Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pharm ; 14(8): 2749-2765, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28636400

RESUMEN

PLGA was functionalized with PEG and biotin using click chemistry to generate a biotin receptor targeted copolymer (biotinylated-PEG-PLGA) which in turn was used to fabricate ultrafine nanoparticles (BPNP) of doxorubicin hydrochloride (DOX) for effective delivery in 4T1 cell induced breast cancer. However, adequate entrapment of a hydrophilic bioactive like DOX in a hydrophobic polymer system made of PLGA is not usually possible. We therefore modified a conventional W/O/W emulsion method by utilizing NH4Cl in the external phase to constrain DOX in dissolved polymer phase by suppressing DOX's inherent aqueous solubility as per common ion effect. This resulted in over 8-fold enhancement in entrapment efficiency of DOX inside BPNP, which otherwise is highly susceptible to leakage due to its relatively high aqueous solubility. TEM and DLS established BPNP to be sized below 100 nm, storage stability studies showed that BPNP were stable for one month at 4 °C, and in vitro release suggested significant control in drug release. Extensive in vitro and in vivo studies were conducted to propound anticancer and antiproliferative activity of BPNP. Plasma and tissue distribution study supplemented by pertinent in vivo fluorescence imaging mapped the exact fate of DOX contained inside BPNP once it was administered intravenously. A comparative safety profile via acute toxicity studies in mice was also generated to out rightly establish usefulness of BPNP. Results suggest that BPNP substantially enhance anticancer activity of DOX while simultaneously mitigating its toxic potential due to altered spatial and temporal presentation of drug and consequently deserve further allometric iteration.


Asunto(s)
Doxorrubicina/química , Nanopartículas/química , Poliésteres/química , Polietilenglicoles/química , Receptores de Factores de Crecimiento/química , Biotinilación , Química Clic/métodos
2.
Eur J Pharm Biopharm ; 113: 198-210, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28088632

RESUMEN

OBJECTIVE: We explore a plausible method of targeting bendamustine hydrochloride (BM) to circulatory monocytes by exploiting their intrinsic endocytic/phagocytic capability. METHODS: We do so by complexation of sodium alginate and chitosan inside dioctyl sulfo succinate sodium (AOT) reverse micelles to form bendamustine hydrochloride loaded nanoparticles (CANPs). Dynamic light scattering, electrophoretic mobility and UV spectroscopy were used to detail intra-micellar complexation dynamics and to prove that drug was co-captured during interaction of carbohydrate polymers. A fluorescent conjugate of drug (RBM) was used to trace its intracellular fate after its loading into nanoparticles. RESULTS: CANPs were sized below 150nm, had 75% drug entrapment and negative zeta potential (-30mV). Confocal microscopy demonstrated that developed chitosan alginate nanoparticles had the unique capability to carry BM specifically to its site of action. Quantitative and mechanism based cell uptake studies revealed that monocytes had voracious capacity to internalize CANPs via simultaneous scavenger receptor based endocytic and phagocytic mechanism. Comparative in vitro pharmacokinetic studies revealed obtainment of significantly greater intracellular drug levels when cells were treated with CANPs. This caused reduction in IC50 (22.5±2.1µg/mL), enhancement in G2M cell cycle arrest, greater intracellular reactive oxygen species generation, and increased apopotic potential of bendamustine hydrochloride in THP-1 cells. CONCLUSION: Selective monocytic targeting of bendamustine hydrochloride using carbohydrate constructs can prove advantageous in case of leukemic disorders displaying overabundance of such cells.


Asunto(s)
Antineoplásicos Alquilantes/administración & dosificación , Clorhidrato de Bendamustina/administración & dosificación , Portadores de Fármacos , Micelas , Nanopartículas , Antineoplásicos Alquilantes/farmacología , Apoptosis/efectos de los fármacos , Clorhidrato de Bendamustina/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Transformada , Endocitosis/efectos de los fármacos , Colorantes Fluorescentes , Humanos , Microscopía Electrónica de Transmisión , Fagocitosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA