Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cell ; 187(17): 4605-4620.e17, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-38959891

RESUMEN

The ability of mitochondria to coordinate stress responses across tissues is critical for health. In C. elegans, neurons experiencing mitochondrial stress elicit an inter-tissue signaling pathway through the release of mitokine signals, such as serotonin or the Wnt ligand EGL-20, which activate the mitochondrial unfolded protein response (UPRMT) in the periphery to promote organismal health and lifespan. We find that germline mitochondria play a surprising role in neuron-to-periphery UPRMT signaling. Specifically, we find that germline mitochondria signal downstream of neuronal mitokines, Wnt and serotonin, and upstream of lipid metabolic pathways in the periphery to regulate UPRMT activation. We also find that the germline tissue itself is essential for UPRMT signaling. We propose that the germline has a central signaling role in coordinating mitochondrial stress responses across tissues, and germline mitochondria play a defining role in this coordination because of their inherent roles in germline integrity and inter-tissue signaling.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Células Germinativas , Mitocondrias , Transducción de Señal , Respuesta de Proteína Desplegada , Animales , Caenorhabditis elegans/metabolismo , Mitocondrias/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Neuronas/metabolismo , Serotonina/metabolismo , Proteínas Wnt/metabolismo
2.
Cell ; 187(16): 4289-4304.e26, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38942015

RESUMEN

Cellular homeostasis is intricately influenced by stimuli from the microenvironment, including signaling molecules, metabolites, and pathogens. Functioning as a signaling hub within the cell, mitochondria integrate information from various intracellular compartments to regulate cellular signaling and metabolism. Multiple studies have shown that mitochondria may respond to various extracellular signaling events. However, it is less clear how changes in the extracellular matrix (ECM) can impact mitochondrial homeostasis to regulate animal physiology. We find that ECM remodeling alters mitochondrial homeostasis in an evolutionarily conserved manner. Mechanistically, ECM remodeling triggers a TGF-ß response to induce mitochondrial fission and the unfolded protein response of the mitochondria (UPRMT). At the organismal level, ECM remodeling promotes defense of animals against pathogens through enhanced mitochondrial stress responses. We postulate that this ECM-mitochondria crosstalk represents an ancient immune pathway, which detects infection- or mechanical-stress-induced ECM damage, thereby initiating adaptive mitochondria-based immune and metabolic responses.


Asunto(s)
Matriz Extracelular , Homeostasis , Mitocondrias , Respuesta de Proteína Desplegada , Matriz Extracelular/metabolismo , Animales , Mitocondrias/metabolismo , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Dinámicas Mitocondriales , Ratones , Transducción de Señal , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/inmunología
3.
Annu Rev Cell Dev Biol ; 38: 179-218, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35804477

RESUMEN

Mitochondria are traditionally known as the powerhouse of the cell, but their functions extend far beyond energy production. They are vital in cellular and organismal pathways that direct metabolism, stress responses, immunity, and cellular fate. To accomplish these tasks, mitochondria have established networks of both intra- and extracellular communication. Intracellularly, these communication routes comprise direct contacts between mitochondria and other subcellular components as well as indirect vesicle transport of ions, metabolites, and other intracellular messengers. Extracellularly, mitochondria can induce stress responses or other cellular changes that secrete mitochondrial cytokine (mitokine) factors that can travel between tissues as well as respond to immune challenges from extracellular sources. Here we provide a current perspective on the major routes of communication for mitochondrial signaling, including their mechanisms and physiological impact. We also review the major diseases and age-related disorders associated with defects in these signaling pathways. An understanding of how mitochondrial signaling controls cellular homeostasis will bring greater insight into how dysfunctional mitochondria affect health in disease and aging.


Asunto(s)
Mitocondrias , Transducción de Señal , Citocinas/metabolismo , Homeostasis , Mitocondrias/metabolismo
4.
Cell ; 179(6): 1306-1318.e18, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31761535

RESUMEN

Cells have evolved complex mechanisms to maintain protein homeostasis, such as the UPRER, which are strongly associated with several diseases and the aging process. We performed a whole-genome CRISPR-based knockout (KO) screen to identify genes important for cells to survive ER-based protein misfolding stress. We identified the cell-surface hyaluronidase (HAase), Transmembrane Protein 2 (TMEM2), as a potent modulator of ER stress resistance. The breakdown of the glycosaminoglycan, hyaluronan (HA), by TMEM2 within the extracellular matrix (ECM) altered ER stress resistance independent of canonical UPRER pathways but dependent upon the cell-surface receptor, CD44, a putative HA receptor, and the MAPK cell-signaling components, ERK and p38. Last, and most surprisingly, ectopic expression of human TMEM2 in C. elegans protected animals from ER stress and increased both longevity and pathogen resistance independent of canonical UPRER activation but dependent on the ERK ortholog mpk-1 and the p38 ortholog pmk-1.


Asunto(s)
Caenorhabditis elegans/fisiología , Retículo Endoplásmico/metabolismo , Hialuronoglucosaminidasa/metabolismo , Longevidad/fisiología , Proteínas de la Membrana/metabolismo , Respuesta de Proteína Desplegada , Animales , Caenorhabditis elegans/inmunología , Línea Celular , Proliferación Celular , Resistencia a la Enfermedad , Estrés del Retículo Endoplásmico , Fibroblastos/metabolismo , Humanos , Inmunidad Innata , Modelos Biológicos , Peso Molecular , Transducción de Señal
5.
Cell ; 166(6): 1553-1563.e10, 2016 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-27610575

RESUMEN

During neurodegenerative disease, the toxic accumulation of aggregates and misfolded proteins is often accompanied with widespread changes in peripheral metabolism, even in cells in which the aggregating protein is not present. The mechanism by which the central nervous system elicits a distal reaction to proteotoxic stress remains unknown. We hypothesized that the endocrine communication of neuronal stress plays a causative role in the changes in mitochondrial homeostasis associated with proteotoxic disease states. We find that an aggregation-prone protein expressed in the neurons of C. elegans binds to mitochondria, eliciting a global induction of a mitochondrial-specific unfolded protein response (UPR(mt)), affecting whole-animal physiology. Importantly, dense core vesicle release and secretion of the neurotransmitter serotonin is required for the signal's propagation. Collectively, these data suggest the commandeering of a nutrient sensing network to allow for cell-to-cell communication between mitochondria in response to protein folding stress in the nervous system.


Asunto(s)
Homeostasis , Transducción de Señal , Respuesta de Proteína Desplegada , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al Calcio/metabolismo , Comunicación Celular , Mitocondrias/metabolismo , Células Neuroendocrinas/metabolismo , Neuronas/metabolismo , Neuronas/patología , Péptidos/metabolismo , Pliegue de Proteína , Serotonina/metabolismo
6.
Cell ; 166(6): 1539-1552.e16, 2016 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-27610574

RESUMEN

Defects in mitochondrial metabolism have been increasingly linked with age-onset protein-misfolding diseases such as Alzheimer's, Parkinson's, and Huntington's. In response to protein-folding stress, compartment-specific unfolded protein responses (UPRs) within the ER, mitochondria, and cytosol work in parallel to ensure cellular protein homeostasis. While perturbation of individual compartments can make other compartments more susceptible to protein stress, the cellular conditions that trigger cross-communication between the individual UPRs remain poorly understood. We have uncovered a conserved, robust mechanism linking mitochondrial protein homeostasis and the cytosolic folding environment through changes in lipid homeostasis. Metabolic restructuring caused by mitochondrial stress or small-molecule activators trigger changes in gene expression coordinated uniquely by both the mitochondrial and cytosolic UPRs, protecting the cell from disease-associated proteins. Our data suggest an intricate and unique system of communication between UPRs in response to metabolic changes that could unveil new targets for diseases of protein misfolding.


Asunto(s)
Citosol/fisiología , Respuesta al Choque Térmico/fisiología , Lípidos/biosíntesis , Mitocondrias/fisiología , Respuesta de Proteína Desplegada/fisiología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Línea Celular , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas de Choque Térmico/genética , Homeostasis , Humanos , Metabolismo de los Lípidos/genética , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/genética , Pliegue de Proteína
7.
Cell ; 165(5): 1209-1223, 2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27133168

RESUMEN

Across eukaryotic species, mild mitochondrial stress can have beneficial effects on the lifespan of organisms. Mitochondrial dysfunction activates an unfolded protein response (UPR(mt)), a stress signaling mechanism designed to ensure mitochondrial homeostasis. Perturbation of mitochondria during larval development in C. elegans not only delays aging but also maintains UPR(mt) signaling, suggesting an epigenetic mechanism that modulates both longevity and mitochondrial proteostasis throughout life. We identify the conserved histone lysine demethylases jmjd-1.2/PHF8 and jmjd-3.1/JMJD3 as positive regulators of lifespan in response to mitochondrial dysfunction across species. Reduction of function of the demethylases potently suppresses longevity and UPR(mt) induction, while gain of function is sufficient to extend lifespan in a UPR(mt)-dependent manner. A systems genetics approach in the BXD mouse reference population further indicates conserved roles of the mammalian orthologs in longevity and UPR(mt) signaling. These findings illustrate an evolutionary conserved epigenetic mechanism that determines the rate of aging downstream of mitochondrial perturbations.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Histona Demetilasas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Animales , Caenorhabditis elegans/genética , Longevidad , Ratones , Mitocondrias/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Respuesta de Proteína Desplegada
8.
Cell ; 144(1): 79-91, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21215371

RESUMEN

The life span of C. elegans can be increased via reduced function of the mitochondria; however, the extent to which mitochondrial alteration in a single, distinct tissue may influence aging in the whole organism remains unknown. We addressed this question by asking whether manipulations to ETC function can modulate aging in a cell-non-autonomous fashion. We report that the alteration of mitochondrial function in key tissues is essential for establishing and maintaining a prolongevity cue. We find that regulators of mitochondrial stress responses are essential and specific genetic requirements for the electron transport chain (ETC) longevity pathway. Strikingly, we find that mitochondrial perturbation in one tissue is perceived and acted upon by the mitochondrial stress response pathway in a distal tissue. These results suggest that mitochondria may establish and perpetuate the rate of aging for the whole organism independent of cell-autonomous functions.


Asunto(s)
Caenorhabditis elegans/fisiología , Senescencia Celular , Transporte de Electrón , Longevidad , Envejecimiento/metabolismo , Animales , Caenorhabditis elegans/citología , Mitocondrias/metabolismo , Estrés Oxidativo , Respuesta de Proteína Desplegada
9.
iScience ; 27(4): 109354, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38500817

RESUMEN

Glia are the protectors of the nervous system, providing neurons with support and protection from cytotoxic insults. We previously discovered that four astrocyte-like glia can regulate organismal proteostasis and longevity in C. elegans. Expression of the UPRER transcription factor, XBP-1s, in these glia increases stress resistance, and longevity, and activates the UPRER in intestinal cells via neuropeptides. Autophagy, a key regulator of metabolism and aging, has been described as a cell autonomous process. Surprisingly, we find that glial XBP-1s enhances proteostasis and longevity by cell non-autonomously reprogramming organismal lipid metabolism and activating autophagy. Glial XBP-1s regulates the activation of another transcription factor, HLH-30/TFEB, in the intestine. HLH-30 activates intestinal autophagy, increases intestinal lipid catabolism, and upregulates a robust transcriptional program. Our study reveals a novel role for glia in regulating peripheral lipid metabolism, autophagy, and organellar health through peripheral activation of HLH-30 and autophagy.

10.
Nature ; 447(7144): 550-5, 2007 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-17476212

RESUMEN

Reduced food intake as a result of dietary restriction increases the lifespan of a wide variety of metazoans and delays the onset of multiple age-related pathologies. Dietary restriction elicits a genetically programmed response to nutrient availability that cannot be explained by a simple reduction in metabolism or slower growth of the organism. In the nematode worm Caenorhabditis elegans, the transcription factor PHA-4 has an essential role in the embryonic development of the foregut and is orthologous to genes encoding the mammalian family of Foxa transcription factors, Foxa1, Foxa2 and Foxa3. Foxa family members have important roles during development, but also act later in life to regulate glucagon production and glucose homeostasis, particularly in response to fasting. Here we describe a newly discovered, adult-specific function for PHA-4 in the regulation of diet-restriction-mediated longevity in C. elegans. The role of PHA-4 in lifespan determination is specific for dietary restriction, because it is not required for the increased longevity caused by other genetic pathways that regulate ageing.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Restricción Calórica , Dieta , Longevidad/fisiología , Transactivadores/metabolismo , Envejecimiento/fisiología , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Factores de Transcripción Forkhead , Dosificación de Gen , Longevidad/genética , Familia de Multigenes/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Tasa de Supervivencia , Transactivadores/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
bioRxiv ; 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37873079

RESUMEN

The ability of mitochondria to coordinate stress responses across tissues is critical for health. In C. elegans , neurons experiencing mitochondrial stress elicit an inter-tissue signaling pathway through the release of mitokine signals, such as serotonin or the WNT ligand EGL-20, which activate the mitochondrial unfolded protein response (UPR MT ) in the periphery to promote organismal health and lifespan. We find that germline mitochondria play a surprising role in neuron-to-peripheral UPR MT signaling. Specifically, we find that germline mitochondria signal downstream of neuronal mitokines, like WNT and serotonin, and upstream of lipid metabolic pathways in the periphery to regulate UPR MT activation. We also find that the germline tissue itself is essential in UPR MT signaling. We propose that the germline has a central signaling role in coordinating mitochondrial stress responses across tissues, and germline mitochondria play a defining role in this coordination because of their inherent roles in germline integrity and inter-tissue signaling.

12.
Sci Adv ; 9(41): eadi1411, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37831769

RESUMEN

The nervous system plays a critical role in maintaining whole-organism homeostasis; neurons experiencing mitochondrial stress can coordinate the induction of protective cellular pathways, such as the mitochondrial unfolded protein response (UPRMT), between tissues. However, these studies largely ignored nonneuronal cells of the nervous system. Here, we found that UPRMT activation in four astrocyte-like glial cells in the nematode, Caenorhabditis elegans, can promote protein homeostasis by alleviating protein aggregation in neurons. Unexpectedly, we find that glial cells use small clear vesicles (SCVs) to signal to neurons, which then relay the signal to the periphery using dense-core vesicles (DCVs). This work underlines the importance of glia in establishing and regulating protein homeostasis within the nervous system, which can then affect neuron-mediated effects in organismal homeostasis and longevity.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteostasis , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuronas/metabolismo , Caenorhabditis elegans/metabolismo , Envejecimiento , Neuroglía/metabolismo
13.
bioRxiv ; 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37609253

RESUMEN

The nervous system plays a critical role in maintaining whole-organism homeostasis; neurons experiencing mitochondrial stress can coordinate the induction of protective cellular pathways, such as the mitochondrial unfolded protein response (UPRMT), between tissues. However, these studies largely ignored non-neuronal cells of the nervous system. Here, we found that UPRMT activation in four, astrocyte-like glial cells in the nematode, C. elegans, can promote protein homeostasis by alleviating protein aggregation in neurons. Surprisingly, we find that glial cells utilize small clear vesicles (SCVs) to signal to neurons, which then relay the signal to the periphery using dense-core vesicles (DCVs). This work underlines the importance of glia in establishing and regulating protein homeostasis within the nervous system, which can then impact neuron-mediated effects in organismal homeostasis and longevity.

14.
Cell Metab ; 6(6): 427-9, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18054312

RESUMEN

Metabolic component depletion in model systems results in life-span extension, which has been difficult to reconcile with human metabolic pathologies. Recently, Rea et al. (2007) have shown that mitochondrial electron transport chain RNAi phenotypes in the worm C. elegans are dose dependent, providing an alternative view of mitochondrial function in longevity and metabolic diseases.


Asunto(s)
Envejecimiento/metabolismo , Mitocondrias/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/antagonistas & inhibidores , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Humanos , Longevidad/genética , Longevidad/fisiología , Modelos Biológicos , Fenotipo , Prohibitinas , Interferencia de ARN
15.
J Cell Biol ; 221(7)2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35608535

RESUMEN

The mitochondrial unfolded protein response (UPRmt) is dedicated to promoting mitochondrial proteostasis and is linked to extreme longevity. The key regulator of this process is the transcription factor ATFS-1, which, upon UPRmt activation, is excluded from the mitochondria and enters the nucleus to regulate UPRmt genes. However, the repair proteins synthesized as a direct result of UPRmt activation must be transported into damaged mitochondria that had previously excluded ATFS-1 owing to reduced import efficiency. To address this conundrum, we analyzed the role of the import machinery when the UPRmt was induced. Using in vitro and in vivo analysis of mitochondrial proteins, we surprisingly find that mitochondrial import increases when the UPRmt is activated in an ATFS-1-dependent manner, despite reduced mitochondrial membrane potential. The import machinery is upregulated, and an intact import machinery is essential for UPRmt-mediated lifespan extension. ATFS-1 has a weak mitochondrial targeting sequence (MTS), allowing for dynamic subcellular localization during the initial stages of UPRmt activation.


Asunto(s)
Proteínas de Caenorhabditis elegans , Longevidad , Mitocondrias , Factores de Transcripción , Respuesta de Proteína Desplegada , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Longevidad/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Factores de Transcripción/metabolismo
16.
Sci Adv ; 8(49): eabq3970, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36490338

RESUMEN

Aging organisms lose the ability to induce stress responses, becoming vulnerable to protein toxicity and tissue damage. Neurons can signal to peripheral tissues to induce protective organelle-specific stress responses. Recent work shows that glia can independently induce such responses. Here, we show that overexpression of heat shock factor 1 (hsf-1) in the four astrocyte-like cephalic sheath cells of Caenorhabditis elegans induces a non-cell-autonomous cytosolic unfolded protein response, also known as the heat shock response (HSR). These animals have increased lifespan and heat stress resistance and decreased protein aggregation. Glial HSR regulation is independent of canonical thermosensory circuitry and known neurotransmitters but requires the small clear vesicle release protein UNC-13. HSF-1 and the FOXO transcription factor DAF-16 are partially required in peripheral tissues for non-cell-autonomous HSR, longevity, and thermotolerance. Cephalic sheath glial hsf-1 overexpression also leads to pathogen resistance, suggesting a role for this signaling pathway in immune function.

17.
Science ; 367(6476): 436-440, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31974253

RESUMEN

The ability of the nervous system to sense cellular stress and coordinate protein homeostasis is essential for organismal health. Unfortunately, stress responses that mitigate disturbances in proteostasis, such as the unfolded protein response of the endoplasmic reticulum (UPRER), become defunct with age. In this work, we expressed the constitutively active UPRER transcription factor, XBP-1s, in a subset of astrocyte-like glia, which extended the life span in Caenorhabditis elegans Glial XBP-1s initiated a robust cell nonautonomous activation of the UPRER in distal cells and rendered animals more resistant to protein aggregation and chronic ER stress. Mutants deficient in neuropeptide processing and secretion suppressed glial cell nonautonomous induction of the UPRER and life-span extension. Thus, astrocyte-like glial cells play a role in regulating organismal ER stress resistance and longevity.


Asunto(s)
Caenorhabditis elegans/fisiología , Estrés del Retículo Endoplásmico/fisiología , Longevidad , Neuroglía/fisiología , Neuropéptidos/fisiología , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Mutación , Agregado de Proteínas/fisiología , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/fisiología
18.
Cell Rep ; 33(10): 108489, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33296657

RESUMEN

In multicellular organisms, neurons integrate a diverse array of external cues to affect downstream changes in organismal health. Specifically, activation of the endoplasmic reticulum (ER) unfolded protein response (UPRER) in neurons increases lifespan by preventing age-onset loss of ER proteostasis and driving lipid depletion in a cell non-autonomous manner. The mechanism of this communication is dependent on the release of small clear vesicles from neurons. We find dopaminergic neurons are necessary and sufficient for activation of cell non-autonomous UPRER to drive lipid depletion in peripheral tissues, whereas serotonergic neurons are sufficient to drive protein homeostasis in peripheral tissues. These signaling modalities are unique and independent and together coordinate the beneficial effects of neuronal cell non-autonomous ER stress signaling upon health and longevity.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Neuronas Serotoninérgicas/metabolismo , Respuesta de Proteína Desplegada/fisiología , Envejecimiento , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Neuronas Dopaminérgicas/fisiología , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Metabolismo de los Lípidos/fisiología , Longevidad , Neuronas/metabolismo , Proteostasis/fisiología , Neuronas Serotoninérgicas/fisiología , Transducción de Señal/fisiología , Respuesta de Proteína Desplegada/genética
19.
Sci Adv ; 6(1): eaaz1441, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31911951

RESUMEN

Longevity is dictated by a combination of environmental and genetic factors. One of the key mechanisms to regulate life-span extension is the induction of protein chaperones for protein homeostasis. Ectopic activation of the unfolded protein response of the endoplasmic reticulum (UPRER) specifically in neurons is sufficient to enhance organismal stress resistance and extend life span. Here, we find that this activation not only promotes chaperones but also facilitates ER restructuring and ER function. This restructuring is concomitant with lipid depletion through lipophagy. Activation of lipophagy is distinct from chaperone induction and is required for the life-span extension found in this paradigm. Last, we find that overexpression of the lipophagy component, ehbp-1, is sufficient to deplete lipids, remodel ER, and promote life span. Therefore, UPR induction in neurons triggers two distinct programs in the periphery: the proteostasis arm through protein chaperones and metabolic changes through lipid depletion mediated by EH domain binding protein 1 (EHBP-1).


Asunto(s)
Autofagia/genética , Proteínas de Caenorhabditis elegans/genética , Longevidad/genética , Respuesta de Proteína Desplegada/genética , Proteínas de Transporte Vesicular/genética , Animales , Caenorhabditis elegans , Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/genética , Humanos , Lípidos/genética , Chaperonas Moleculares/genética , Neuronas/metabolismo , Transducción de Señal/genética
20.
Sci Adv ; 6(26): eaaz9805, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32637599

RESUMEN

Recent work has highlighted the fact that lysosomes are a critical signaling hub of metabolic processes, providing fundamental building blocks crucial for anabolic functions. How lysosomal functions affect other cellular compartments is not fully understood. Here, we find that lysosomal recycling of the amino acids lysine and arginine is essential for proper ER quality control through the UPRER. Specifically, loss of the lysine and arginine amino acid transporter LAAT-1 results in increased sensitivity to proteotoxic stress in the ER and decreased animal physiology. We find that these LAAT-1-dependent effects are linked to glycine metabolism and transport and that the loss of function of the glycine transporter SKAT-1 also increases sensitivity to ER stress. Direct lysine and arginine supplementation, or glycine supplementation alone, can ameliorate increased ER stress sensitivity found in laat-1 mutants. These data implicate a crucial role in recycling lysine, arginine, and glycine in communication between the lysosome and ER.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA