Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 22(3): e3002330, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38442096

RESUMEN

Cilia play critical roles in cell signal transduction and organ development. Defects in cilia function result in a variety of genetic disorders. Cep290 is an evolutionarily conserved ciliopathy protein that bridges the ciliary membrane and axoneme at the basal body (BB) and plays critical roles in the initiation of ciliogenesis and TZ assembly. How Cep290 is maintained at BB and whether axonemal and ciliary membrane localized cues converge to determine the localization of Cep290 remain unknown. Here, we report that the Cep131-Cep162 module near the axoneme and the Cby-Fam92 module close to the membrane synergistically control the BB localization of Cep290 and the subsequent initiation of ciliogenesis in Drosophila. Concurrent deletion of any protein of the Cep131-Cep162 module and of the Cby-Fam92 module leads to a complete loss of Cep290 from BB and blocks ciliogenesis at its initiation stage. Our results reveal that the first step of ciliogenesis strictly depends on cooperative and retroactive interactions between Cep131-Cep162, Cby-Fam92 and Cep290, which may contribute to the complex pathogenesis of Cep290-related ciliopathies.


Asunto(s)
Cuerpos Basales , Cognición , Animales , Señales (Psicología) , Axonema , Cilios/genética , Drosophila/genética
2.
Nucleic Acids Res ; 48(16): 9019-9036, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32725242

RESUMEN

Cilia assembly is under strict transcriptional control during animal development. In vertebrates, a hierarchy of transcription factors (TFs) are involved in controlling the specification, differentiation and function of multiciliated epithelia. RFX TFs play key functions in the control of ciliogenesis in animals. Whereas only one RFX factor regulates ciliogenesis in C. elegans, several distinct RFX factors have been implicated in this process in vertebrates. However, a clear understanding of the specific and redundant functions of different RFX factors in ciliated cells remains lacking. Using RNA-seq and ChIP-seq approaches we identified genes regulated directly and indirectly by RFX1, RFX2 and RFX3 in mouse ependymal cells. We show that these three TFs have both redundant and specific functions in ependymal cells. Whereas RFX1, RFX2 and RFX3 occupy many shared genomic loci, only RFX2 and RFX3 play a prominent and redundant function in the control of motile ciliogenesis in mice. Our results provide a valuable list of candidate ciliary genes. They also reveal stunning differences between compensatory processes operating in vivo and ex vivo.


Asunto(s)
Cilios/fisiología , Epéndimo/citología , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción del Factor Regulador X/fisiología , Factor Regulador X1/fisiología , Animales , Cilios/genética , Ratones , Ratones Endogámicos C57BL
3.
Soins Gerontol ; 27(154): 23-27, 2022.
Artículo en Francés | MEDLINE | ID: mdl-35393032

RESUMEN

Rectal cancer is a common disease of the elderly. Current treatment recommendations are established for young subjects in good general health condition, without taking into account the frailty, comorbidities and polymedications inherent in patients over 75 years old. For locally advanced lower and middle rectal cancers (T3, T4 or N+), these are based on variations of regimens including neoadjuvant chemoradiotherapy, surgery of the rectum with total removal of the mesorectum, and a possibility of adjuvant chemotherapy. This restrictive treatment presents a problem of compliance and is not without adverse effects. Treatment by short exclusive radiotherapy or chemoradiotherapy with close monitoring according to the Watch and Wait strategy can be proposed to fragile patients not eligible for surgery, even if there is a non-negligible risk of recurrence.


Asunto(s)
Neoplasias del Recto , Anciano , Quimioradioterapia , Humanos , Terapia Neoadyuvante , Recurrencia Local de Neoplasia , Neoplasias del Recto/radioterapia , Recto/cirugía , Resultado del Tratamiento
4.
Hum Mol Genet ; 28(6): 877-887, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30445565

RESUMEN

Acrocallosal syndrome (ACLS) is a rare genetic disorder characterized by agenesis or hypoplasia of corpus callosum (CC), polydactyly, craniofacial dysmorphism and severe intellectual deficiency. We previously identified KIF7, a key ciliary component of the Sonic hedgehog (SHH) pathway, as being a causative gene for this syndrome, thus including ACLS in the group of ciliopathies. In both humans and mice, KIF7 depletion leads to abnormal GLI3 processing and over-activation of SHH target genes. To understand the pathological mechanisms involved in CC defects in this syndrome, we took advantage of a previously described Kif7-/- mouse model to demonstrate that in addition to polydactyly and neural tube closure defects, these mice present CC agenesis with characteristic Probst bundles, thus recapitulating major ACLS features. We show that CC agenesis in these mice is associated with specific patterning defects of the cortical septum boundary leading to altered distribution of guidepost cells required to guide the callosal axons through the midline. Furthermore, by crossing Kif7-/- mice with Gli3Δ699 mice exclusively producing the repressive isoform of GLI3 (GLI3R), we demonstrate that decreased GLI3R signaling is fully responsible for the ACLS features in these mice, as all phenotypes are rescued by increasing GLI3R activity. Moreover, we show that increased FGF8 signaling is responsible in part for CC defects associated to KIF7 depletion, as modulating FGF8 signaling rescued CC formation anteriorly in Kif7-/- mice. Taken together our data demonstrate that ACLS features rely on defective GLI3R and FGF8 signaling.


Asunto(s)
Síndrome Acrocallosal/etiología , Síndrome Acrocallosal/metabolismo , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Cinesinas/genética , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal , Proteína Gli3 con Dedos de Zinc/metabolismo , Síndrome Acrocallosal/diagnóstico , Animales , Tipificación del Cuerpo/genética , Cuerpo Calloso/embriología , Cuerpo Calloso/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Genotipo , Cinesinas/metabolismo , Ratones , Ratones Noqueados , Neuroglía/metabolismo , Neuronas/metabolismo , Fenotipo
5.
Biochem Soc Trans ; 48(3): 1067-1075, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32491167

RESUMEN

Cilia play important signaling or motile functions in various organisms. In Human, cilia dysfunctions are responsible for a wide range of diseases, called ciliopathies. Cilia assembly is a tightly controlled process, which starts with the conversion of the centriole into a basal body, leading to the formation of the ciliary bud that protrudes inside a ciliary vesicle and/or ultimately at the cell surface. Ciliary bud formation is associated with the assembly of the transition zone (TZ), a complex architecture of proteins of the ciliary base which plays critical functions in gating proteins in and out of the ciliary compartment. Many proteins are involved in the assembly of the TZ, which shows structural and functional variations in different cell types or organisms. In this review, we discuss how a particular complex, composed of members of the DZIP1, CBY and FAM92 families of proteins, is required for the initial stages of cilia assembly leading to ciliary bud formation and how their functional hierarchy contributes to TZ assembly. Moreover, we summarize how evidences in Drosophila reveal functional differences of the DZIP1-CBY-FAM92 complex in the different ciliated tissues of this organism. Whereas it is essential for proper TZ assembly in the two types of ciliated tissues, it is involved in stable anchoring of basal bodies to the plasma membrane in male germ cells. Overall, the DZIP1-CBY-FAM92 complex reveals a molecular assembly pathway required for the initial stages of ciliary bud formation and that is conserved from Drosophila to Human.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Cilios/metabolismo , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Animales , Antígenos de Neoplasias/metabolismo , Cuerpos Basales/metabolismo , Proteínas de Transporte de Catión/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Proteínas del Citoesqueleto/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Humanos , Masculino , Meiosis , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Unión Proteica , Espermatocitos/metabolismo
6.
PLoS Genet ; 13(6): e1006803, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28617811

RESUMEN

Spermatogenesis is a dynamic process that is regulated by adhesive interactions between germ and Sertoli cells. Germ cells express the Junctional Adhesion Molecule-C (JAM-C, encoded by Jam3), which localizes to germ/Sertoli cell contacts. JAM-C is involved in germ cell polarity and acrosome formation. Using a proteomic approach, we demonstrated that JAM-C interacted with the Golgi reassembly stacking protein of 55 kDa (GRASP55, encoded by Gorasp2) in developing germ cells. Generation and study of Gorasp2-/- mice revealed that knock-out mice suffered from spermatogenesis defects. Acrosome formation and polarized localization of JAM-C in spermatids were altered in Gorasp2-/- mice. In addition, Golgi morphology of spermatocytes was disturbed in Gorasp2-/- mice. Crystal structures of GRASP55 in complex with JAM-C or JAM-B revealed that GRASP55 interacted via PDZ-mediated interactions with JAMs and induced a conformational change in GRASP55 with respect of its free conformation. An in silico pharmacophore approach identified a chemical compound called Graspin that inhibited PDZ-mediated interactions of GRASP55 with JAMs. Treatment of mice with Graspin hampered the polarized localization of JAM-C in spermatids, induced the premature release of spermatids and affected the Golgi morphology of meiotic spermatocytes.


Asunto(s)
Proteínas Portadoras/metabolismo , Moléculas de Adhesión Celular/metabolismo , Aparato de Golgi/metabolismo , Inmunoglobulinas/metabolismo , Proteínas de la Membrana/metabolismo , Espermatogénesis , Espermatogonias/metabolismo , Animales , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Células Cultivadas , Aparato de Golgi/ultraestructura , Péptidos y Proteínas de Señalización Intracelular , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Transporte de Proteínas , Espermatogonias/citología
7.
PLoS Genet ; 11(7): e1005368, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26162102

RESUMEN

Spermatogenesis consists broadly of three phases: proliferation of diploid germ cells, meiosis, and finally extensive differentiation of the haploid cells into effective delivery vehicles for the paternal genome. Despite detailed characterization of many haploid developmental steps leading to sperm, only fragmentary information exists on the control of gene expression underlying these processes. Here we report that the RFX2 transcription factor is a master regulator of genes required for the haploid phase. A targeted mutation of Rfx2 was created in mice. Rfx2-/- mice are perfectly viable but show complete male sterility. Spermatogenesis appears to progress unperturbed through meiosis. However, haploid cells undergo a complete arrest in spermatid development just prior to spermatid elongation. Arrested cells show altered Golgi apparatus organization, leading to a deficit in the generation of a spreading acrosomal cap from proacrosomal vesicles. Arrested cells ultimately merge to form giant multinucleated cells released to the epididymis. Spermatids also completely fail to form the flagellar axoneme. RNA-Seq analysis and ChIP-Seq analysis identified 139 genes directly controlled by RFX2 during spermiogenesis. Gene ontology analysis revealed that genes required for cilium function are specifically enriched in down- and upregulated genes showing that RFX2 allows precise temporal expression of ciliary genes. Several genes required for cell adhesion and cytoskeleton remodeling are also downregulated. Comparison of RFX2-regulated genes with those controlled by other major transcriptional regulators of spermiogenesis showed that each controls independent gene sets. Altogether, these observations show that RFX2 plays a major and specific function in spermiogenesis.


Asunto(s)
Proteínas de Unión al ADN/genética , Infertilidad Masculina/genética , Espermátides/citología , Espermatocitos/citología , Espermatogénesis/genética , Factores de Transcripción/genética , Animales , Apoptosis/genética , Adhesión Celular/genética , Cilios/genética , Cilios/fisiología , Modulador del Elemento de Respuesta al AMP Cíclico/genética , Citoesqueleto/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Transcripción del Factor Regulador X , Espermatogénesis/fisiología , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/genética , Transcripción Genética/genética
8.
Hum Mol Genet ; 24(9): 2578-93, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25631876

RESUMEN

Primary cilia are complex subcellular structures that play key roles during embryogenesis by controlling the cellular response to several signaling pathways. Defects in the function and/or structure of primary cilia underlie a large number of human syndromes collectively referred to as ciliopathies. Often, ciliopathies are associated with mental retardation (MR) and malformation of the corpus callosum. However, the possibility of defects in other forebrain axon tracts, which could contribute to the cognitive disorders of these patients, has not been explored. Here, we investigate the formation of the corticothalamic/thalamocortical tracts in mice mutant for Rfx3, which regulates the expression of many genes involved in ciliogenesis and cilia function. Using DiI axon tracing and immunohistochemistry experiments, we show that some Rfx3(-/-) corticothalamic axons abnormally migrate toward the pial surface of the ventral telencephalon (VT). Some thalamocortical axons (TCAs) also fail to leave the diencephalon or abnormally project toward the amygdala. Moreover, the Rfx3(-/-) VT displays heterotopias containing attractive guidance cues and expressing the guidance molecules Slit1 and Netrin1. Finally, the abnormal projection of TCAs toward the amygdala is also present in mice carrying a mutation in the Inpp5e gene, which is mutated in Joubert Syndrome and which controls cilia signaling and stability. The presence of identical thalamocortical malformations in two independent ciliary mutants indicates a novel role for primary cilia in the formation of the corticothalamic/thalamocortical tracts by establishing the correct cellular environment necessary for its development.


Asunto(s)
Tipificación del Cuerpo/genética , Corteza Cerebral/metabolismo , Proteínas de Unión al ADN/genética , Telencéfalo/metabolismo , Tálamo/metabolismo , Factores de Transcripción/genética , Animales , Embrión de Mamíferos , Homocigoto , Inmunohistoquímica , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Mutación , Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas , Neuronas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Factores de Transcripción del Factor Regulador X , Telencéfalo/embriología , Telencéfalo/patología , Tálamo/embriología , Tálamo/patología , Proteína Gli3 con Dedos de Zinc
9.
Hum Mol Genet ; 24(17): 4997-5014, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26071364

RESUMEN

Agenesis of the corpus callosum (AgCC) is a frequent brain disorder found in over 80 human congenital syndromes including ciliopathies. Here, we report a severe AgCC in Ftm/Rpgrip1l knockout mouse, which provides a valuable model for Meckel-Grüber syndrome. Rpgrip1l encodes a protein of the ciliary transition zone, which is essential for ciliogenesis in several cell types in mouse including neuroepithelial cells in the developing forebrain. We show that AgCC in Rpgrip1l(-/-) mouse is associated with a disturbed location of guidepost cells in the dorsomedial telencephalon. This mislocalization results from early patterning defects and abnormal cortico-septal boundary (CSB) formation in the medial telencephalon. We demonstrate that all these defects primarily result from altered GLI3 processing. Indeed, AgCC, together with patterning defects and mispositioning of guidepost cells, is rescued by overexpressing in Rpgrip1l(-/-) embryos, the short repressor form of the GLI3 transcription factor (GLI3R), provided by the Gli3(Δ699) allele. Furthermore, Gli3(Δ699) also rescues AgCC in Rfx3(-/-) embryos deficient for the ciliogenic RFX3 transcription factor that regulates the expression of several ciliary genes. These data demonstrate that GLI3 processing is a major outcome of primary cilia function in dorsal telencephalon morphogenesis. Rescuing CC formation in two independent ciliary mutants by GLI3(Δ699) highlights the crucial role of primary cilia in maintaining the proper level of GLI3R required for morphogenesis of the CC.


Asunto(s)
Cilios/metabolismo , Cuerpo Calloso/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Agenesia del Cuerpo Calloso/embriología , Agenesia del Cuerpo Calloso/genética , Agenesia del Cuerpo Calloso/metabolismo , Animales , Tipificación del Cuerpo/genética , Trastornos de la Motilidad Ciliar/genética , Trastornos de la Motilidad Ciliar/metabolismo , Cuerpo Calloso/enzimología , Cuerpo Calloso/patología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Encefalocele/genética , Encefalocele/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Noqueados , Mutación , Neocórtex/embriología , Neocórtex/metabolismo , Neocórtex/patología , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/metabolismo , Factores de Transcripción del Factor Regulador X , Retinitis Pigmentosa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína Gli3 con Dedos de Zinc
10.
PLoS Genet ; 10(9): e1004577, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25232951

RESUMEN

Cilia are highly conserved microtubule-based structures that perform a variety of sensory and motility functions during development and adult homeostasis. In humans, defects specifically affecting motile cilia lead to chronic airway infections, infertility and laterality defects in the genetically heterogeneous disorder Primary Ciliary Dyskinesia (PCD). Using the comparatively simple Drosophila system, in which mechanosensory neurons possess modified motile cilia, we employed a recently elucidated cilia transcriptional RFX-FOX code to identify novel PCD candidate genes. Here, we report characterization of CG31320/HEATR2, which plays a conserved critical role in forming the axonemal dynein arms required for ciliary motility in both flies and humans. Inner and outer arm dyneins are absent from axonemes of CG31320 mutant flies and from PCD individuals with a novel splice-acceptor HEATR2 mutation. Functional conservation of closely arranged RFX-FOX binding sites upstream of HEATR2 orthologues may drive higher cytoplasmic expression of HEATR2 during early motile ciliogenesis. Immunoprecipitation reveals HEATR2 interacts with DNAI2, but not HSP70 or HSP90, distinguishing it from the client/chaperone functions described for other cytoplasmic proteins required for dynein arm assembly such as DNAAF1-4. These data implicate CG31320/HEATR2 in a growing intracellular pre-assembly and transport network that is necessary to deliver functional dynein machinery to the ciliary compartment for integration into the motile axoneme.


Asunto(s)
Cilios/metabolismo , Cilios/fisiología , Proteínas/metabolismo , Animales , Dineínas Axonemales , Axonema/genética , Axonema/metabolismo , Sitios de Unión/genética , Línea Celular , Preescolar , Cilios/genética , Trastornos de la Motilidad Ciliar/genética , Trastornos de la Motilidad Ciliar/metabolismo , Drosophila/genética , Drosophila/metabolismo , Dineínas/genética , Dineínas/metabolismo , Femenino , Humanos , Síndrome de Kartagener/genética , Síndrome de Kartagener/metabolismo , Masculino , Mutación/genética , Linaje , Fenotipo , Proteínas/genética , Transcripción Genética/genética
11.
Hum Mol Genet ; 23(3): 563-77, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24067530

RESUMEN

Cilia are evolutionarily conserved organelles endowed with essential physiological and developmental functions. In humans, disruption of cilia motility or signaling leads to complex pleiotropic genetic disorders called ciliopathies. Cilia motility requires the assembly of multi-subunit motile components such as dynein arms, but mechanisms underlying their assembly pathway and transport into the axoneme are still largely unknown. We identified a previously uncharacterized coiled-coil domain containing protein CCDC151, which is evolutionarily conserved in motile ciliated species and shares ancient features with the outer dynein arm-docking complex 2 of Chlamydomonas. In Drosophila, we show that CG14127/CCDC151 is associated with motile intraflagellar transport (IFT)-dependent cilia and required for geotaxis behavior of adult flies. In zebrafish, Ccdc151 is expressed in tissues with motile cilia, and morpholino-induced depletion of Ccdc151 leads to left-right asymmetry defects and kidney cysts. We demonstrate that Ccdc151 is required for proper motile function of cilia in the Kupffer's vesicle and in the pronephros by controlling dynein arm assembly, showing that Ccdc151 is a novel player in the control of IFT-dependent dynein arm assembly in animals. However, we observed that CCDC151 is also implicated in other cellular functions in vertebrates. In zebrafish, ccdc151 is involved in proper orientation of cell divisions in the pronephros and genetically interacts with prickle1 in this process. Furthermore, knockdown experiments in mammalian cells demonstrate that CCDC151 is implicated in the regulation of primary cilium length. Hence, CCDC151 is required for motile cilia function in animals but has acquired additional non-motile functions in vertebrates.


Asunto(s)
Cilios/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Axonema/metabolismo , Transporte Biológico , Polaridad Celular , Cilios/genética , Secuencia Conservada , Drosophila/embriología , Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Embrión no Mamífero/citología , Epéndimo/citología , Flagelos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Enfermedades Renales/genética , Enfermedades Renales/patología , Ratones , Filogenia , Estructura Terciaria de Proteína , Proteínas/química , Proteínas/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética
12.
PLoS Genet ; 8(3): e1002606, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22479201

RESUMEN

The corpus callosum (CC) is the major commissure that bridges the cerebral hemispheres. Agenesis of the CC is associated with human ciliopathies, but the origin of this default is unclear. Regulatory Factor X3 (RFX3) is a transcription factor involved in the control of ciliogenesis, and Rfx3-deficient mice show several hallmarks of ciliopathies including left-right asymmetry defects and hydrocephalus. Here we show that Rfx3-deficient mice suffer from CC agenesis associated with a marked disorganisation of guidepost neurons required for axon pathfinding across the midline. Using transplantation assays, we demonstrate that abnormalities of the mutant midline region are primarily responsible for the CC malformation. Conditional genetic inactivation shows that RFX3 is not required in guidepost cells for proper CC formation, but is required before E12.5 for proper patterning of the cortical septal boundary and hence accurate distribution of guidepost neurons at later stages. We observe focused but consistent ectopic expression of Fibroblast growth factor 8 (Fgf8) at the rostro commissural plate associated with a reduced ratio of GLIoma-associated oncogene family zinc finger 3 (GLI3) repressor to activator forms. We demonstrate on brain explant cultures that ectopic FGF8 reproduces the guidepost neuronal defects observed in Rfx3 mutants. This study unravels a crucial role of RFX3 during early brain development by indirectly regulating GLI3 activity, which leads to FGF8 upregulation and ultimately to disturbed distribution of guidepost neurons required for CC morphogenesis. Hence, the RFX3 mutant mouse model brings novel understandings of the mechanisms that underlie CC agenesis in ciliopathies.


Asunto(s)
Cuerpo Calloso , Proteínas de Unión al ADN , Factor 8 de Crecimiento de Fibroblastos , Factores de Transcripción de Tipo Kruppel , Proteínas del Tejido Nervioso , Neuronas , Factores de Transcripción , Animales , Axones/metabolismo , Axones/fisiología , Cuerpo Calloso/crecimiento & desarrollo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Factor 8 de Crecimiento de Fibroblastos/genética , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Mutantes , Morfogénesis/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Factores de Transcripción del Factor Regulador X , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Proteína Gli3 con Dedos de Zinc
13.
Med Sci (Paris) ; 30(11): 968-75, 2014 Nov.
Artículo en Francés | MEDLINE | ID: mdl-25388578

RESUMEN

Cilia are found in many eukaryotic species and share a common microtubule architecture that can nonetheless show very diverse features within one animal. The genesis of cilia and their diversity require the expression of different specific genes. At least two classes of transcription factors are involved in ciliogenesis: the RFX family, essential for the assembly of most cilia and the FOXJ1 transcription factors that are key regulators of motile cilia assembly. These two different families of transcription factors have both specific and common target genes and they can also cooperate for the formation of cilia. In collaboration with cell type specific factors, they also contribute to the specialisation of cilia. As a consequence, the identification of RFX and FOXJ1 target genes has emerged as an efficient strategy to identify novel ciliary genes, and in particular genes potentially implicated in ciliopathies.


Asunto(s)
Cilios/genética , Proteínas de Unión al ADN/fisiología , Proteínas de Microtúbulos/genética , Proteínas Motoras Moleculares/genética , Factores de Transcripción/fisiología , Transcripción Genética , Animales , Cilios/metabolismo , Trastornos de la Motilidad Ciliar/genética , Proteínas de Unión al ADN/clasificación , Proteínas de Unión al ADN/genética , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Flagelos/genética , Flagelos/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/fisiología , Regulación de la Expresión Génica , Humanos , Invertebrados/citología , Ratones , Proteínas de Microtúbulos/biosíntesis , Proteínas Motoras Moleculares/biosíntesis , Familia de Multigenes , Especificidad de Órganos , Especificidad de la Especie , Factores de Transcripción/clasificación , Factores de Transcripción/genética , Vertebrados
14.
Curr Biol ; 33(17): R898-R900, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37699344

RESUMEN

A new study identifies a conserved regulatory mechanism for cilia assembly in the closest unicellular relatives of animals, suggesting that this mechanism was already present in a common unicellular ancestor and was repurposed during the transition to multicellularity.


Asunto(s)
Cilios , Animales
15.
Curr Biol ; 33(4): 727-736.e6, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36669498

RESUMEN

Cilia are highly conserved organelles critical for animal development and perception. Dysfunction of cilia has been linked to a wide spectrum of human genetic diseases, termed ciliopathies.1,2 Transition fibers (TFs) are striking ciliary base structures essential for cilia assembly. Vertebrates' TFs that originate from centriole distal appendages (DAs) mediate basal body docking to ciliary vesicles to initiate ciliogenesis and regulate the entry of ciliary proteins for axoneme assembly via intraflagellar transport (IFT) machinery.3 Although no distal appendages can be observed on Drosophila centrioles,4,5 three key TF proteins, FBF1, CEP164, and CEP89, have obvious homologs in Drosophila. We aimed to compare their functions with their mammalian counterparts in Drosophila ciliogenesis. Here, we show that all three proteins are localized like TF proteins at the ciliary base in both sensory neurons and spermatocytes, the only two types of ciliated cells in flies. Fbf1 and Cep89 are essential for the formation of IFT-dependent neuronal cilia, but Cep164 is dispensable for ciliogenesis in flies. Strikingly, none are required for basal body docking and transition zone (TZ) assembly in IFT-dependent neuronal cilia or IFT-independent spermatocyte cilia. Furthermore, we demonstrate that Unc is essential to recruit all three TF proteins and establish a hierarchical order, with Cep89 acting on Fbf1. Collectively, our results not only demonstrate that TF proteins are required for IFT-dependent ciliogenesis in Drosophila, in agreement with an evolutionarily conserved function of these proteins in regulating ciliary protein entry, but also that the basal body docking function of TFs has diverged during evolution.


Asunto(s)
Cilios , Drosophila , Animales , Humanos , Cilios/metabolismo , Transporte Biológico/fisiología , Centriolos/metabolismo , Orgánulos/metabolismo , Mamíferos
16.
Front Oncol ; 12: 1046087, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531006

RESUMEN

Objective: Pelvic magnetic resonance imaging (MRI) is a key exam used for the initial assessment of loco-regional involvement of cervical cancer. In patients with locally advanced cervical cancer, MRI is used to evaluate the early response to radiochemotherapy before image-guided brachytherapy, the prognostic impact of which we aimed to study. Methods: Patients with locally advanced cervical cancer treated using concomitant radiochemotherapy followed by closure treatment between January 2010 and December 2015 were included in this study. Clinical, anatomopathological, radiological, therapeutic, and follow-up data were evaluated. Results: After applying the inclusion and exclusion criteria to the initially chosen 310 patients, 232 were included for evaluation (median follow-up period, 5.3 years). The median age was 50 years (range, 25-83 years), and the median tumor size was 47.5 mm (range, 0-105 mm). Based on the International Federation of Gynaecology and Obstetrics classification system, 9 patients were in stage IB2; 20, IB3; 2, IIA; 63, IIB; 4, IIIA; 7, IIIB; and 127, IIIC1 or higher. The re-evaluation MRI was performed at the median dose of 55.5 Gy, and median reduction in tumor size was 55.2% (range, -20-100%). There was a difference between the disease-free and overall survival rates of the patients with a tumor response greater or lesser than 50%. The risk of recurrence or death reduced by 39% in patients with a tumor size reduction >50%. The overall 5-year survival rate of patients with a response greater and lesser than 50% were 77.7% and 61.5%, respectively. The 5-year disease-free survival rate for these two groups of patients were 68.8% and 51.5%, respectively. Conclusion: Our study confirms the prognostic impact of tumor size reduction using MRI data obtained after radiochemotherapy in patients with locally advanced cervical cancer.

17.
J Cell Sci ; 122(Pt 17): 3180-9, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19671664

RESUMEN

Cilia are cellular organelles that play essential physiological and developmental functions in various organisms. They can be classified into two categories, primary cilia and motile cilia, on the basis of their axonemal architecture. Regulatory factor X (RFX) transcription factors have been shown to be involved in the assembly of primary cilia in Caenorhabditis elegans, Drosophila and mice. Here, we have taken advantage of a novel primary-cell culture system derived from mouse brain to show that RFX3 is also necessary for biogenesis of motile cilia. We found that the growth and beating efficiencies of motile cilia are impaired in multiciliated Rfx3(-/-) cells. RFX3 was required for optimal expression of the FOXJ1 transcription factor, a key player in the differentiation program of motile cilia. Furthermore, we demonstrate for the first time that RFX3 regulates the expression of axonemal dyneins involved in ciliary motility by binding directly to the promoters of their genes. In conclusion, RFX proteins not only regulate genes involved in ciliary assembly, but also genes that are involved in ciliary motility and that are associated with ciliopathies such as primary ciliary dyskinesia in humans.


Asunto(s)
Cilios/fisiología , Trastornos de la Motilidad Ciliar/genética , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Cilios/química , Trastornos de la Motilidad Ciliar/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Unión Proteica , Factores de Transcripción del Factor Regulador X , Alineación de Secuencia , Factores de Transcripción/química , Factores de Transcripción/genética
18.
Biol Cell ; 102(9): 499-513, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20690903

RESUMEN

Cilia and flagella have essential functions in a wide range of organisms. Cilia assembly is dynamic during development and different types of cilia are found in multicellular organisms. How this dynamic and specific assembly is regulated remains an important question in cilia biology. In metazoans, the regulation of the overall expression level of key components necessary for cilia assembly or function is an important way to achieve ciliogenesis control. The FOXJ1 (forkhead box J1) and RFX (regulatory factor X) family of transcription factors have been shown to be important players in controlling ciliary gene expression. They fulfill a complementary and synergistic function by regulating specific and common target genes. FOXJ1 is essential to allow for the assembly of motile cilia in vertebrates through the regulation of genes specific to motile cilia or necessary for basal body apical transport, whereas RFX proteins are necessary to assemble both primary and motile cilia in metazoans, in particular, by regulating genes involved in intraflagellar transport. Recently, different transcription factors playing specific roles in cilia biogenesis and physiology have also been discovered. All these factors are subject to complex regulation to allow for the dynamic and specific regulation of ciliogenesis in metazoans.


Asunto(s)
Cilios/genética , Cilios/fisiología , Regulación del Desarrollo de la Expresión Génica , Morfogénesis/genética , Factores de Transcripción/fisiología , Transcripción Genética , Animales , Diferenciación Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/fisiología , Humanos , Factores de Transcripción del Factor Regulador X , Factores de Transcripción/genética
19.
Cells ; 10(11)2021 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-34831284

RESUMEN

Nesprin-1 is a large scaffold protein connecting nuclei to the actin cytoskeleton via its KASH and Calponin Homology domains, respectively. Nesprin-1 disconnection from nuclei results in altered muscle function and myonuclei mispositioning. Furthermore, Nesprin-1 mutations are associated with muscular pathologies such as Emery Dreifuss muscular dystrophy and arthrogryposis. Nesprin-1 was thus proposed to mainly contribute to muscle function by controlling nuclei position. However, Nesprin-1's localisation at sarcomere's Z-discs, its involvement in organelles' subcellular localization, as well as the description of numerous isoforms presenting different combinations of Calponin Homology (CH) and KASH domains, suggest that the contribution of Nesprin-1 to muscle functions is more complex. Here, we investigate the roles of Nesprin-1/Msp300 isoforms in muscle function and subcellular organisation using Drosophila larvae as a model. Subsets of Msp300 isoform were down-regulated by muscle-specific RNAi expression and muscle global function and morphology were assessed. We show that nuclei anchoring in mature muscle and global muscle function are disconnected functions associated with different Msp300 isoforms. Our work further uncovers a new and unsuspected role of Msp300 in myofibril registration and nuclei peripheral displacement supported by Msp300 CH containing isoforms, a function performed by Desmin in mammals.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Músculos/fisiología , Animales , Núcleo Celular/metabolismo , Larva/fisiología , Locomoción/fisiología , Miofibrillas/metabolismo , Fenotipo , Isoformas de Proteínas/metabolismo , Interferencia de ARN
20.
Mol Biol Cell ; 30(5): 636-645, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30601696

RESUMEN

Producing mature spermatozoa is essential for sexual reproduction in metazoans. Spermiogenesis involves dramatic cell morphological changes going from sperm tail elongation and nuclear reshaping to cell membrane remodeling during sperm individualization and release. The sperm manchette plays a critical scaffolding function during nuclear remodeling by linking the nuclear lamina to the cytoskeleton. Here, we describe the role of an uncharacterized protein in Drosophila, salto/CG13164, involved in nuclear shaping and spermatid individualization. Salto has dynamic localization during spermatid differentiation, being progressively relocated from the sperm-nuclear dense body, which is equivalent to the mammalian sperm manchette, to the centriolar adjunct and acrosomal cap during spermiogenesis. salto-null male flies are sterile and exhibit complete spermatid individualization defects. salto-deficient spermatids show coiled spermatid nuclei at late maturation stages and stalled individualization complexes. Our work sheds light on a novel component involved in cytoskeleton-based cell-morphological changes during spermiogenesis.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Morfogénesis , Cabeza del Espermatozoide/metabolismo , Animales , Caspasa 3/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Masculino , Mutación/genética , Especificidad de Órganos , Cabeza del Espermatozoide/ultraestructura , Espermatogénesis , Testículo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA