Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Neuroimmunol ; 390: 578329, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38554665

RESUMEN

We report the first description of spinal cord mycobacterial spindle cell pseudotumor. A patient with newly diagnosed advanced HIV presented with recent-onset bilateral leg weakness and was found to have a hypermetabolic spinal cord mass on structural and molecular imaging. Biopsy and cultures from blood and cerebrospinal fluid confirmed spindle cell pseudotumor due to Mycobacterium avium-intracellulare. Despite control of HIV and initial reduction in pseudotumor volume on antiretrovirals and antimycobacterials (azithromycin, ethambutol, rifampin/rifabutin), he ultimately experienced progressive leg weakness due to pseudotumor re-expansion. Here, we review literature and discuss multidisciplinary diagnosis, monitoring and management challenges, including immune reconstitution inflammatory syndrome.


Asunto(s)
Infección por Mycobacterium avium-intracellulare , Humanos , Masculino , Infección por Mycobacterium avium-intracellulare/diagnóstico , Infección por Mycobacterium avium-intracellulare/tratamiento farmacológico , Infección por Mycobacterium avium-intracellulare/diagnóstico por imagen , Enfermedades de la Médula Espinal/diagnóstico por imagen , Enfermedades de la Médula Espinal/tratamiento farmacológico , Enfermedades de la Médula Espinal/microbiología , Adulto , Infecciones por VIH/complicaciones
2.
J Vis Exp ; (65)2012 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-22872144

RESUMEN

The growth and progression of most solid tumors depend on the initial transformation of the cancer cells and their response to stroma-associated signaling in the tumor microenvironment (1). Previously, research on the tumor microenvironment has focused primarily on tumor-stromal interactions (1-2). However, the tumor microenvironment also includes a variety of biophysical forces, whose effects remain poorly understood. These forces are biomechanical consequences of tumor growth that lead to changes in gene expression, cell division, differentiation and invasion(3). Matrix density (4), stiffness (5-6), and structure (6-7), interstitial fluid pressure (8), and interstitial fluid flow (8) are all altered during cancer progression. Interstitial fluid flow in particular is higher in tumors compared to normal tissues (8-10). The estimated interstitial fluid flow velocities were measured and found to be in the range of 0.1-3 µm s(-1), depending on tumor size and differentiation (9, 11). This is due to elevated interstitial fluid pressure caused by tumor-induced angiogenesis and increased vascular permeability (12). Interstitial fluid flow has been shown to increase invasion of cancer cells (13-14), vascular fibroblasts and smooth muscle cells (15). This invasion may be due to autologous chemotactic gradients created around cells in 3-D (16) or increased matrix metalloproteinase (MMP) expression (15), chemokine secretion and cell adhesion molecule expression (17). However, the mechanism by which cells sense fluid flow is not well understood. In addition to altering tumor cell behavior, interstitial fluid flow modulates the activity of other cells in the tumor microenvironment. It is associated with (a) driving differentiation of fibroblasts into tumor-promoting myofibroblasts (18), (b) transporting of antigens and other soluble factors to lymph nodes (19), and (c) modulating lymphatic endothelial cell morphogenesis (20). The technique presented here imposes interstitial fluid flow on cells in vitro and quantifies its effects on invasion (Figure 1). This method has been published in multiple studies to measure the effects of fluid flow on stromal and cancer cell invasion (13-15, 17). By changing the matrix composition, cell type, and cell concentration, this method can be applied to other diseases and physiological systems to study the effects of interstitial flow on cellular processes such as invasion, differentiation, proliferation, and gene expression.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Líquido Extracelular/metabolismo , Melanoma/metabolismo , Melanoma/patología , Línea Celular Tumoral , Movimiento Celular/fisiología , Colorantes Fluorescentes/química , Humanos , Indoles/química , Microscopía Fluorescente/métodos , Invasividad Neoplásica , Metástasis de la Neoplasia , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA