Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 288(18): 12533-43, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23482561

RESUMEN

The recruitment to plasma membrane invaginations of the protein endophilin is a temporally regulated step in clathrin-mediated endocytosis. Endophilin is believed to sense or stabilize membrane curvature, which in turn likely depends on the dimeric structure of the protein. The dynamic nature of the membrane association and dimerization of endophilin is thus functionally important and is illuminated herein. Using subunit exchange Förster resonance energy transfer (FRET), we determine dimer dissociation kinetics and find a dimerization equilibrium constant orders of magnitude lower than previously published values. We characterize N-BAR domain membrane association kinetics under conditions where the dimeric species predominates, by stopped flow, observing prominent electrostatic sensitivity of membrane interaction kinetics. Relative to membrane binding, we find that protein monomer/dimer species equilibrate with far slower kinetics. Complementary optical microscopy studies reveal strikingly slow membrane dissociation and an increase of dissociation rate constant for a construct lacking the amphipathic segment helix 0 (H0). We attribute the slow dissociation kinetics to higher-order protein oligomerization on the membrane. We incorporate our findings into a kinetic scheme for endophilin N-BAR membrane binding and find a significant separation of time scales for endophilin membrane binding and subsequent oligomerization. This separation may facilitate the regulation of membrane trafficking phenomena.


Asunto(s)
Aciltransferasas/química , Membranas Artificiales , Multimerización de Proteína , Aciltransferasas/genética , Aciltransferasas/metabolismo , Animales , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Cinética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas
2.
J Am Chem Soc ; 133(18): 7152-8, 2011 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-21491910

RESUMEN

Both oxidative stress and aggregation of the protein α-synuclein (aS) have been implicated as key factors in the etiology of Parkinson's disease. Specifically, oxidative modifications to aS disrupt its binding to lipid membranes, an interaction considered critical to its native function. Here we seek to provide a mechanistic explanation for this phenomenon by investigating the effects of oxidative nitration of tyrosine residues on the structure of aS and its interaction with lipid membranes. Membrane binding is mediated by the first ∼95 residues of aS. We find that nitration of the single tyrosine (Y39) in this domain disrupts binding due to electrostatic repulsion. Moreover, we observe that nitration of the three tyrosines (Y125/133/136) in the C-terminal domain is equally effective in perturbing binding, an intriguing result given that the C-terminus is not thought to interact directly with the lipid bilayer. Our investigations show that tyrosine nitration results in a change of the conformational states populated by aS in solution, with the most prominent changes occurring in the C-terminal region. These results lead us to suggest that nitration of Y125/133/136 reduces the membrane-binding affinity of aS through allosteric coupling by altering the ensemble of conformational states and depopulating those capable of membrane binding. While allostery is a well-established concept for structured proteins, it has only recently been discussed in the context of disordered proteins. We propose that allosteric regulation through modification of specific residues in, or ligand binding to, the C-terminus may even be a general mechanism for modulating aS function.


Asunto(s)
Lípidos de la Membrana/química , Estrés Oxidativo , alfa-Sinucleína/química , Regulación Alostérica , Humanos , Hidrodinámica , Membrana Dobles de Lípidos , Lípidos de la Membrana/metabolismo , Mutación , Nitratos/química , Oxidación-Reducción , Enfermedad de Parkinson/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Tirosina/química , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
3.
Chem Biol ; 22(3): 369-78, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25754474

RESUMEN

Islet amyloid polypeptide (IAPP) is a hormone cosecreted with insulin. IAPP proceeds through a series of conformational changes from random coil to ß-sheet via transient α-helical intermediates. An unknown subset of these events are associated with seemingly disparate gains of function, including catalysis of self-assembly, membrane penetration, loss of membrane integrity, mitochondrial localization, and finally, cytotoxicity, a central component of diabetic pathology. A series of small molecule, α-helical mimetics, oligopyridylamides, was previously shown to target the membrane-bound α-helical oligomeric intermediates of IAPP. In this study, we develop an improved, microwave-assisted synthesis of oligopyridylamides. A series of designed tripyridylamides demonstrate that lipid-catalyzed self-assembly of IAPP can be deliberately targeted. In addition, these molecules affect IAPP-induced leakage of synthetic liposomes and cellular toxicity in insulin-secreting cells. The tripyridylamides inhibit these processes with identical rank orders of effectiveness. This indicates a common molecular basis for the disparate set of observed effects of IAPP.


Asunto(s)
Amidas/síntesis química , Polipéptido Amiloide de los Islotes Pancreáticos/química , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Piridinas/síntesis química , Amidas/química , Amidas/farmacología , Secuencia de Aminoácidos , Animales , Apoptosis/fisiología , Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Línea Celular Tumoral , Diseño de Fármacos , Humanos , Insulinoma , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Liposomas/química , Liposomas/metabolismo , Fluidez de la Membrana/fisiología , Microondas , Modelos Moleculares , Datos de Secuencia Molecular , Neoplasias Pancreáticas , Estructura Secundaria de Proteína , Piridinas/química , Piridinas/farmacología , Ratas , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA