limited functional understanding. We detected three MINAR2 variants, c.144G > A (p.Trp48*), c.412_419delCGGTTTTG (p.Arg138Valfs*10), and c.393G > T, in 13 individuals with congenital- or prelingual-onset severe-to-profound sensorineural hearing loss (HL). The c.393G > T variant is shown to disrupt a splice donor site. We show that Minar2 is expressed in the mouse inner ear, with the protein localizing mainly in the hair cells, spiral ganglia, the spiral limbus, and the stria vascularis. Mice with loss of function of the Minar2 protein (Minar2tm1b/tm1b) present with rapidly progressive sensorineural HL associated with a reduction in outer hair cell stereocilia in the shortest row and degeneration of hair cells at a later age. We conclude that MINAR2 is essential for hearing in humans and mice and its disruption leads to sensorineural HL. Progressive HL observed in mice and in some affected individuals and as well as relative preservation of hair cells provides an opportunity to interfere with HL using genetic therapies.


Asunto(s)
Pérdida Auditiva Sensorineural , Receptor Notch2 , Receptores de Superficie Celular , Animales , Pérdida Auditiva Sensorineural/genética , Humanos , Mutación con Pérdida de Función , Ratones , Receptor Notch2/genética , Receptor Notch2/metabolismo , Receptores de Superficie Celular/genética , Estereocilios/metabolismo
2.
Hum Genomics ; 17(1): 103, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37996878

RESUMEN

BACKGROUND: We analyzed the genetic causes of sensorineural hearing loss in racial and ethnic minorities of South Florida by reviewing demographic, phenotypic, and genetic data on 136 patients presenting to the Hereditary Hearing Loss Clinic at the University of Miami. In our retrospective chart review, of these patients, half self-identified as Hispanic, and the self-identified racial distribution was 115 (86%) White, 15 (11%) Black, and 6 (4%) Asian. Our analysis helps to reduce the gap in understanding the prevalence, impact, and genetic factors related to hearing loss among diverse populations. RESULTS: The causative gene variant or variants were identified in 54 (40%) patients, with no significant difference in the molecular diagnostic rate between Hispanics and Non-Hispanics. However, the total solve rate based on race was 40%, 47%, and 17% in Whites, Blacks, and Asians, respectively. In Non-Hispanic Whites, 16 different variants were identified in 13 genes, with GJB2 (32%), MYO7A (11%), and SLC26A4 (11%) being the most frequently implicated genes. In White Hispanics, 34 variants were identified in 20 genes, with GJB2 (22%), MYO7A (7%), and STRC-CATSPER2 (7%) being the most common. In the Non-Hispanic Black cohort, the gene distribution was evenly dispersed, with 11 variants occurring in 7 genes, and no variant was identified in 3 Hispanic Black probands. For the Asian cohort, only one gene variant was found out of 6 patients. CONCLUSION: This study demonstrates that the diagnostic rate of genetic studies in hearing loss varies according to race in South Florida, with more heterogeneity in racial and ethnic minorities. Further studies to delineate deafness gene variants in underrepresented populations, such as African Americans/Blacks from Hispanic groups, are much needed to reduce racial and ethnic disparities in genetic diagnoses.


Asunto(s)
Pérdida Auditiva Sensorineural , Humanos , Asiático/genética , Negro o Afroamericano/genética , ADN/genética , Florida/epidemiología , Pérdida Auditiva Sensorineural/epidemiología , Pérdida Auditiva Sensorineural/genética , Hispánicos o Latinos/genética , Péptidos y Proteínas de Señalización Intercelular , Estudios Retrospectivos , Blanco/genética
3.
Am J Med Genet A ; 194(6): e63563, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38352997

RESUMEN

Autosomal dominant sensorineural hearing loss (ADSNHL) is a genetically heterogeneous disorder caused by pathogenic variants in various genes, including MYH14. However, the interpretation of pathogenicity for MYH14 variants remains a challenge due to incomplete penetrance and the lack of functional studies and large families. In this study, we performed exome sequencing in six unrelated families with ADSNHL and identified five MYH14 variants, including three novel variants. Two of the novel variants, c.571G > C (p.Asp191His) and c.571G > A (p.Asp191Asn), were classified as likely pathogenic using ACMG and Hearing Loss Expert panel guidelines. In silico modeling demonstrated that these variants, along with p.Gly1794Arg, can alter protein stability and interactions among neighboring molecules. Our findings suggest that MYH14 causative variants may be more contributory and emphasize the importance of considering this gene in patients with nonsyndromic mainly post-lingual severe form of hearing loss. However, further functional studies are needed to confirm the pathogenicity of these variants.


Asunto(s)
Secuenciación del Exoma , Pérdida Auditiva Sensorineural , Cadenas Pesadas de Miosina , Miosina Tipo II , Linaje , Humanos , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/patología , Femenino , Masculino , Cadenas Pesadas de Miosina/genética , Adulto , Mutación/genética , Predisposición Genética a la Enfermedad , Niño , Genes Dominantes , Persona de Mediana Edad , Adolescente
4.
J Hum Genet ; 68(10): 657-669, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37217689

RESUMEN

Hearing loss (HL) is a common heterogeneous trait that involves variants in more than 200 genes. In this study, we utilized exome (ES) and genome sequencing (GS) to effectively identify the genetic cause of presumably non-syndromic HL in 322 families from South and West Asia and Latin America. Biallelic GJB2 variants were identified in 58 probands at the time of enrollment these probands were excluded. In addition, upon review of phenotypic findings, 38/322 probands were excluded based on syndromic findings at the time of ascertainment and no further evaluation was performed on those samples. We performed ES as a primary diagnostic tool on one or two affected individuals from 212/226 families. Via ES we detected a total of 78 variants in 30 genes and showed their co-segregation with HL in 71 affected families. Most of the variants were frameshift or missense and affected individuals were either homozygous or compound heterozygous in their respective families. We employed GS as a primary test on a subset of 14 families and a secondary tool on 22 families which were unsolved by ES. Although the cumulative detection rate of causal variants by ES and GS is 40% (89/226), GS alone has led to a molecular diagnosis in 7 of 14 families as the primary tool and 5 of 22 families as the secondary test. GS successfully identified variants present in deep intronic or complex regions not detectable by ES.


Asunto(s)
Sordera , Pérdida Auditiva , Humanos , Sordera/genética , Pérdida Auditiva/genética , Pérdida Auditiva/diagnóstico , Fenotipo , Homocigoto , Mutación , Linaje
5.
Proc Natl Acad Sci U S A ; 116(4): 1347-1352, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30610177

RESUMEN

We have identified a GRAP variant (c.311A>T; p.Gln104Leu) cosegregating with autosomal recessive nonsyndromic deafness in two unrelated families. GRAP encodes a member of the highly conserved growth factor receptor-bound protein 2 (GRB2)/Sem-5/drk family of proteins, which are involved in Ras signaling; however, the function of the growth factor receptor-bound protein 2 (GRB2)-related adaptor protein (GRAP) in the auditory system is not known. Here, we show that, in mouse, Grap is expressed in the inner ear and the protein localizes to the neuronal fibers innervating cochlear and utricular auditory hair cells. Downstream of receptor kinase (drk), the Drosophila homolog of human GRAP, is expressed in Johnston's organ (JO), the fly hearing organ, and the loss of drk in JO causes scolopidium abnormalities. drk mutant flies present deficits in negative geotaxis behavior, which can be suppressed by human wild-type but not mutant GRAP. Furthermore, drk specifically colocalizes with synapsin at synapses, suggesting a potential role of such adaptor proteins in regulating actin cytoskeleton dynamics in the nervous system. Our findings establish a causative link between GRAP mutation and nonsyndromic deafness and suggest a function of GRAP/drk in hearing.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína Adaptadora GRB2/metabolismo , Pérdida Auditiva Sensorineural/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/metabolismo , Sordera/microbiología , Drosophila/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Unión Proteica/fisiología , Transducción de Señal/fisiología
6.
Hum Mol Genet ; 28(8): 1286-1297, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30561639

RESUMEN

Molecular mechanisms governing the development of the human cochlea remain largely unknown. Through genome sequencing, we identified a homozygous FOXF2 variant c.325A>T (p.I109F) in a child with profound sensorineural hearing loss (SNHL) associated with incomplete partition type I anomaly of the cochlea. This variant is not found in public databases or in over 1000 ethnicity-matched control individuals. I109 is a highly conserved residue in the forkhead box (Fox) domain of FOXF2, a member of the Fox protein family of transcription factors that regulate the expression of genes involved in embryogenic development as well as adult life. Our in vitro studies show that the half-life of mutant FOXF2 is reduced compared to that of wild type. Foxf2 is expressed in the cochlea of developing and adult mice. The mouse knockout of Foxf2 shows shortened and malformed cochleae, in addition to altered shape of hair cells with innervation and planar cell polarity defects. Expressions of Eya1 and Pax3, genes essential for cochlear development, are reduced in the cochleae of Foxf2 knockout mice. We conclude that FOXF2 plays a major role in cochlear development and its dysfunction leads to SNHL and developmental anomalies of the cochlea in humans and mice.


Asunto(s)
Cóclea/embriología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/fisiología , Adulto , Animales , Niño , Cóclea/metabolismo , Cóclea/fisiología , Desarrollo Embrionario , Femenino , Células Ciliadas Auditivas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Organogénesis , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX3/fisiología , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/fisiología , Transducción de Señal/genética , Secuenciación Completa del Genoma
7.
Hum Genet ; 138(10): 1071-1075, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31175426

RESUMEN

While the importance of tight junctions in hearing is well established, the role of Claudin- 9 (CLDN9), a tight junction protein, in human hearing and deafness has not been explored. Through whole-genome sequencing, we identified a one base pair deletion (c.86delT) in CLDN9 in a consanguineous family from Turkey with autosomal recessive nonsyndromic hearing loss. Three affected members of the family had sensorineural hearing loss (SNHL) ranging from moderate to profound in severity. The variant is predicted to cause a frameshift and produce a truncated protein (p.Leu29ArgfsTer4) in this single-exon gene. It is absent in public databases as well as in over 1000 Turkish individuals, and co-segregates with SNHL in the family. Our in vitro studies demonstrate that the mutant protein does not localize to cell membrane as demonstrated for the wild-type protein. Mice-lacking Cldn9 have been shown to develop SNHL. We conclude that CLDN9 is essential for proper audition in humans and its disruption leads to SNHL in humans.


Asunto(s)
Claudinas/genética , Sordera/diagnóstico , Sordera/genética , Genes Recesivos , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Claudinas/química , Claudinas/metabolismo , Biología Computacional/métodos , Análisis Mutacional de ADN , Femenino , Mutación del Sistema de Lectura , Humanos , Mutación , Linaje , Polimorfismo Genético , Transporte de Proteínas , Turquía , Secuenciación Completa del Genoma
8.
Clin Genet ; 96(6): 575-578, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31432506

RESUMEN

Auditory reception relies on the perception of mechanical stimuli by stereocilia and its conversion to electrochemical signal. Mechanosensory stereocilia are abundant in actin, which provides them with structural conformity necessary for perception of auditory stimuli. Out of three major classes of actin-bundling proteins, plastin 1 encoded by PLS1, is highly expressed in stereocilia and is necessary for their regular maintenance. A missense PLS1 variant associated with autosomal dominant hearing loss (HL) in a small family has recently been reported. Here, we present another PLS1 missense variant, c.805G > A (p.E269K), in a Turkish family with autosomal dominant non-syndromic HL confirming the causative role of PLS1 mutations in HL. We propose that HL due to the p.E269K variant is from the loss of a stable PLS1-ACTB interaction.


Asunto(s)
Genes Dominantes , Pérdida Auditiva/genética , Glicoproteínas de Membrana/genética , Proteínas de Microfilamentos/genética , Mutación/genética , Secuencia de Aminoácidos , Secuencia de Bases , Familia , Femenino , Humanos , Masculino , Glicoproteínas de Membrana/química , Proteínas de Microfilamentos/química , Proteínas Mutantes/química , Linaje , Turquía
9.
Am J Med Genet A ; 179(11): 2246-2251, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31368252

RESUMEN

Adams-Oliver syndrome (AOS) is a rare congenital disease characterized by aplasia cutis congenita (ACC) and terminal transverse limb defects (TTLD). It shows significant genetic heterogeneity and can be transmitted by autosomal dominant or recessive inheritance. Recessive inheritance is associated with mutations of DOCK6 or EOGT; however, only few cases have been published so far. We present two families with EOGT-associated AOS. Due to pseudodominance in one family, the recognition of the recessive inheritance pattern was difficult. We identified two novel AOS-causing mutations (c.404G>A/p.Cys135Tyr and c.311+1G>T). The phenotype in the presented families was dominated by large ACC, whereas TTLD were mostly subtle or even absent and no major malformations occured. Our observations along with the previously published cases indicate that the two types of recessive AOS (EOGT- vs. DOCK6-associated) differ significanty regarding the frequency of neurologic or ocular deficits.


Asunto(s)
Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Deformidades Congénitas de las Extremidades/diagnóstico , Deformidades Congénitas de las Extremidades/genética , Mutación , N-Acetilglucosaminiltransferasas/genética , Dermatosis del Cuero Cabelludo/congénito , Niño , Consanguinidad , Exones , Estudios de Asociación Genética/métodos , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Linaje , Fenotipo , Dermatosis del Cuero Cabelludo/diagnóstico , Dermatosis del Cuero Cabelludo/genética
10.
Proc Natl Acad Sci U S A ; 113(21): 5993-8, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27162350

RESUMEN

Hair cells of the inner ear, the mechanosensory receptors, convert sound waves into neural signals that are passed to the brain via the auditory nerve. Little is known about the molecular mechanisms that govern the development of hair cell-neuronal connections. We ascertained a family with autosomal recessive deafness associated with a common cavity inner ear malformation and auditory neuropathy. Via whole-exome sequencing, we identified a variant (c.2207G>C, p.R736T) in ROR1 (receptor tyrosine kinase-like orphan receptor 1), cosegregating with deafness in the family and absent in ethnicity-matched controls. ROR1 is a tyrosine kinase-like receptor localized at the plasma membrane. At the cellular level, the mutation prevents the protein from reaching the cellular membrane. In the presence of WNT5A, a known ROR1 ligand, the mutated ROR1 fails to activate NF-κB. Ror1 is expressed in the inner ear during development at embryonic and postnatal stages. We demonstrate that Ror1 mutant mice are severely deaf, with preserved otoacoustic emissions. Anatomically, mutant mice display malformed cochleae. Axons of spiral ganglion neurons show fasciculation defects. Type I neurons show impaired synapses with inner hair cells, and type II neurons display aberrant projections through the cochlear sensory epithelium. We conclude that Ror1 is crucial for spiral ganglion neurons to innervate auditory hair cells. Impairment of ROR1 function largely affects development of the inner ear and hearing in humans and mice.


Asunto(s)
Células Ciliadas Auditivas/metabolismo , Pérdida Auditiva Sensorineural/metabolismo , Mutación , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Ganglio Espiral de la Cóclea/metabolismo , Animales , Axones/metabolismo , Axones/patología , Línea Celular , Células Ciliadas Auditivas/patología , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/patología , Humanos , Ratones , Ratones Mutantes , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Ganglio Espiral de la Cóclea/patología , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
11.
Hum Mutat ; 39(9): 1246-1261, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29924900

RESUMEN

Adams-Oliver syndrome (AOS) is a rare developmental disorder, characterized by scalp aplasia cutis congenita (ACC) and transverse terminal limb defects (TTLD). Autosomal dominant forms of AOS are linked to mutations in ARHGAP31, DLL4, NOTCH1 or RBPJ, while DOCK6 and EOGT underlie autosomal recessive inheritance. Data on the frequency and distribution of mutations in large cohorts are currently limited. The purpose of this study was therefore to comprehensively examine the genetic architecture of AOS in an extensive cohort. Molecular diagnostic screening of 194 AOS/ACC/TTLD probands/families was conducted using next-generation and/or capillary sequencing analyses. In total, we identified 63 (likely) pathogenic mutations, comprising 56 distinct and 22 novel mutations, providing a molecular diagnosis in 30% of patients. Taken together with previous reports, these findings bring the total number of reported disease variants to 63, with a diagnostic yield of 36% in familial cases. NOTCH1 is the major contributor, underlying 10% of AOS/ACC/TTLD cases, with DLL4 (6%), DOCK6 (6%), ARHGAP31 (3%), EOGT (3%), and RBPJ (2%) representing additional causality in this cohort. We confirm the relevance of genetic screening across the AOS/ACC/TTLD spectrum, highlighting preliminary but important genotype-phenotype correlations. This cohort offers potential for further gene identification to address missing heritability.


Asunto(s)
Displasia Ectodérmica/genética , Deformidades Congénitas de las Extremidades/genética , Dermatosis del Cuero Cabelludo/congénito , Proteínas de Unión al GTP rho/genética , Displasia Ectodérmica/fisiopatología , Extremidades/fisiopatología , Femenino , Estudios de Asociación Genética , Humanos , Deformidades Congénitas de las Extremidades/fisiopatología , Masculino , Mutación , Linaje , Receptores Notch/genética , Cuero Cabelludo/fisiopatología , Dermatosis del Cuero Cabelludo/genética , Dermatosis del Cuero Cabelludo/fisiopatología
12.
Hum Genet ; 137(6-7): 479-486, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29982980

RESUMEN

While recent studies have revealed a substantial portion of the genes underlying human hearing loss, the extensive genetic landscape has not been completely explored. Here, we report a loss-of-function variant (c.72delA) in MPZL2 in three unrelated multiplex families from Turkey and Iran with autosomal recessive nonsyndromic hearing loss. The variant co-segregates with moderate sensorineural hearing loss in all three families. We show a shared haplotype flanking the variant in our families implicating a single founder. While rare in other populations, the allele frequency of the variant is ~ 0.004 in Ashkenazi Jews, suggesting that it may be an important cause of moderate hearing loss in that population. We show that Mpzl2 is expressed in mouse inner ear, and the protein localizes in the auditory inner and outer hair cells, with an asymmetric subcellular localization. We thus present MPZL2 as a novel gene associated with sensorineural hearing loss.


Asunto(s)
Moléculas de Adhesión Celular/genética , Sordera/genética , Células Ciliadas Auditivas Internas/metabolismo , Pérdida Auditiva Sensorineural/genética , Animales , Sordera/fisiopatología , Oído Interno/crecimiento & desarrollo , Oído Interno/fisiopatología , Femenino , Frecuencia de los Genes , Genes Recesivos , Células Ciliadas Auditivas Internas/patología , Haplotipos/genética , Pérdida Auditiva Sensorineural/fisiopatología , Humanos , Irán/epidemiología , Judíos/genética , Masculino , Ratones , Mutación , Linaje , Células de Schwann/patología , Turquía
13.
Proc Natl Acad Sci U S A ; 111(27): 9864-8, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24958875

RESUMEN

In a large consanguineous Turkish kindred with recessive nonsyndromic, prelingual, profound hearing loss, we identified in the gene FAM65B (MIM611410) a splice site mutation (c.102-1G>A) that perfectly cosegregates with the phenotype in the family. The mutation leads to exon skipping and deletion of 52-amino acid residues of a PX membrane localization domain. FAM65B is known to be involved in myotube formation and in regulation of cell adhesion, polarization, and migration. We show that wild-type Fam65b is expressed during embryonic and postnatal development stages in murine cochlea, and that the protein localizes to the plasma membranes of the stereocilia of inner and outer hair cells of the inner ear. The wild-type protein targets the plasma membrane, whereas the mutant protein accumulates in cytoplasmic inclusion bodies and does not reach the membrane. In zebrafish, knockdown of fam65b leads to significant reduction of numbers of saccular hair cells and neuromasts and to hearing loss. We conclude that FAM65B is a plasma membrane-associated protein of hair cell stereocilia that is essential for hearing.


Asunto(s)
Audición/fisiología , Proteínas/fisiología , Estereocilios/fisiología , Animales , Moléculas de Adhesión Celular , Modelos Animales de Enfermedad , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Audición/genética , Pérdida Auditiva Sensorineural/genética , Humanos , Masculino , Ratones , Linaje , Proteínas/genética , Proteínas/metabolismo , Empalme del ARN , Fracciones Subcelulares/metabolismo , Turquía , Pez Cebra
14.
Hum Genet ; 135(8): 953-61, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27344577

RESUMEN

Hearing loss is the most common sensory deficit in humans with causative variants in over 140 genes. With few exceptions, however, the population-specific distribution for many of the identified variants/genes is unclear. Until recently, the extensive genetic and clinical heterogeneity of deafness precluded comprehensive genetic analysis. Here, using a custom capture panel (MiamiOtoGenes), we undertook a targeted sequencing of 180 genes in a multi-ethnic cohort of 342 GJB2 mutation-negative deaf probands from South Africa, Nigeria, Tunisia, Turkey, Iran, India, Guatemala, and the United States (South Florida). We detected causative DNA variants in 25 % of multiplex and 7 % of simplex families. The detection rate varied between 0 and 57 % based on ethnicity, with Guatemala and Iran at the lower and higher end of the spectrum, respectively. We detected causative variants within 27 genes without predominant recurring pathogenic variants. The most commonly implicated genes include MYO15A, SLC26A4, USH2A, MYO7A, MYO6, and TRIOBP. Overall, our study highlights the importance of family history and generation of databases for multiple ethnically discrete populations to improve our ability to detect and accurately interpret genetic variants for pathogenicity.


Asunto(s)
Sordera/genética , Genética de Población , Síndromes de Usher/genética , Sordera/epidemiología , Etnicidad/genética , Femenino , Pruebas Genéticas , Humanos , Masculino , Mutación , Síndromes de Usher/epidemiología
15.
Genet Med ; 18(4): 364-71, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26226137

RESUMEN

PURPOSE: Autosomal recessive nonsyndromic deafness (ARNSD) is characterized by a high degree of genetic heterogeneity, with reported mutations in 58 different genes. This study was designed to detect deafness-causing variants in a multiethnic cohort with ARNSD by using whole-exome sequencing (WES). METHODS: After excluding mutations in the most common gene, GJB2, we performed WES in 160 multiplex families with ARNSD from Turkey, Iran, Mexico, Ecuador, and Puerto Rico to screen for mutations in all known ARNSD genes. RESULTS: We detected ARNSD-causing variants in 90 (56%) families, 54% of which had not been previously reported. Identified mutations were located in 31 known ARNSD genes. The most common genes with mutations were MYO15A (13%), MYO7A (11%), SLC26A4 (10%), TMPRSS3 (9%), TMC1 (8%), ILDR1 (6%), and CDH23 (4%). Nine mutations were detected in multiple families with shared haplotypes, suggesting founder effects. CONCLUSION: We report on a large multiethnic cohort with ARNSD in which comprehensive analysis of all known ARNSD genes identifies causative DNA variants in 56% of the families. In the remaining families, WES allows us to search for causative variants in novel genes, thus improving our ability to explain the underlying etiology in more families.Genet Med 18 4, 364-371.


Asunto(s)
Sordera/diagnóstico , Sordera/genética , Exoma , Genes Recesivos , Pérdida Auditiva Sensorineural/diagnóstico , Pérdida Auditiva Sensorineural/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Alelos , Estudios de Cohortes , Etnicidad/genética , Genotipo , Humanos , Mutación
16.
Am J Hum Genet ; 91(5): 872-82, 2012 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-23122586

RESUMEN

Hereditary hearing loss is characterized by a high degree of genetic heterogeneity. Here we present OTOGL mutations, a homozygous one base pair deletion (c.1430 delT) causing a frameshift (p.Val477Glufs(∗)25) in a large consanguineous family and two compound heterozygous mutations, c.547C>T (p.Arg183(∗)) and c.5238+5G>A, in a nonconsanguineous family with moderate nonsyndromic sensorineural hearing loss. OTOGL maps to the DFNB84 locus at 12q21.31 and encodes otogelin-like, which has structural similarities to the epithelial-secreted mucin protein family. We demonstrate that Otogl is expressed in the inner ear of vertebrates with a transcription level that is high in embryonic, lower in neonatal, and much lower in adult stages. Otogelin-like is localized to the acellular membranes of the cochlea and the vestibular system and to a variety of inner ear cells located underneath these membranes. Knocking down of otogl with morpholinos in zebrafish leads to sensorineural hearing loss and anatomical changes in the inner ear, supporting that otogelin-like is essential for normal inner ear function. We propose that OTOGL mutations affect the production and/or function of acellular structures of the inner ear, which ultimately leads to sensorineural hearing loss.


Asunto(s)
Pérdida Auditiva Sensorineural/genética , Proteínas de la Membrana/genética , Mutación , Adolescente , Animales , Preescolar , Aberraciones Cromosómicas , Cóclea/metabolismo , Cóclea/patología , Exoma , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Pérdida Auditiva Sensorineural/diagnóstico , Humanos , Mutación INDEL , Masculino , Ratones , Polimorfismo de Nucleótido Simple , Ratas , Pez Cebra
17.
Mol Genet Genomics ; 290(4): 1327-34, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25633957

RESUMEN

Hearing loss (HL) is a major public health issue. It is clinically and genetically heterogeneous.The identification of the causal mutation is important for early diagnosis, clinical follow-up, and genetic counseling. HL due to mutations in COL11A2, encoding collagen type XI alpha-2, can be non-syndromic autosomal-dominant or autosomal-recessive, and also syndromic as in Otospondylomegaepiphyseal Dysplasia, Stickler syndrome type III, and Weissenbacher-Zweymuller syndrome. However, thus far only one mutation co-segregating with autosomal recessive non-syndromic hearing loss (ARNSHL) in a single family has been reported. In this study, whole exome sequencing of two consanguineous families with ARNSHL from Tunisia and Turkey revealed two novel causative COL11A2 mutations, c.109G > T (p.Ala37Ser) and c.2662C > A (p.Pro888Thr). The variants identified co-segregated with deafness in both families. All homozygous individuals in those families had early onset profound hearing loss across all frequencies without syndromic findings. The variants are predicted to be damaging the protein function. The p.Pro888Thr mutation affects a -Gly-X-Y- triplet repeat motif. The novel p.Ala37Ser is the first missense mutation located in the NC4 domain of the COL11A2 protein. Structural model suggests that this mutation will likely obliterate, or at least partially compromise, the ability of NC4 domain to interact with its cognate ligands. In conclusion, we confirm that COL11A2 mutations cause ARNSHL and broaden the mutation spectrum that may shed new light on genotype-phenotype correlation for the associated phenotypes and clinical follow-up.


Asunto(s)
Colágeno Tipo XI/genética , Genes Recesivos , Predisposición Genética a la Enfermedad/genética , Pérdida Auditiva Sensorineural/genética , Mutación Missense , Secuencia de Aminoácidos , Secuencia de Bases , Colágeno Tipo XI/química , Consanguinidad , Exoma/genética , Salud de la Familia , Femenino , Frecuencia de los Genes , Genotipo , Pérdida Auditiva Sensorineural/patología , Humanos , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Linaje , Estructura Terciaria de Proteína , Análisis de Secuencia de ADN/métodos , Homología de Secuencia de Aminoácido
18.
Am J Hum Genet ; 89(2): 289-94, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21782149

RESUMEN

KBG syndrome is characterized by intellectual disability associated with macrodontia of the upper central incisors as well as distinct craniofacial findings, short stature, and skeletal anomalies. Although believed to be genetic in origin, the specific underlying defect is unknown. Through whole-exome sequencing, we identified deleterious heterozygous mutations in ANKRD11 encoding ankyrin repeat domain 11, also known as ankyrin repeat-containing cofactor 1. A splice-site mutation, c.7570-1G>C (p.Glu2524_Lys2525del), cosegregated with the disease in a family with three affected members, whereas in a simplex case a de novo truncating mutation, c.2305delT (p.Ser769GlnfsX8), was detected. Sanger sequencing revealed additional de novo truncating ANKRD11 mutations in three other simplex cases. ANKRD11 is known to interact with nuclear receptor complexes to modify transcriptional activation. We demonstrated that ANKRD11 localizes mainly to the nuclei of neurons and accumulates in discrete inclusions when neurons are depolarized, suggesting that it plays a role in neural plasticity. Our results demonstrate that mutations in ANKRD11 cause KBG syndrome and outline a fundamental role of ANKRD11 in craniofacial, dental, skeletal, and central nervous system development and function.


Asunto(s)
Enfermedades del Desarrollo Óseo/complicaciones , Huesos/anomalías , Discapacidad Intelectual/complicaciones , Mutación/genética , Proteínas Represoras/genética , Anomalías Dentarias/complicaciones , Anomalías Múltiples/genética , Adulto , Secuencia de Aminoácidos , Secuencia de Bases , Enfermedades del Desarrollo Óseo/genética , Núcleo Celular/metabolismo , Niño , Análisis Mutacional de ADN , Exones/genética , Facies , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Linaje , Fenotipo , Estructura Terciaria de Proteína , Proteínas Represoras/química , Anomalías Dentarias/genética , Adulto Joven
19.
J Immunol ; 189(8): 3957-69, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22966085

RESUMEN

The lectin pathway of complement is an important component of innate immunity. Its activation has been thought to occur via recognition of pathogens by mannan-binding lectin (MBL) or ficolins in complex with MBL-associated serine protease (MASP)-2, followed by MASP-2 autoactivation and cleavage of C4 and C2 generating the C3 convertase. MASP-1 and MASP-3 are related proteases found in similar complexes. MASP-1 has been shown to aid MASP-2 convertase generation by auxiliary C2 cleavage. In mice, MASP-1 and MASP-3 have been reported to be central also to alternative pathway function through activation of profactor D and factor B. In this study, we present functional studies based on a patient harboring a nonsense mutation in the common part of the MASP1 gene and hence deficient in both MASP-1 and MASP-3. Surprisingly, we find that the alternative pathway in this patient functions normally, and is unaffected by reconstitution with MASP-1 and MASP-3. Conversely, we find that the patient has a nonfunctional lectin pathway, which can be restored by MASP-1, implying that this component is crucial for complement activation. We show that, although MASP-2 is able to autoactivate under artificial conditions, MASP-1 dramatically increases lectin pathway activity at physiological conditions through direct activation of MASP-2. We further demonstrate that MASP-1 and MASP-2 can associate in the same MBL complex, and that such cocomplexes are found in serum, providing a scenario for transactivation of MASP-2. Hence, in functional terms, it appears that MASP-1 and MASP-2 act in a manner analogous to that of C1r and C1s of the classical pathway.


Asunto(s)
Anomalías Múltiples/enzimología , Blefaroptosis/enzimología , Vía Alternativa del Complemento/inmunología , Lectina de Unión a Manosa de la Vía del Complemento/inmunología , Anomalías Craneofaciales/enzimología , Craneosinostosis/enzimología , Criptorquidismo/enzimología , Anomalías del Ojo/enzimología , Cardiopatías Congénitas/enzimología , Luxación Congénita de la Cadera/enzimología , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/fisiología , Estrabismo/enzimología , Músculos Abdominales/anomalías , Músculos Abdominales/enzimología , Músculos Abdominales/inmunología , Anomalías Múltiples/genética , Anomalías Múltiples/inmunología , Animales , Blefaroptosis/genética , Blefaroptosis/inmunología , Codón sin Sentido , Vía Alternativa del Complemento/genética , Lectina de Unión a Manosa de la Vía del Complemento/genética , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/inmunología , Craneosinostosis/genética , Craneosinostosis/inmunología , Criptorquidismo/genética , Criptorquidismo/inmunología , Discapacidades del Desarrollo/enzimología , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/inmunología , Anomalías del Ojo/genética , Anomalías del Ojo/inmunología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/inmunología , Luxación Congénita de la Cadera/genética , Luxación Congénita de la Cadera/inmunología , Humanos , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Estrabismo/genética , Estrabismo/inmunología , Activación Transcripcional/genética , Activación Transcripcional/inmunología
20.
Res Sq ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38947059

RESUMEN

Developmental anomalies of the hearing organ, the cochlea, are diagnosed in approximately one-fourth of individuals with congenital deafness. Most patients with cochlear malformations remain etiologically undiagnosed due to insufficient knowledge about underlying genes or the inability to make conclusive interpretations of identified genetic variants. We used exome sequencing for genetic evaluation of hearing loss associated with cochlear malformations in three probands from unrelated families. We subsequently generated monoclonal induced pluripotent stem cell (iPSC) lines, bearing patient-specific knockins and knockouts using CRISPR/Cas9 to assess pathogenicity of candidate variants. We detected FGF3 (p.Arg165Gly) and GREB1L (p.Cys186Arg), variants of uncertain significance in two recognized genes for deafness, and PBXIP1 (p.Trp574*) in a candidate gene. Upon differentiation of iPSCs towards inner ear organoids, we observed significant developmental aberrations in knockout lines compared to their isogenic controls. Patient-specific single nucleotide variants (SNVs) showed similar abnormalities as the knockout lines, functionally supporting their causality in the observed phenotype. Therefore, we present human inner ear organoids as a tool to rapidly validate the pathogenicity of DNA variants associated with cochlear malformations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA