Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Comput Biol ; 19(2): e1010335, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36735746

RESUMEN

How cell specification can be controlled in a reproducible manner is a fundamental question in developmental biology. In ascidians, a group of invertebrate chordates, geometry plays a key role in achieving this control. Here, we use mathematical modeling to demonstrate that geometry dictates the neural-epidermal cell fate choice in the 32-cell stage ascidian embryo by a two-step process involving first the modulation of ERK signaling and second, the expression of the neural marker gene, Otx. The model describes signal transduction by the ERK pathway that is stimulated by FGF and attenuated by ephrin, and ERK-mediated control of Otx gene expression, which involves both an activator and a repressor of ETS-family transcription factors. Considering the measured area of cell surface contacts with FGF- or ephrin-expressing cells as inputs, the solutions of the model reproduce the experimental observations about ERK activation and Otx expression in the different cells under normal and perturbed conditions. Sensitivity analyses and computations of Hill coefficients allow us to quantify the robustness of the specification mechanism controlled by cell surface area and to identify the respective role played by each signaling input. Simulations also predict in which conditions the dual control of gene expression by an activator and a repressor that are both under the control of ERK can induce a robust ON/OFF control of neural fate induction.


Asunto(s)
Urocordados , Animales , Urocordados/genética , Diferenciación Celular , Transducción de Señal/fisiología , Sistema Nervioso , Efrinas/genética , Regulación del Desarrollo de la Expresión Génica
2.
Biol Cell ; 115(4): e2200111, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36751133

RESUMEN

Protein folding and protein maturation largely occur in the controlled environment of the Endoplasmic Reticulum (ER). Perturbation to the correct functioning of this organelle leads to altered proteostasis and accumulation of misfolded proteins in the ER lumen. This condition is commonly known as ER stress and is appearing as an important contributor in the pathogenesis of several human diseases. Monitoring of the quality control processes is mediated by the Unfolded Protein Response (UPR). This response consists in a complex network of signalling pathways that aim to restore protein folding and ER homeostasis. Conditions in which UPR is not able to overcome ER stress lead to a switch of the UPR signalling program from an adaptive to a pro-apoptotic one, revealing a key role of UPR in modulating cell fate decisions. Because of its high complexity and its involvement in the regulation of different cellular outcomes, UPR has been the centre of the development of computational models, which tried to better dissect the role of UPR or of its specific components in several contexts. In this review, we go through the existing mathematical models of UPR. We emphasize how their study contributed to an improved characterization of the role of this intricate response in the modulation of cellular functions.


Asunto(s)
Estrés del Retículo Endoplásmico , Respuesta de Proteína Desplegada , Humanos , Estrés del Retículo Endoplásmico/fisiología , Transducción de Señal , Expresión Génica , Retículo Endoplásmico/metabolismo
3.
J Biol Chem ; 297(4): 101174, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34499925

RESUMEN

Mitochondrial Ca2+ uptake tailors the strength of stimulation of plasma membrane phospholipase C-coupled receptors to that of cellular bioenergetics. However, how Ca2+ uptake by the mitochondrial Ca2+ uniporter (MCU) shapes receptor-evoked interorganellar Ca2+ signaling is unknown. Here, we used CRISPR/Cas9 gene knockout, subcellular Ca2+ imaging, and mathematical modeling to show that MCU is a universal regulator of intracellular Ca2+ signaling across mammalian cell types. MCU activity sustains cytosolic Ca2+ signaling by preventing Ca2+-dependent inactivation of store-operated Ca2+ release-activated Ca2+ channels and by inhibiting Ca2+ extrusion. Paradoxically, MCU knockout (MCU-KO) enhanced cytosolic Ca2+ responses to store depletion. Physiological agonist stimulation in MCU-KO cells led to enhanced frequency of cytosolic Ca2+ oscillations, endoplasmic reticulum Ca2+ refilling, nuclear translocation of nuclear factor for activated T cells transcription factors, and cell proliferation, without altering inositol-1,4,5-trisphosphate receptor activity. Our data show that MCU has dual counterbalancing functions at the cytosol-mitochondria interface, whereby the cell-specific MCU-dependent cytosolic Ca2+ clearance and buffering capacity of mitochondria reciprocally regulate interorganellar Ca2+ transfer and nuclear factor for activated T cells nuclear translocation during receptor-evoked signaling. These findings highlight the critical dual function of the MCU not only in the acute Ca2+ buffering by mitochondria but also in shaping endoplasmic reticulum and cytosolic Ca2+ signals that regulate cellular transcription and function.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio , Calcio/metabolismo , Citosol/metabolismo , Mitocondrias/metabolismo , Factores de Transcripción NFATC/metabolismo , Sistemas CRISPR-Cas , Canales de Calcio/genética , Retículo Endoplásmico , Técnicas de Inactivación de Genes , Células HCT116 , Células HEK293 , Humanos , Células Jurkat , Activación de Linfocitos , Factores de Transcripción NFATC/genética , Linfocitos T/metabolismo
4.
Semin Cell Dev Biol ; 94: 11-19, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30659886

RESUMEN

About 30 years after their first observation, Ca2+ oscillations are now recognised as a universal mechanism of signal transduction. These oscillations are driven by periodic cycles of release and uptake of Ca2+ between the cytoplasm and the endoplasmic reticulum. Their frequency often increases with the level of stimulation, which can be decoded by some molecules. However, it is becoming increasingly evident that the widespread core oscillatory mechanism is modulated in many ways, depending on the cell type and on the physiological conditions. Interplay with inositol 1,4,5-trisphosphate metabolism and with other Ca2+ stores as the extracellular medium or mitochondria can much affect the properties of these oscillations. In many cases, these finely tuned characteristics of Ca2+ oscillations impact the physiological response that is triggered by the signal. Moreover, oscillations are intrinsically irregular. This randomness can also be exploited by the cell. In this review, we discuss evidences of these additional manifestations of the versatility of Ca2+ signalling.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Animales , Humanos
5.
EMBO J ; 36(17): 2567-2580, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28701483

RESUMEN

The role of second messengers in the diversion of cellular processes by pathogens remains poorly studied despite their importance. Among these, Ca2+ virtually regulates all known cell processes, including cytoskeletal reorganization, inflammation, or cell death pathways. Under physiological conditions, cytosolic Ca2+ increases are transient and oscillatory, defining the so-called Ca2+ code that links cell responses to specific Ca2+ oscillatory patterns. During cell invasion, Shigella induces atypical local and global Ca2+ signals. Here, we show that by hydrolyzing phosphatidylinositol-(4,5)bisphosphate, the Shigella type III effector IpgD dampens inositol-(1,4,5)trisphosphate (InsP3) levels. By modifying InsP3 dynamics and diffusion, IpgD favors the elicitation of long-lasting local Ca2+ signals at Shigella invasion sites and converts Shigella-induced global oscillatory responses into erratic responses with atypical dynamics and amplitude. Furthermore, IpgD eventually inhibits InsP3-dependent responses during prolonged infection kinetics. IpgD thus acts as a pathogen regulator of the Ca2+ code implicated in a versatility of cell functions. Consistent with this function, IpgD prevents the Ca2+-dependent activation of calpain, thereby preserving the integrity of cell adhesion structures during the early stages of infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Calcio/metabolismo , Disentería Bacilar/metabolismo , Interacciones Huésped-Patógeno , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Shigella flexneri/fisiología , Calpaína/metabolismo , Adhesión Celular , Células HeLa , Humanos , Transducción de Señal
6.
J Theor Biol ; 463: 56-66, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30543809

RESUMEN

Early mammalian embryo is a paradigm of dynamic, self-organised process. It involves gene expression, cell division and intercellular signalling. How these processes interact to ensure reproducible development is being often investigated by modelling, which allows to dissect the mechanisms controlling cell fate decisions. In this work, we present two models based on ordinary differential equations describing the first and second specification processes in the mouse embryo. Together, they describe the cell fate decisions leading to the first three cell lineages which form the blastocyst 4.5 days after fertilisation: the trophectoderm, the epiblast and the primitive endoderm. Both specifications rely on multistability, and signalling allows the selection of the appropriate steady-state. In addition to the gene regulatory network, the first specification process is indeed controlled by the Hippo pathway, which is itself controlled by cell polarity and cell-to-cell contacts. This leads to a spatially organised arrangement of cells. The second specification process is controlled by Fgf signalling and leads to a salt and pepper distribution of the two cell types. We discuss the respective mechanisms and their physiological implications.


Asunto(s)
Redes Reguladoras de Genes/fisiología , Mamíferos/crecimiento & desarrollo , Modelos Biológicos , Animales , Adhesión Celular , Linaje de la Célula/fisiología , Polaridad Celular , Embrión de Mamíferos , Desarrollo Embrionario/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Vía de Señalización Hippo , Mamíferos/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología
7.
Int J Mol Sci ; 21(1)2019 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-31892239

RESUMEN

NMDA receptors (NMDA-R) typically contribute to excitatory synaptic transmission in the central nervous system. While calcium influx through NMDA-R plays a critical role in synaptic plasticity, experimental evidence indicates that NMDAR-mediated calcium influx also modifies neuronal excitability through the activation of calcium-activated potassium channels. This mechanism has not yet been studied theoretically. Our theoretical model provides a simple description of neuronal electrical activity that takes into account the tonic activity of extrasynaptic NMDA receptors and a cytosolic calcium compartment. We show that calcium influx mediated by the tonic activity of NMDA-R can be coupled directly to the activation of calcium-activated potassium channels, resulting in an overall inhibitory effect on neuronal excitability. Furthermore, the presence of tonic NMDA-R activity promotes bistability in electrical activity by dramatically increasing the stimulus interval where both a stable steady state and repetitive firing can coexist. These results could provide an intrinsic mechanism for the constitution of memory traces in neuronal circuits. They also shed light on the way by which ß -amyloids can alter neuronal activity when interfering with NMDA-R in Alzheimer's disease and cerebral ischemia.


Asunto(s)
Calcio/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Isquemia Encefálica/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Potenciales de la Membrana/fisiología , Memoria/fisiología , Modelos Animales , Plasticidad Neuronal/fisiología , Canales de Potasio Calcio-Activados/metabolismo , Sinapsis/metabolismo
8.
Development ; 141(19): 3637-48, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25209243

RESUMEN

During blastocyst formation, inner cell mass (ICM) cells differentiate into either epiblast (Epi) or primitive endoderm (PrE) cells, labeled by Nanog and Gata6, respectively, and organized in a salt-and-pepper pattern. Previous work in the mouse has shown that, in absence of Nanog, all ICM cells adopt a PrE identity. Moreover, the activation or the blockade of the Fgf/RTK pathway biases cell fate specification towards either PrE or Epi, respectively. We show that, in absence of Gata6, all ICM cells adopt an Epi identity. Furthermore, the analysis of Gata6(+/-) embryos reveals a dose-sensitive phenotype, with fewer PrE-specified cells. These results and previous findings have enabled the development of a mathematical model for the dynamics of the regulatory network that controls ICM differentiation into Epi or PrE cells. The model describes the temporal dynamics of Erk signaling and of the concentrations of Nanog, Gata6, secreted Fgf4 and Fgf receptor 2. The model is able to recapitulate most of the cell behaviors observed in different experimental conditions and provides a unifying mechanism for the dynamics of these developmental transitions. The mechanism relies on the co-existence between three stable steady states (tristability), which correspond to ICM, Epi and PrE cells, respectively. Altogether, modeling and experimental results uncover novel features of ICM cell fate specification such as the role of the initial induction of a subset of cells into Epi in the initiation of the salt-and-pepper pattern, or the precocious Epi specification in Gata6(+/-) embryos.


Asunto(s)
Masa Celular Interna del Blastocisto/citología , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Factor de Transcripción GATA6/metabolismo , Redes Reguladoras de Genes/fisiología , Modelos Biológicos , Transducción de Señal/fisiología , Animales , Endodermo/citología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Estratos Germinativos/citología , Proteínas de Homeodominio/metabolismo , Hibridación Fluorescente in Situ , Indoles , Ratones , Microscopía Confocal , Proteína Homeótica Nanog , Transducción de Señal/genética , Estadísticas no Paramétricas
9.
Biophys J ; 110(3): 710-722, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26840735

RESUMEN

During development, interactions between transcription factors control the specification of different cell fates. The regulatory networks of genetic interactions often exhibit multiple stable steady states; such multistability provides a common dynamical basis for differentiation. During early murine embryogenesis, cells from the inner cell mass (ICM) can be specified in epiblast (Epi) or primitive endoderm (PrE). Besides the intracellular gene regulatory network, specification is also controlled by intercellular interactions involving Erk signaling through extracellular Fgf4. We previously proposed a model that describes the gene regulatory network and its interaction with Erk signaling in ICM cells. The model displays tristability in a range of Fgf4 concentrations and accounts for the self-organized specification process observed in vivo. Here, we further investigate the origin of tristability in the model and analyze in more detail the specification process by resorting to a simplified two-cell model. We also carry out simulations of a population of 25 cells under various experimental conditions to compare their outcome with that of mutant embryos or of embryos submitted to exogenous treatments that interfere with Fgf signaling. The results are analyzed by means of bifurcation diagrams. Finally, the model predicts that heterogeneities in extracellular Fgf4 concentration play a primary role in the spatial arrangement of the Epi/PrE cells in a salt-and-pepper pattern. If, instead of heterogeneities in extracellular Fgf4 concentration, internal fluctuations in the levels of expression of the transcription factors are considered as a source of randomness, simulations predict the occurrence of unrealistic switches between the Epi and the PrE cell fates, as well as the evolution of some cells toward one of these states without passing through the previous ICM state, in contrast to what is observed in vivo.


Asunto(s)
Blastocisto/citología , Diferenciación Celular , Modelos Teóricos , Animales , Factor 4 de Crecimiento de Fibroblastos/metabolismo , Estratos Germinativos/citología , Sistema de Señalización de MAP Quinasas , Ratones
10.
Cochrane Database Syst Rev ; 1: CD004250, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25629215

RESUMEN

BACKGROUND: Neck pain is common, disabling and costly. Exercise is one treatment approach. OBJECTIVES: To assess the effectiveness of exercises to improve pain, disability, function, patient satisfaction, quality of life and global perceived effect in adults with neck pain. SEARCH METHODS: We searched MEDLINE, MANTIS, ClinicalTrials.gov and three other computerized databases up to between January and May 2014 plus additional sources (reference checking, citation searching, contact with authors). SELECTION CRITERIA: We included randomized controlled trials (RCTs) comparing single therapeutic exercise with a control for adults suffering from neck pain with or without cervicogenic headache or radiculopathy. DATA COLLECTION AND ANALYSIS: Two review authors independently conducted trial selection, data extraction, 'Risk of bias' assessment and clinical relevance. The quality of the evidence was assessed using GRADE. Meta-analyses were performed for relative risk and standardized mean differences (SMD) with 95% confidence intervals (CIs) after judging clinical and statistical heterogeneity. MAIN RESULTS: Twenty-seven trials (2485 analyzed /3005 randomized participants) met our inclusion criteria.For acute neck pain only, no evidence was found.For chronic neck pain, moderate quality evidence supports 1) cervico-scapulothoracic and upper extremity strength training to improve pain of a moderate to large amount immediately post treatment [pooled SMD (SMDp) -0.71 (95% CI: -1.33 to -0.10)] and at short-term follow-up; 2) scapulothoracic and upper extremity endurance training for slight beneficial effect on pain at immediate post treatment and short-term follow-up; 3) combined cervical, shoulder and scapulothoracic strengthening and stretching exercises varied from a small to large magnitude of beneficial effect on pain at immediate post treatment [SMDp -0.33 (95% CI: -0.55 to -0.10)] and up to long-term follow-up and a medium magnitude of effect improving function at both immediate post treatment and at short-term follow-up [SMDp -0.45 (95%CI: -0.72 to -0.18)]; 4) cervico-scapulothoracic strengthening/stabilization exercises to improve pain and function at intermediate term [SMDp -14.90 (95% CI:-22.40 to -7.39)]; 5) Mindfulness exercises (Qigong) minimally improved function but not global perceived effect at short term. Low evidence suggests 1) breathing exercises; 2) general fitness training; 3) stretching alone; and 4) feedback exercises combined with pattern synchronization may not change pain or function at immediate post treatment to short-term follow-up. Very low evidence suggests neuromuscular eye-neck co-ordination/proprioceptive exercises may improve pain and function at short-term follow-up.For chronic cervicogenic headache, moderate quality evidence supports static-dynamic cervico-scapulothoracic strengthening/endurance exercises including pressure biofeedback immediate post treatment and probably improves pain, function and global perceived effect at long-term follow-up. Low grade evidence supports sustained natural apophyseal glides (SNAG) exercises.For acute radiculopathy, low quality evidence suggests a small benefit for pain reduction at immediate post treatment with cervical stretch/strengthening/stabilization exercises. AUTHORS' CONCLUSIONS: No high quality evidence was found, indicating that there is still uncertainty about the effectiveness of exercise for neck pain. Using specific strengthening exercises as a part of routine practice for chronic neck pain, cervicogenic headache and radiculopathy may be beneficial. Research showed the use of strengthening and endurance exercises for the cervico-scapulothoracic and shoulder may be beneficial in reducing pain and improving function. However, when only stretching exercises were used no beneficial effects may be expected. Future research should explore optimal dosage.


Asunto(s)
Manipulación Quiropráctica/métodos , Dolor de Cuello/terapia , Modalidades de Fisioterapia , Radiculopatía/terapia , Dolor Agudo/terapia , Adulto , Dolor Crónico/terapia , Femenino , Cefalea/etiología , Cefalea/terapia , Humanos , Masculino , Cuello , Dolor de Cuello/etiología , Manejo del Dolor/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto
11.
Biosystems ; 237: 105138, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340977

RESUMEN

Pancreatic ß-cells are equipped with the molecular machinery allowing them to respond to high glucose levels in the form of electrical activity and Ca2+ oscillations. These oscillations drive insulin secretion. Two key ionic mechanisms involved in this response are the Store-Operated Current and the current through ATP-dependent K+ channels. Both currents have been shown to be regulated by the protein STIM1, but this dual regulation by STIM1 has not been studied before. In this paper, we use mathematical modelling to gain insight into the role of STIM1 in the ß-cell response. We extended a previous ß-cell model to include the dynamics of STIM1 and described the dependence of the ATP-dependent K+ current on STIM1. Our simulations suggest that the total concentration of STIM1 modifies the bursting frequency, the burst duration and the intracellular Ca2+ levels. These results are in good agreement with experimental reports, and the contribution of the studied currents to electrical activity and Ca2+ dynamics is discussed. The model predicts that in the absence of STIM1 the excitability of the plasma membrane increases and that the glucose threshold for electrical activity is shifted to lower concentrations. These computational predictions may be related to impaired insulin secretion under conditions of reduced STIM1 in the diabetic state.


Asunto(s)
Células Secretoras de Insulina , Molécula de Interacción Estromal 1 , Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Señalización del Calcio , Membrana Celular/metabolismo , Glucosa/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Humanos
12.
PNAS Nexus ; 3(6): pgae229, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38933930

RESUMEN

The unfolded protein response (UPR) is a widespread signal transduction pathway triggered by endoplasmic reticulum (ER) stress. Because calcium (Ca2+) is a key factor in the maintenance of ER homeostasis, massive Ca2+ depletion of the ER is a potent inducer of ER stress. Although moderate changes in ER Ca2+ drive the ubiquitous Ca2+ signaling pathways, a possible incremental relationship between UPR activation and Ca2+ changes has yet to be described. Here, we determine the sensitivity and time-dependency of activation of the three ER stress sensors, inositol-requiring protein 1 alpha (IRE1α), protein kinase R-like ER kinase (PERK), and activating transcription factor 6 alpha (ATF6α) in response to controlled changes in the concentration of ER Ca2+ in human cultured cells. Combining Ca2+ imaging, fluorescence recovery after photobleaching experiments, biochemical analyses, and mathematical modeling, we uncover a nonlinear rate of activation of the IRE1α branch of UPR, as compared to the PERK and ATF6α branches that become activated gradually with time and are sensitive to more important ER Ca2+ depletions. However, the three arms are all activated within a 1 h timescale. The model predicted the deactivation of PERK and IRE1α upon refilling the ER with Ca2+. Accordingly, we showed that ER Ca2+ replenishment leads to the complete reversion of IRE1α and PERK phosphorylation in less than 15 min, thus revealing the highly plastic character of the activation of the upstream UPR sensors. In conclusion, our results reveal a dynamic and dose-sensitive Ca2+-dependent activation/deactivation cycle of UPR induction, which could tightly control cell fate upon acute and/or chronic stress.

13.
Biophys J ; 105(5): 1268-75, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-24010670

RESUMEN

Hint2, one of the five members of the superfamily of the histidine triad AMP-lysine hydrolase proteins, is expressed in mitochondria of various cell types. In human adrenocarcinoma cells, Hint2 modulates Ca(2+) handling by mitochondria. As Hint2 is highly expressed in hepatocytes, we investigated if this protein affects Ca(2+) dynamics in this cell type. We found that in hepatocytes isolated from Hint2(-/-) mice, the frequency of Ca(2+) oscillations induced by 1 µM noradrenaline was 150% higher than in the wild-type. Using spectrophotometry, we analyzed the rates of Ca(2+) pumping in suspensions of mitochondria prepared from hepatocytes of either wild-type or Hint2(-/-) mice; we found that Hint2 accelerates Ca(2+) pumping into mitochondria. We then resorted to computational modeling to elucidate the possible molecular target of Hint2 that could explain both observations. On the basis of a detailed model for mitochondrial metabolism proposed in another study, we identified the respiratory chain as the most probable target of Hint2. We then used the model to predict that the absence of Hint2 leads to a premature opening of the mitochondrial permeability transition pore in response to repetitive additions of Ca(2+) in suspensions of mitochondria. This prediction was then confirmed experimentally.


Asunto(s)
Calcio/metabolismo , Hidrolasas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Hidrolasas/deficiencia , Potencial de la Membrana Mitocondrial , Ratones , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Proteínas Mitocondriales/deficiencia , Modelos Biológicos , Conformación Proteica
14.
J Biol Chem ; 287(15): 12250-66, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22351781

RESUMEN

Many cellular functions are driven by changes in the intracellular Ca(2+) concentration ([Ca(2+)](i)) that are highly organized in time and space. Ca(2+) oscillations are particularly important in this respect and are based on positive and negative [Ca(2+)](i) feedback on inositol 1,4,5-trisphosphate receptors (InsP(3)Rs). Connexin hemichannels are Ca(2+)-permeable plasma membrane channels that are also controlled by [Ca(2+)](i). We aimed to investigate how hemichannels may contribute to Ca(2+) oscillations. Madin-Darby canine kidney cells expressing connexin-32 (Cx32) and Cx43 were exposed to bradykinin (BK) or ATP to induce Ca(2+) oscillations. BK-induced oscillations were rapidly (minutes) and reversibly inhibited by the connexin-mimetic peptides (32)Gap27/(43)Gap26, whereas ATP-induced oscillations were unaffected. Furthermore, these peptides inhibited the BK-triggered release of calcein, a hemichannel-permeable dye. BK-induced oscillations, but not those induced by ATP, were dependent on extracellular Ca(2+). Alleviating the negative feedback of [Ca(2+)](i) on InsP(3)Rs using cytochrome c inhibited BK- and ATP-induced oscillations. Cx32 and Cx43 hemichannels are activated by <500 nm [Ca(2+)](i) but inhibited by higher concentrations and CT9 peptide (last 9 amino acids of the Cx43 C terminus) removes this high [Ca(2+)](i) inhibition. Unlike interfering with the bell-shaped dependence of InsP(3)Rs to [Ca(2+)](i), CT9 peptide prevented BK-induced oscillations but not those triggered by ATP. Collectively, these data indicate that connexin hemichannels contribute to BK-induced oscillations by allowing Ca(2+) entry during the rising phase of the Ca(2+) spikes and by providing an OFF mechanism during the falling phase of the spikes. Hemichannels were not sufficient to ignite oscillations by themselves; however, their contribution was crucial as hemichannel inhibition stopped the oscillations.


Asunto(s)
Señalización del Calcio , Conexina 43/metabolismo , Citoplasma/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Animales , Bradiquinina/farmacología , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/metabolismo , Carbenoxolona/farmacología , Línea Celular , Conexina 43/genética , Conexinas/metabolismo , Citocromos c/metabolismo , Citocromos c/fisiología , Perros , Fluoresceínas/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Oligopéptidos/farmacología , Péptidos/farmacología , Interferencia de ARN , Ratas , Proteínas Recombinantes/metabolismo , Proteína beta1 de Unión Comunicante
15.
J Theor Biol ; 331: 12-8, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23614875

RESUMEN

Alzheimer's disease is a progressive neurodegenerative disorder affecting millions of people. It is characterized by the slow deposition of cerebral amyloid-ß peptides in the brain and by dysregulations in neuronal Ca(2+) homeostasis. Numerous experimental studies have revealed the existence of a feed-forward loop wherein amyloids-ß disturb neuronal Ca(2+) levels, which in turn affect the production of amyloids. Here, we formalize this positive loop in a minimal, qualitative model and show that it exhibits bistability. Thus, a stable steady state characterized by low levels of Ca(2+) and amyloids, corresponding to a healthy situation, coexists with another 'pathological state' where the levels of both compounds are high. The onset of the disease corresponds to the switch from the lower steady state to the higher one induced by a large-enough perturbation in either the metabolism of amyloids or the homeostasis of intracellular Ca(2+). Numerical simulations of the model reproduce a variety of experimental observations about the disease, as its irreversible character, the threshold-like transition to a severe pathology after the slow accumulation of symptoms, the effect of presenilins, the so-called 'prion-like' autocatalytic behaviour of amyloids and the inherent random character of the apparition of the disease that is well known for the sporadic form. The model thus provides a conceptual framework that could be useful when developing therapeutic protocols to slow down the progression of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Calcio/metabolismo , Algoritmos , Enfermedad de Alzheimer/patología , Encéfalo/patología , Simulación por Computador , Progresión de la Enfermedad , Homeostasis , Humanos , Cinética , Modelos Neurológicos , Neuronas/metabolismo , Neuronas/patología
16.
Sci Rep ; 13(1): 2922, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36808161

RESUMEN

Inositol 1,4,5-trisphosphate (IP3) plays a key role in calcium signaling. After stimulation, it diffuses from the plasma membrane where it is produced to the endoplasmic reticulum where its receptors are localized. Based on in vitro measurements, IP3 was long thought to be a global messenger characterized by a diffusion coefficient of ~ 280 µm2s-1. However, in vivo observations revealed that this value does not match with the timing of localized Ca2+ increases induced by the confined release of a non-metabolizable IP3 analog. A theoretical analysis of these data concluded that in intact cells diffusion of IP3 is strongly hindered, leading to a 30-fold reduction of the diffusion coefficient. Here, we performed a new computational analysis of the same observations using a stochastic model of Ca2+ puffs. Our simulations concluded that the value of the effective IP3 diffusion coefficient is close to 100 µm2s-1. Such moderate reduction with respect to in vitro estimations quantitatively agrees with a buffering effect by non-fully bound inactive IP3 receptors. The model also reveals that IP3 spreading is not much affected by the endoplasmic reticulum, which represents an obstacle to the free displacement of molecules, but can be significantly increased in cells displaying elongated, 1-dimensional like geometries.


Asunto(s)
Señalización del Calcio , Inositol 1,4,5-Trifosfato , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Retículo Endoplásmico/metabolismo , Membrana Celular/metabolismo , Calcio/metabolismo
17.
Front Immunol ; 14: 1235737, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37860008

RESUMEN

Cellular Ca2+ signaling is highly organized in time and space. Locally restricted and short-lived regions of Ca2+ increase, called Ca2+ microdomains, constitute building blocks that are differentially arranged to create cellular Ca2+ signatures controlling physiological responses. Here, we focus on Ca2+ microdomains occurring in restricted cytosolic spaces between the plasma membrane and the endoplasmic reticulum, called endoplasmic reticulum-plasma membrane junctions. In T cells, these microdomains have been finely characterized. Enough quantitative data are thus available to develop detailed computational models of junctional Ca2+ dynamics. Simulations are able to predict the characteristics of Ca2+ increases at the level of single channels and in junctions of different spatial configurations, in response to various signaling molecules. Thanks to the synergy between experimental observations and computational modeling, a unified description of the molecular mechanisms that create Ca2+ microdomains in the first seconds of T cell stimulation is emerging.


Asunto(s)
Canales de Calcio , Linfocitos T , Canales de Calcio/metabolismo , Linfocitos T/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Simulación por Computador
18.
Sci Signal ; 16(790): eabn9405, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37339181

RESUMEN

During an immune response, T cells migrate from blood vessel walls into inflamed tissues by migrating across the endothelium and through extracellular matrix (ECM). Integrins facilitate T cell binding to endothelial cells and ECM proteins. Here, we report that Ca2+ microdomains observed in the absence of T cell receptor (TCR)/CD3 stimulation are initial signaling events triggered by adhesion to ECM proteins that increase the sensitivity of primary murine T cells to activation. Adhesion to the ECM proteins collagen IV and laminin-1 increased the number of Ca2+ microdomains in a manner dependent on the kinase FAK, phospholipase C (PLC), and all three inositol 1,4,5-trisphosphate receptor (IP3R) subtypes and promoted the nuclear translocation of the transcription factor NFAT-1. Mathematical modeling predicted that the formation of adhesion-dependent Ca2+ microdomains required the concerted activity of two to six IP3Rs and ORAI1 channels to achieve the increase in the Ca2+ concentration in the ER-plasma membrane junction that was observed experimentally and that required SOCE. Further, adhesion-dependent Ca2+ microdomains were important for the magnitude of the TCR-induced activation of T cells on collagen IV as assessed by the global Ca2+ response and NFAT-1 nuclear translocation. Thus, adhesion to collagen IV and laminin-1 sensitizes T cells through a mechanism involving the formation of Ca2+ microdomains, and blocking this low-level sensitization decreases T cell activation upon TCR engagement.


Asunto(s)
Células Endoteliales , Proteínas de la Matriz Extracelular , Ratones , Animales , Proteínas de la Matriz Extracelular/metabolismo , Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Colágeno/metabolismo
19.
Cells ; 11(4)2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35203266

RESUMEN

Alzheimer's disease is characterized by a marked dysregulation of intracellular Ca2+ homeostasis. In particular, toxic ß-amyloids (Aß) perturb the activities of numerous Ca2+ transporters or channels. Because of the tight coupling between Ca2+ dynamics and the membrane electrical activity, such perturbations are also expected to affect neuronal excitability. We used mathematical modeling to systematically investigate the effects of changing the activities of the various targets of Aß peptides reported in the literature on calcium dynamics and neuronal excitability. We found that the evolution of Ca2+ concentration just below the plasma membrane is regulated by the exchanges with the extracellular medium, and is practically independent from the Ca2+ exchanges with the endoplasmic reticulum. Thus, disruptions of Ca2+ homeostasis interfering with signaling do not affect the electrical properties of the neurons at the single cell level. In contrast, the model predicts that by affecting the activities of L-type Ca2+ channels or Ca2+-activated K+ channels, Aß peptides promote neuronal hyperexcitability. On the contrary, they induce hypo-excitability when acting on the plasma membrane Ca2+ ATPases. Finally, the presence of pores of amyloids in the plasma membrane can induce hypo- or hyperexcitability, depending on the conditions. These modeling conclusions should help with analyzing experimental observations in which Aß peptides interfere at several levels with Ca2+ signaling and neuronal activity.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Calcio/metabolismo , Homeostasis , Humanos , Neuronas/metabolismo
20.
Front Mol Biosci ; 9: 811145, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281279

RESUMEN

Ca2+ signalling plays an essential role in T cell activation, which is a key step to start an adaptive immune response. During the transition from a quiescent to a fully activated state, Ca2+ microdomains of reduced spatial and temporal extents develop in the junctions between the plasma membrane and the endoplasmic reticulum (ER). These microdomains rely on Ca2+ entry from the extracellular medium, via the ORAI1/STIM1/STIM2 system that mediates store operated Ca2+ entry Store operated calcium entry. The mechanism leading to local store depletion and subsequent Ca2+ entry depends on the activation state of the cells. The initial, smaller microdomains are triggered by D-myo-inositol 1,4,5-trisphosphate (IP3) signalling in response to T cell adhesion. T cell receptor (TCR)/CD3 stimulation then initiates nicotinic acid adenine dinucleotide phosphate signalling, which activates ryanodine receptors (RYR). We have recently developed a mathematical model to elucidate the spatiotemporal Ca2+ dynamics of the microdomains triggered by IP3 signalling in response to T cell adhesion (Gil et al., 2021). This reaction-diffusion model describes the evolution of the cytosolic and endoplasmic reticulum Ca2+ concentrations in a three-dimensional ER-PM junction and was solved using COMSOL Multiphysics. Modelling predicted that adhesion-dependent microdomains result from the concerted activity of IP3 receptors and pre-formed ORAI1-STIM2 complexes. In the present study, we extend this model to include the role of RYRs rapidly after TCR/CD3 stimulation. The involvement of STIM1, which has a lower KD for Ca2+ than STIM2, is also considered. Detailed 3D spatio-temporal simulations show that these Ca2+ microdomains rely on the concerted opening of ∼7 RYRs that are simultaneously active in response to the increase in NAADP induced by T cell stimulation. Opening of these RYRs provoke a local depletion of ER Ca2+ that triggers Ca2+ flux through the ORAI1 channels. Simulations predict that RYRs are most probably located around the junction and that the increase in junctional Ca2+ concentration results from the combination between diffusion of Ca2+ released through the RYRs and Ca2+ entry through ORAI1 in the junction. The computational model moreover provides a tool allowing to investigate how Ca2+ microdomains occur, extend and interact in various states of T cell activation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA