Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 50(17): 9838-9857, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36124662

RESUMEN

High mobility group (HMG) proteins are chromatin regulators with essential functions in development, cell differentiation and cell proliferation. The protein HMG20A is predicted by the AlphaFold2 software to contain three distinct structural elements, which we have functionally characterized: i) an amino-terminal, intrinsically disordered domain with transactivation activity; ii) an HMG box with higher binding affinity for double-stranded, four-way-junction DNA than for linear DNA; and iii) a long coiled-coil domain. Our proteomic study followed by a deletion analysis and structural modeling demonstrates that HMG20A forms a complex with the histone reader PHF14, via the establishment of a two-stranded alpha-helical coiled-coil structure. siRNA-mediated knockdown of either PHF14 or HMG20A in MDA-MB-231 cells causes similar defects in cell migration, invasion and homotypic cell-cell adhesion ability, but neither affects proliferation. Transcriptomic analyses demonstrate that PHF14 and HMG20A share a large subset of targets. We show that the PHF14-HMG20A complex modulates the Hippo pathway through a direct interaction with the TEAD1 transcription factor. PHF14 or HMG20A deficiency increases epithelial markers, including E-cadherin and the epithelial master regulator TP63 and impaired normal TGFß-trigged epithelial-to-mesenchymal transition. Taken together, these data indicate that PHF14 and HMG20A cooperate in regulating several pathways involved in epithelial-mesenchymal plasticity.


Asunto(s)
Proteínas del Grupo de Alta Movilidad/metabolismo , Histonas , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Cromatina , Vía de Señalización Hippo , Histonas/metabolismo , Humanos , Proteómica , ARN Interferente Pequeño , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta/genética
2.
Entropy (Basel) ; 26(2)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38392420

RESUMEN

Immunohistochemistry is a powerful technique that is widely used in biomedical research and clinics; it allows one to determine the expression levels of some proteins of interest in tissue samples using color intensity due to the expression of biomarkers with specific antibodies. As such, immunohistochemical images are complex and their features are difficult to quantify. Recently, we proposed a novel method, including a first separation stage based on non-negative matrix factorization (NMF), that achieved good results. However, this method was highly dependent on the parameters that control sparseness and non-negativity, as well as on algorithm initialization. Furthermore, the previously proposed method required a reference image as a starting point for the NMF algorithm. In the present work, we propose a new, simpler and more robust method for the automated, unsupervised scoring of immunohistochemical images based on bright field. Our work is focused on images from tumor tissues marked with blue (nuclei) and brown (protein of interest) stains. The new proposed method represents a simpler approach that, on the one hand, avoids the use of NMF in the separation stage and, on the other hand, circumvents the need for a control image. This new approach determines the subspace spanned by the two colors of interest using principal component analysis (PCA) with dimension reduction. This subspace is a two-dimensional space, allowing for color vector determination by considering the point density peaks. A new scoring stage is also developed in our method that, again, avoids reference images, making the procedure more robust and less dependent on parameters. Semi-quantitative image scoring experiments using five categories exhibit promising and consistent results when compared to manual scoring carried out by experts.

3.
J Am Soc Nephrol ; 33(1): 121-137, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34725108

RESUMEN

BACKGROUND: The reported association of mTOR-inhibitor (mTORi) treatment with a lower incidence of cytomegalovirus (CMV) infection in kidney transplant recipients (KTR) who are CMV seropositive (R+) remains unexplained. METHODS: The incidence of CMV infection and T-cell profile was compared between KTRs treated with mTORis and mycophenolic acid (MPA), and in vitro mTORi effects on T-cell phenotype and functions were analyzed. RESULTS: In KTRs who were R+ and treated with MPA, both αß and γδ T cells displayed a more dysfunctional phenotype (PD-1+, CD85j+) at day 0 of transplantation in the 16 KTRs with severe CMV infection, as compared with the 17 KTRs without or with spontaneously resolving CMV infection. In patients treated with mTORis (n=27), the proportion of PD-1+ and CD85j+ αß and γδ T cells decreased, when compared with patients treated with MPA (n=44), as did the frequency and severity of CMV infections. mTORi treatment also led to higher proportions of late-differentiated and cytotoxic γδ T cells and IFNγ-producing and cytotoxic αß T cells. In vitro, mTORis increased proliferation, viability, and CMV-induced IFNγ production of T cells and decreased PD-1 and CD85j expression in T cells, which shifted the T cells to a more efficient EOMESlow Hobithigh profile. In γδ T cells, the mTORi effect was related to increased TCR signaling. CONCLUSION: Severe CMV replication is associated with a dysfunctional T-cell profile and mTORis improve T-cell fitness along with better control of CMV. A dysfunctional T-cell phenotype could serve as a new biomarker to predict post-transplantation infection and to stratify patients who should benefit from mTORi treatment. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: Proportion of CMV Seropositive Kidney Transplant Recipients Who Will Develop a CMV Infection When Treated With an Immunosuppressive Regimen Including Everolimus and Reduced Dose of Cyclosporine Versus an Immunosuppressive Regimen With Mycophenolic Acid and Standard Dose of Cyclosporine A (EVERCMV), NCT02328963.


Asunto(s)
Infecciones por Citomegalovirus/prevención & control , Trasplante de Riñón/efectos adversos , Inhibidores mTOR/uso terapéutico , Subgrupos de Linfocitos T/efectos de los fármacos , Anciano , Antibacterianos/uso terapéutico , Antígenos CD/metabolismo , Técnicas de Cultivo de Célula , Infecciones por Citomegalovirus/epidemiología , Infecciones por Citomegalovirus/patología , Femenino , Humanos , Receptor Leucocitario Tipo Inmunoglobulina B1/metabolismo , Masculino , Persona de Mediana Edad , Ácido Micofenólico/uso terapéutico , Receptor de Muerte Celular Programada 1/metabolismo , Subgrupos de Linfocitos T/metabolismo
4.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35887177

RESUMEN

The surgically induced remission of liver disease represents a model to investigate the signalling processes that trigger the development of nonalcoholic steatohepatitis with the aim of identifying novel therapeutic targets. We recruited patients with severe obesity with or without nonalcoholic steatohepatitis and obtained liver and plasma samples before and after laparoscopic sleeve gastrectomy for immunoblotting, immunocytochemical, metabolomic, transcriptomic and epigenetic analyses. Functional studies were performed in HepG2 cells and primary hepatocytes. Surgery was associated with a decrease in the inflammatory response and revealed the role of mitogen-activated protein kinases. Nonalcoholic steatohepatitis was associated with an increased glutaminolysis-induced production of α-ketoglutarate and the hyperactivation of mammalian target of rapamycin complex 1. These changes were crucial for adenosine monophosphate-activated protein kinase/mammalian target of rapamycin-driven pathways that modulated hepatocyte survival by coordinating apoptosis and autophagy and affected methylation-related epigenomic remodelling enzymes. Hepatic transcriptome signatures and differentially methylated genomic regions distinguished patients with and without steatohepatitis. Our results suggest that the increased glutaminolysis-induced α-ketoglutarate production and the mammalian target of rapamycin complex 1 dysregulation play a crucial role in the inefficient adaptive responses leading to steatohepatitis in obesity.


Asunto(s)
Laparoscopía , Enfermedad del Hígado Graso no Alcohólico , Obesidad Mórbida , Gastrectomía/métodos , Humanos , Ácidos Cetoglutáricos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad Mórbida/cirugía , Serina-Treonina Quinasas TOR
5.
Entropy (Basel) ; 24(4)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35455209

RESUMEN

In many research laboratories, it is essential to determine the relative expression levels of some proteins of interest in tissue samples. The semi-quantitative scoring of a set of images consists of establishing a scale of scores ranging from zero or one to a maximum number set by the researcher and assigning a score to each image that should represent some predefined characteristic of the IHC staining, such as its intensity. However, manual scoring depends on the judgment of an observer and therefore exposes the assessment to a certain level of bias. In this work, we present a fully automatic and unsupervised method for comparative biomarker quantification in histopathological brightfield images. The method relies on a color separation method that discriminates between two chromogens expressed as brown and blue colors robustly, independent of color variation or biomarker expression level. For this purpose, we have adopted a two-stage stain separation approach in the optical density space. First, a preliminary separation is performed using a deconvolution method in which the color vectors of the stains are determined after an eigendecomposition of the data. Then, we adjust the separation using the non-negative matrix factorization method with beta divergences, initializing the algorithm with the matrices resulting from the previous step. After that, a feature vector of each image based on the intensity of the two chromogens is determined. Finally, the images are annotated using a systematically initialized k-means clustering algorithm with beta divergences. The method clearly defines the initial boundaries of the categories, although some flexibility is added. Experiments for the semi-quantitative scoring of images in five categories have been carried out by comparing the results with the scores of four expert researchers yielding accuracies that range between 76.60% and 94.58%. These results show that the proposed automatic scoring system, which is definable and reproducible, produces consistent results.

6.
J Hepatol ; 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-33961941

RESUMEN

BACKGROUND & AIMS: A holistic insight on the relationship between obesity and metabolic dysfunction-associated fatty liver disease is an unmet clinical need. Omics investigations can be used to investigate the multifaceted role of altered mitochondrial pathways to promote nonalcoholic steatohepatitis, a major risk factor for liver disease-associated death. There are no specific treatments but remission via surgery might offer an opportunity to examine the signaling processes that govern the complex spectrum of chronic liver diseases observed in extreme obesity. We aim to assess the emerging relationship between metabolism, methylation and liver disease. METHODS: We tailed the flow of information, before and after steatohepatitis remission, from biochemical, histological, and multi-omics analyses in liver biopsies from patients with extreme obesity and successful bariatric surgery. Functional studies were performed in HepG2 cells and primary hepatocytes. RESULTS: The reversal of hepatic mitochondrial dysfunction and the control of oxidative stress and inflammatory responses revealed the regulatory role of mitogen-activated protein kinases. The reversible metabolic rearrangements leading to steatohepatitis increased the glutaminolysis-induced production of α-ketoglutarate and the hyperactivation of mammalian target of rapamycin complex 1. These changes were crucial for the adenosine monophosphate-activated protein kinase/mammalian target of rapamycin-driven pathways that modulated hepatocyte survival by coordinating apoptosis and autophagy. The signaling activity of α-ketoglutarate and the associated metabolites also affected methylation-related epigenomic remodeling enzymes. Integrative analysis of hepatic transcriptome signatures and differentially methylated genomic regions distinguished patients with and without steatohepatitis. CONCLUSION: We provide evidence supporting the multifaceted potential of the increased glutaminolysis-induced α-ketoglutarate production and the mammalian target of rapamycin complex 1 dysregulation as a conceivable source of the inefficient adaptive responses leading to steatohepatitis. LAY SUMMARY: Steatohepatitis is a frequent and threatening complication of extreme obesity without specific treatment. Omics technologies can be used to identify therapeutic targets. We highlight increased glutaminolysis-induced α-ketoglutarate production as a potential source of signals promoting and exacerbating steatohepatitis.

7.
Gastric Cancer ; 24(1): 133-144, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32940810

RESUMEN

BACKGROUND: The main cause of gastric cancer is the infection by the bacterium Helicobacter pylori which induces a chronic inflammation and an epithelial-to-mesenchymal transition (EMT) leading to the emergence of cells with cancer stem cell (CSC) properties. However, the underlying mechanisms have not been fully characterized. Moreover, H. pylori modulates the host cell autophagic process, but a few studies have investigated the role of this process in tumoral transformation. The aim of this study was to determine whether H. pylori-induced autophagy has a role in CSC emergence. METHODS: Autophagic flux in response to H. pylori infection was characterized in AGS cell line expressing the tandem-tagged mCherry-GFP-LC3 protein and using a ratiometric flow cytometry analysis. Then, AGS and MKN45 cell lines were treated with bafilomycin or chloroquine, two pharmaceutical well-known inhibitors of autophagy, and different EMT and CSC characteristics were analyzed. RESULTS: First, a co-expression of the gastric CSC marker CD44 and the autophagic marker LC3 in mice and human stomach tissues infected with H. pylori was observed. Then, we demonstrated in vitro that H. pylori was able to activate the autophagy process with a reduced autophagic flux. Finally, infected cells were treated with autophagy inhibitors, which reduced (i) appearance of mesenchymal phenotypes and migration ability related to EMT and (ii) CD44 expression as well as tumorsphere formation capacities reflecting CSC properties. CONCLUSION: In conclusion, all these data show that H. pylori-induced autophagy is implicated in gastric CSC emergence and could represent an interesting therapeutic target.


Asunto(s)
Autofagia/fisiología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/fisiología , Células Madre Neoplásicas/microbiología , Neoplasias Gástricas/microbiología , Animales , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Infecciones por Helicobacter/complicaciones , Humanos , Receptores de Hialuranos/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Estómago/citología , Estómago/microbiología
8.
Mol Cell ; 47(3): 349-58, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22749528

RESUMEN

Amino acids control cell growth via activation of the highly conserved kinase TORC1. Glutamine is a particularly important amino acid in cell growth control and metabolism. However, the role of glutamine in TORC1 activation remains poorly defined. Glutamine is metabolized through glutaminolysis to produce α-ketoglutarate. We demonstrate that glutamine in combination with leucine activates mammalian TORC1 (mTORC1) by enhancing glutaminolysis and α-ketoglutarate production. Inhibition of glutaminolysis prevented GTP loading of RagB and lysosomal translocation and subsequent activation of mTORC1. Constitutively active Rag heterodimer activated mTORC1 in the absence of glutaminolysis. Conversely, enhanced glutaminolysis or a cell-permeable α-ketoglutarate analog stimulated lysosomal translocation and activation of mTORC1. Finally, cell growth and autophagy, two processes controlled by mTORC1, were regulated by glutaminolysis. Thus, mTORC1 senses and is activated by glutamine and leucine via glutaminolysis and α-ketoglutarate production upstream of Rag. This may provide an explanation for glutamine addiction in cancer cells.


Asunto(s)
Autofagia/fisiología , Glutamina/metabolismo , Ácidos Cetoglutáricos/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Animales , Guanosina Trifosfato/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisosomas/metabolismo , Ratones , Proteínas de Unión al GTP Monoméricas/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética
9.
Angew Chem Int Ed Engl ; 58(13): 4281-4285, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30706985

RESUMEN

The metabolic oligosaccharide engineering (MOE) strategy using unnatural sialic acids has recently enabled the visualization of the sialome in living systems. However, MOE only reports on global sialylation and dissected information regarding subsets of sialosides is missing. Described here is the synthesis and utilization of sialic acids modified with a sydnone reporter for the metabolic labeling of sialoconjugates. The positioning of the reporter on the sugar significantly altered its metabolic fate. Further in vitro enzymatic assays revealed that the 9-modified neuraminic acid is preferentially accepted by the sialyltransferase ST6Gal-I over ST3Gal-IV, leading to the favored incorporation of the reporter into linkage-specific α2,6-N-linked sialoproteins. This sydnone sugar presents the possibility of investigating the roles of specific sialosides.


Asunto(s)
Antígenos CD/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Oligosacáridos/metabolismo , Ingeniería de Proteínas , Sialoglicoproteínas/metabolismo , Sialiltransferasas/metabolismo , Sidnonas/química , Humanos , Ácido N-Acetilneuramínico/química , Especificidad por Sustrato
10.
EMBO Rep ; 13(2): 121-8, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22240970

RESUMEN

TOR is a conserved serine/threonine kinase that responds to nutrients, growth factors, the bioenergetic status of the cell and cellular stress to control growth, metabolism and ageing. A diverse group of small GTPases including Rheb, Rag, Rac1, RalA and Ryh1 play a variety of roles in the regulation of TOR. For example, while Rheb binds to and activates TOR directly, Rag and Rac1 regulate its localization and RalA activates it indirectly through the production of phosphatidic acid. Here, we review recent findings on the regulation of TOR by small GTPases.


Asunto(s)
Proteínas de Unión al GTP Monoméricas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Humanos , Modelos Biológicos , Transducción de Señal
11.
Mol Oncol ; 2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38105543

RESUMEN

Glioblastoma is the most common form of primary malignant brain tumor in adults and one of the most lethal human cancers, with high recurrence and therapy resistance. Glioblastoma cells display extensive genetic and cellular heterogeneity, which precludes a unique and common therapeutic approach. The standard of care in glioblastoma patients includes surgery followed by radiotherapy plus concomitant temozolomide. As in many other cancers, cell signaling is deeply affected due to mutations or alterations in the so-called molecular drivers. Moreover, glioblastoma cells undergo metabolic adaptations to meet the new demands in terms of energy and building blocks, with an increasing amount of evidence connecting metabolic transformation and cell signaling deregulation in this type of aggressive brain tumor. In this review, we summarize some of the most common alterations both in cell signaling and metabolism in glioblastoma, presenting an integrative discussion about how they contribute to therapy resistance. Furthermore, this review aims at providing a comprehensive overview of the state-of-the-art of therapeutic approaches and clinical trials exploiting signaling and metabolism in glioblastoma.

12.
Oncogene ; 42(43): 3169-3181, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37660182

RESUMEN

Tumour progression and therapy tolerance are highly regulated and complex processes largely dependent on the plasticity of cancer cells and their capacity to respond to stress. The higher plasticity of cancer cells highlights the need for identifying targetable molecular pathways that challenge cancer cell survival. Here, we show that N7-guanosine methylation (m7G) of tRNAs, mediated by METTL1, regulates survival to stress conditions in cancer cells. Mechanistically, we find that m7G in tRNAs protects them from stress-induced cleavage and processing into 5' tRNA fragments. Our analyses reveal that the loss of tRNA m7G methylation activates stress response pathways, sensitising cancer cells to stress. Furthermore, we find that the loss of METTL1 reduces tumour growth and increases cytotoxic stress in vivo. Our study uncovers the role of m7G methylation of tRNAs in stress responses and highlights the potential of targeting METTL1 to sensitise cancer cells to chemotherapy.

13.
Autophagy ; 18(11): 2749-2750, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35470752

RESUMEN

Cancer cells metabolize glutamine mostly through glutaminolysis, a metabolic pathway that activates MTORC1. The AMPK-MTORC1 signaling axis is a key regulator of cell growth and proliferation. Our recent investigation identified that the connection between glutamine and AMPK is not restricted to glutaminolysis. Rather, we demonstrated the crucial role of ASNS (asparagine synthetase (glutamine-hydrolyzing)) and the GABA shunt for the metabolic control of the AMPK-MTORC1 axis during glutamine sufficiency. Our results elucidated a metabolic network by which glutamine metabolism regulates the MTORC1-macroautophagy/autophagy pathway through two independent branches involving glutaminolysis and ASNS-GABA shunt.Abbreviations: αKG: alpha-ketoglutarate; AMPK: AMP-activated protein kinase; ASNS: asparagine synthetase (glutamine-hydrolyzing); GLUD/GDH: glutamate dehydrogenase; GLS: glutaminase; GOT1: glutamic-oxaloacetic transaminase 1; MTORC1: mechanistic target of rapamycin kinase complex 1; TCA: tricarboxylic acid.


Asunto(s)
Autofagia , Glutamina , Glutamina/metabolismo , Proteínas Quinasas Activadas por AMP , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ácido gamma-Aminobutírico
14.
Elife ; 112022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35904415

RESUMEN

The essential biometal manganese (Mn) serves as a cofactor for several enzymes that are crucial for the prevention of human diseases. Whether intracellular Mn levels may be sensed and modulate intracellular signaling events has so far remained largely unexplored. The highly conserved target of rapamycin complex 1 (TORC1, mTORC1 in mammals) protein kinase requires divalent metal cofactors such as magnesium (Mg2+) to phosphorylate effectors as part of a homeostatic process that coordinates cell growth and metabolism with nutrient and/or growth factor availability. Here, our genetic approaches reveal that TORC1 activity is stimulated in vivo by elevated cytoplasmic Mn levels, which can be induced by loss of the Golgi-resident Mn2+ transporter Pmr1 and which depend on the natural resistance-associated macrophage protein (NRAMP) metal ion transporters Smf1 and Smf2. Accordingly, genetic interventions that increase cytoplasmic Mn2+ levels antagonize the effects of rapamycin in triggering autophagy, mitophagy, and Rtg1-Rtg3-dependent mitochondrion-to-nucleus retrograde signaling. Surprisingly, our in vitro protein kinase assays uncovered that Mn2+ activates TORC1 substantially better than Mg2+, which is primarily due to its ability to lower the Km for ATP, thereby allowing more efficient ATP coordination in the catalytic cleft of TORC1. These findings, therefore, provide both a mechanism to explain our genetic observations in yeast and a rationale for how fluctuations in trace amounts of Mn can become physiologically relevant. Supporting this notion, TORC1 is also wired to feedback control mechanisms that impinge on Smf1 and Smf2. Finally, we also show that Mn2+-mediated control of TORC1 is evolutionarily conserved in mammals, which may prove relevant for our understanding of the role of Mn in human diseases.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Adenosina Trifosfato/metabolismo , Animales , Humanos , Mamíferos/metabolismo , Manganeso/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Nat Commun ; 12(1): 4814, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376668

RESUMEN

Glutamoptosis is the induction of apoptotic cell death as a consequence of the aberrant activation of glutaminolysis and mTORC1 signaling during nutritional imbalance in proliferating cells. The role of the bioenergetic sensor AMPK during glutamoptosis is not defined yet. Here, we show that AMPK reactivation blocks both the glutamine-dependent activation of mTORC1 and glutamoptosis in vitro and in vivo. We also show that glutamine is used for asparagine synthesis and the GABA shunt to produce ATP and to inhibit AMPK, independently of glutaminolysis. Overall, our results indicate that glutamine metabolism is connected with mTORC1 activation through two parallel pathways: an acute alpha-ketoglutarate-dependent pathway; and a secondary ATP/AMPK-dependent pathway. This dual metabolic connection between glutamine and mTORC1 must be considered for the future design of therapeutic strategies to prevent cell growth in diseases such as cancer.


Asunto(s)
Apoptosis/fisiología , Proliferación Celular/fisiología , Glutamina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Transducción de Señal/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Células HCT116 , Células HEK293 , Humanos , Masculino , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Sirolimus/análogos & derivados , Sirolimus/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
16.
Mol Oncol ; 15(5): 1412-1431, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33314742

RESUMEN

The cellular receptor Notch1 is a central regulator of T-cell development, and as a consequence, Notch1 pathway appears upregulated in > 65% of the cases of T-cell acute lymphoblastic leukemia (T-ALL). However, strategies targeting Notch1 signaling render only modest results in the clinic due to treatment resistance and severe side effects. While many investigations reported the different aspects of tumor cell growth and leukemia progression controlled by Notch1, less is known regarding the modifications of cellular metabolism induced by Notch1 upregulation in T-ALL. Previously, glutaminolysis inhibition has been proposed to synergize with anti-Notch therapies in T-ALL models. In this work, we report that Notch1 upregulation in T-ALL induced a change in the metabolism of the important amino acid glutamine, preventing glutamine synthesis through the downregulation of glutamine synthetase (GS). Downregulation of GS was responsible for glutamine addiction in Notch1-driven T-ALL both in vitro and in vivo. Our results also confirmed an increase in glutaminolysis mediated by Notch1. Increased glutaminolysis resulted in the activation of the mammalian target of rapamycin complex 1 (mTORC1) pathway, a central controller of cell growth. However, glutaminolysis did not play any role in Notch1-induced glutamine addiction. Finally, the combined treatment targeting mTORC1 and limiting glutamine availability had a synergistic effect to induce apoptosis and to prevent Notch1-driven leukemia progression. Our results placed glutamine limitation and mTORC1 inhibition as a potential therapy against Notch1-driven leukemia.


Asunto(s)
Glutamato-Amoníaco Ligasa/genética , Glutamina/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Animales , Línea Celular Tumoral , Regulación hacia Abajo/genética , Regulación Enzimológica de la Expresión Génica , Regulación Leucémica de la Expresión Génica , Glutamato-Amoníaco Ligasa/metabolismo , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transducción de Señal/genética
17.
JCI Insight ; 5(14)2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32516140

RESUMEN

Apelin is a well-established mediator of survival and mitogenic signaling through the apelin receptor (Aplnr) and has been implicated in various cancers; however, little is known regarding Elabela (ELA/APELA) signaling, also mediated by Aplnr, and its role and the role of the conversion of its precursor proELA into mature ELA in cancer are unknown. Here, we identified a function of mTORC1 signaling as an essential mediator of ELA that repressed kidney tumor cell growth, migration, and survival. Moreover, sunitinib and ELA showed a synergistic effect in repressing tumor growth and angiogenesis in mice. The use of site-directed mutagenesis and pharmacological experiments provided evidence that the alteration of the cleavage site of proELA by furin induced improved ELA antitumorigenic activity. Finally, a cohort of tumors and public data sets revealed that ELA was only repressed in the main human kidney cancer subtypes, namely clear cell, papillary, and chromophobe renal cell carcinoma. Aplnr was expressed by various kidney cells, whereas ELA was generally expressed by epithelial cells. Collectively, these results showed the tumor-suppressive role of mTORC1 signaling mediated by ELA and established the potential use of ELA or derivatives in kidney cancer treatment.


Asunto(s)
Receptores de Apelina/genética , Apelina/genética , Carcinoma de Células Renales/genética , Hormonas Peptídicas/genética , Animales , Apelina/metabolismo , Calcio/metabolismo , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/patología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Furina/farmacología , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Riñón/efectos de los fármacos , Riñón/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Transducción de Señal/efectos de los fármacos , Sunitinib/farmacología , Proteínas Supresoras de Tumor/genética
18.
Carcinogenesis ; 30(8): 1269-80, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19321800

RESUMEN

In 2000, Douglas Hanahan and Robert Weinberg published a review detailing the six hallmarks of cancer. These are six phenotypes that a tumour requires in order to become a fully fledged malignancy: persistent growth signals, evasion of apoptosis, insensitivity to anti-growth signals, unlimited replicative potential, angiogenesis and invasion and metastasis. However, it is becoming increasingly clear that these phenotypes do not portray the whole story and that other hallmarks are necessary: one of which is a shift in cellular metabolism. The tumour environment creates a unique collection of stresses to which cells must adapt in order to survive. This environment is formed by the uncontrolled proliferation of cells, which ignore the cues that would create normal tissue architecture. As a result, the cells forming the tumour are exposed to low oxygen and nutrient levels, as well as high levels of toxic cellular waste products, which is thought to propel cells towards a more transformed phenotype, resistant to cell death and pro-metastatic.


Asunto(s)
Metabolismo Energético/fisiología , Redes y Vías Metabólicas/fisiología , Neoplasias/metabolismo , Humanos
19.
Biochem Soc Trans ; 37(Pt 1): 291-4, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19143649

RESUMEN

Cellular response to oxygen depletion is mediated by HIF (hypoxia-inducible factor). HIF is a heterodimer consisting of a constitutively expressed subunit (HIFbeta) and an oxygen-regulated subunit (HIFalpha). HIFalpha stability is regulated by prolyl hydroxylation by PHD (prolyl hydroxylase domain-containing protein) family members. PHD activity depends on the availability of molecular oxygen, making PHDs the oxygen-sensing system in animal cells. However, PHDs have recently been shown to respond to stimuli other than oxygen, such as 2-oxoglutarate (alpha-ketoglutarate), succinate or fumarate, as illustrated by the pseudo-hypoxic response in succinate dehydrogenase- or fumarate dehydrogenase-deficient tumours. Moreover, HIFalpha is not the sole PHD effector, suggesting that PHDs have functions that extend beyond oxygen sensing. Currently, we are investigating the role of PHDs in the cellular response to amino acid deprivation, a process regulated by mTOR (mammalian target of rapamycin). The precise mechanism whereby amino acids are signalling to mTOR is not fully understood. Given that 2-oxoglutarate is a limiting co-substrate for PHD activity during normoxia and that 2-oxoglutarate levels depend on amino acid availability, it is possible that PHD activity depends not only on oxygen, but also on amino acid availability, suggesting a global metabolic sensor function for PHDs which could be signalling not only to HIF, but also to mTOR.


Asunto(s)
Células/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Animales , Hipoxia de la Célula , Humanos , Factor 1 Inducible por Hipoxia/metabolismo , Proteínas Quinasas/metabolismo , Serina-Treonina Quinasas TOR
20.
Cancer Res ; 78(18): 5384-5397, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30054335

RESUMEN

The mTOR is a central regulator of cell growth and is highly activated in cancer cells to allow rapid tumor growth. The use of mTOR inhibitors as anticancer therapy has been approved for some types of tumors, albeit with modest results. We recently reported the synthesis of ICSN3250, a halitulin analogue with enhanced cytotoxicity. We report here that ICSN3250 is a specific mTOR inhibitor that operates through a mechanism distinct from those described for previous mTOR inhibitors. ICSN3250 competed with and displaced phosphatidic acid from the FRB domain in mTOR, thus preventing mTOR activation and leading to cytotoxicity. Docking and molecular dynamics simulations evidenced not only the high conformational plasticity of the FRB domain, but also the specific interactions of both ICSN3250 and phosphatidic acid with the FRB domain in mTOR. Furthermore, ICSN3250 toxicity was shown to act specifically in cancer cells, as noncancer cells showed up to 100-fold less sensitivity to ICSN3250, in contrast to other mTOR inhibitors that did not show selectivity. Thus, our results define ICSN3250 as a new class of mTOR inhibitors that specifically targets cancer cells.Significance: ICSN3250 defines a new class of mTORC1 inhibitors that displaces phosphatidic acid at the FRB domain of mTOR, inducing cell death specifically in cancer cells but not in noncancer cells. Cancer Res; 78(18); 5384-97. ©2018 AACR.


Asunto(s)
Neoplasias/metabolismo , Ácidos Fosfatidicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Técnicas de Cocultivo , Fibroblastos/metabolismo , Células HCT116 , Compuestos Heterocíclicos de 4 o más Anillos/química , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Células K562 , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Inhibidores de Proteínas Quinasas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA