Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Cell Int ; 20: 364, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32774158

RESUMEN

BACKGROUND: Cisplatin resistance of ovarian yolk sac tumors (oYST) is a clinical challenge due to dismal patient prognosis, even though the disease is extremely rare. We investigated potential association between cisplatin resistance and cancer stem cell (CSC) markers in chemoresistant oYST cells and targeting strategies to overcome resistance in oYST. METHODS: Chemoresistant cells were derived from chemosensitive human oYST cells by cultivation in cisplatin in vitro. Derivative cells were characterized by chemoresistance, functional assays, flow cytometry, gene expression and protein arrays focused on CSC markers. RNAseq, methylation and microRNA profiling were performed. Quail chorioallantoic membranes (CAM) with implanted oYST cells were used to analyze the micro-tumor extent and interconnection with the CAM. Tumorigenicity in vivo was determined on immunodeficient mouse model. Chemoresistant cells were treated by inhibitors intefering with the CSC properties to examine the chemosensitization to cisplatin. RESULTS: Long-term cisplatin exposure resulted in seven-fold higher IC50 value in resistant cells, cross-resistance to oxaliplatin and carboplatin, and increased migratory capacity, invasiveness and tumorigenicity, associated with hypomethylation of differentially methylated genes/promotors. Resistant cells exhibited increased expression of prominin-1 (CD133), ATP binding cassette subfamily G member 2 (ABCG2), aldehyde dehydrogenase 3 isoform A1 (ALDH3A1), correlating with reduced gene and promoter methylation, as well as increased expression of ALDH1A3 and higher overall ALDH enzymatic activity, rendering them cross-resistant to DEAB, disulfiram and napabucasin. Salinomycin and tunicamycin were significantly more toxic to resistant cells. Pretreatment with napabucasin resensitized the cells to cisplatin and reduced their tumorigenicity in vivo. CONCLUSIONS: The novel chemoresistant cells represent unique model of refractory oYST. CSC markers are associated with cisplatin resistance being possible targets in chemorefractory oYST.

2.
BMC Cancer ; 18(1): 848, 2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-30143021

RESUMEN

BACKGROUND: Efficiency of colorectal carcinoma treatment by chemotherapy is diminished as the resistance develops over time in patients. The same holds true for 5-fluorouracil, the drug used in first line chemotherapy of colorectal carcinoma. METHODS: Chemoresistant derivative of HT-29 cells was prepared by long-term culturing in increasing concentration of 5-fluorouracil. Cells were characterized by viability assays, flow cytometry, gene expression arrays and kinetic imaging. Immunomagnetic separation was used for isolation of subpopulations positive for cancer stem cells-related surface markers. Aldehyde dehydrogenase expression was attenuated by siRNA. In vivo studies were performed on SCID/bg mice. RESULTS: The prepared chemoresistant cell line labeled as HT-29/EGFP/FUR is assigned with different morphology, decreased proliferation rate and 135-fold increased IC50 value for 5-fluorouracil in comparison to parental counterparts HT-29/EGFP. The capability of chemoresistant cells to form tumor xenografts, when injected subcutaneously into SCID/bg mice, was strongly compromised, however, they formed distant metastases in mouse lungs spontaneously. Derived cells preserved their resistance in vitro and in vivo even without the 5-fluorouracil selection pressure. More importantly, they were resistant to cisplatin, oxaliplatin and cyclophosphamide exhibiting high cross-resistance along with alterations in expression of cancer-stem cell markers such as CD133, CD166, CD24, CD26, CXCR4, CD271 and CD274. We also detected increased aldehyde dehydrogenase (ALDH) activity associated with overexpression of specific ALDH isoform 1A3. Its inhibition by siRNA approach partially sensitized cells to various agents, thus linking for the first time the ALDH1A3 and chemoresistance in colorectal cancer. CONCLUSION: Our study demonstrated that acquired chemoresistance goes along with metastatic and migratory phenotype and can be accompanied with increased activity of aldehyde dehydrogenase. We describe here the valuable model to study molecular link between resistance to chemotherapy and metastatic dissemination.


Asunto(s)
Aldehído Oxidorreductasas/genética , Neoplasias Colorrectales/genética , Resistencia a Antineoplásicos/genética , Adulto , Anciano , Animales , Neoplasias Colorrectales/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Células HT29 , Humanos , Masculino , Ratones , Persona de Mediana Edad , Metástasis de la Neoplasia , ARN Interferente Pequeño , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Cell Commun Signal ; 14: 4, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26759169

RESUMEN

BACKGROUND: Cells of the tumor microenvironment are recognized as important determinants of the tumor biology. The adjacent non-malignant cells can regulate drug responses of the cancer cells by secreted paracrine factors and direct interactions with tumor cells. RESULTS: Human mesenchymal stromal cells (MSC) actively contribute to tumor microenvironment. Here we focused on their response to chemotherapy as during the treatment these cells become affected. We have shown that the secretory phenotype and behavior of mesenchymal stromal cells influenced by cisplatin differs from the naïve MSC. MSC were more resistant to the concentrations of cisplatin, which was cytotoxic for tumor cells. They did not undergo apoptosis, but a part of MSC population underwent senescence. However, MSC pretreatment with cisplatin led to changes in phosphorylation profiles of many kinases and also increased secretion of IL-6 and IL-8 cytokines. These changes in cytokine and phosphorylation profile of MSC led to increased chemoresistance and stemness of breast cancer cells. CONCLUSION: Taken together here we suggest that the exposure of the chemoresistant cells in the tumor microenvironment leads to substantial alterations and might lead to promotion of acquired microenvironment-mediated chemoresistance and stemness.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Cisplatino/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Apoptosis/efectos de los fármacos , Mama/efectos de los fármacos , Mama/inmunología , Neoplasias de la Mama/inmunología , Línea Celular Tumoral , Senescencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Femenino , Humanos , Interleucina-6/inmunología , Interleucina-8/inmunología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/inmunología
4.
Cell Rep Med ; 5(2): 101376, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38228147

RESUMEN

The bacterial genotoxin colibactin promotes colorectal cancer (CRC) tumorigenesis, but systematic assessment of its impact on DNA repair is lacking, and its effect on response to DNA-damaging chemotherapeutics is unknown. We find that CRC cell lines display differential response to colibactin on the basis of homologous recombination (HR) proficiency. Sensitivity to colibactin is induced by inhibition of ATM, which regulates DNA double-strand break repair, and blunted by HR reconstitution. Conversely, CRC cells chronically infected with colibactin develop a tolerant phenotype characterized by restored HR activity. Notably, sensitivity to colibactin correlates with response to irinotecan active metabolite SN38, in both cell lines and patient-derived organoids. Moreover, CRC cells that acquire colibactin tolerance develop cross-resistance to SN38, and a trend toward poorer response to irinotecan is observed in a retrospective cohort of CRCs harboring colibactin genomic island. Our results shed insight into colibactin activity and provide translational evidence on its chemoresistance-promoting role in CRC.


Asunto(s)
Neoplasias Colorrectales , Escherichia coli , Péptidos , Policétidos , Humanos , Irinotecán/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Estudios Retrospectivos , ADN/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/microbiología
5.
J Gene Med ; 14(12): 776-87, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23150190

RESUMEN

BACKGROUND: Engineered mesenchymal stromal cells (MSC) have been used in many preclinical studies of gene directed enzyme/prodrug therapy. We aimed to compare the efficacy of two most frequently used systems, as well as evaluate the extent of a bystander effect mediated by therapeutic MSC towards cell lines derived from different tumours. METHODS: Two approaches were compared: (i) herpes simplex virus thymidine kinase (TK)/ganciclovir (GCV) and (ii) yeast cytosine deaminase fused with uracil phosphoribosyltransferase (CD::UPRT)/5-fluorocytosine (5-FC). The cytotoxic effect mediated by therapeutic MSC was evaluated in direct co-culture by a fluorimetric assay. The expression profile of tumour cells was analyzed by a quantitative polymerase chain reaction, and the ability of gap-junctional intercellular communication (GJIC) was evaluated by a dye transfer assay. RESULTS: Both systems were effective only on glioblastoma cells (8-MG-BA). The CD::UPRT-MSC/5-FC system showed efficiency on melanoma A375 cells. We decreased the sensitivity of 8-MG-BA cells and A375 cells to the CD::UPRT-MSC/5-FC system by pharmacological inhibition of thymidylate synthase, and we achieved a similar result in A375 cells by inhibition of thymidine phosphorylase. Although we demonstrated functional GJIC in A375 cells, TK-MSC were ineffective in mediating the bystander effect similarly to HeLa cells, which were also relatively resistant to CD::UPRT-MSC/5-FC treatment. TK-MSC/GCV treatment had a strong cytotoxic effect on MDA-MB-231 cells (breast carcinoma), whereas CD::UPRT-MSC/5-FC treatment failed as a result of overexpression of the gene for ABCC11. Transfection of the MDA-MB-231 cell line with small interference RNA specific to ABCC11 led to a significantly increased sensitivity to the CD::UPRT-MSC/5-FC approach. CONCLUSIONS: GJIC, expression of enzymes involved in drug metabolism and ABC transporters correlate with the response of tumour cells to treatment by MSC-expressing prodrug-converting genes.


Asunto(s)
Efecto Espectador , Células Madre Mesenquimatosas/metabolismo , Pentosiltransferasa/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Comunicación Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Citosina Desaminasa/genética , Citosina Desaminasa/metabolismo , Resistencia a Antineoplásicos/genética , Flucitosina/metabolismo , Flucitosina/farmacología , Ganciclovir/metabolismo , Ganciclovir/farmacología , Uniones Comunicantes/metabolismo , Expresión Génica , Silenciador del Gen , Vectores Genéticos/genética , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Pentosiltransferasa/metabolismo , Profármacos/metabolismo , Profármacos/farmacología , Retroviridae/genética , Timidina Quinasa/genética , Timidina Quinasa/metabolismo , Transducción Genética
6.
Clin Cancer Res ; 28(17): 3874-3889, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35881546

RESUMEN

PURPOSE: Genomic instability is a hallmark of cancer and targeting DNA damage response (DDR) is emerging as a promising therapeutic strategy in different solid tumors. The effectiveness of targeting DDR in colorectal cancer has not been extensively explored. EXPERIMENTAL DESIGN: We challenged 112 cell models recapitulating the genomic landscape of metastatic colorectal cancer with ATM, ATR, CHK1, WEE1, and DNA-PK inhibitors, in parallel with chemotherapeutic agents. We focused then on ATR inhibitors (ATRi) and, to identify putative biomarkers of response and resistance, we analyzed at multiple levels colorectal cancer models highly sensitive or resistant to these drugs. RESULTS: We found that around 30% of colorectal cancers, including those carrying KRAS and BRAF mutations and unresponsive to targeted agents, are sensitive to at least one DDR inhibitor. By investigating potential biomarkers of response to ATRi, we found that ATRi-sensitive cells displayed reduced phospho-RPA32 foci at basal level, while ATRi-resistant cells showed increased RAD51 foci formation in response to replication stress. Lack of ATM and RAD51C expression was associated with ATRi sensitivity. Analysis of mutational signatures and HRDetect score identified a subgroup of ATRi-sensitive models. Organoids derived from patients with metastatic colorectal cancer recapitulated findings obtained in cell lines. CONCLUSIONS: In conclusion, a subset of colorectal cancers refractory to current therapies could benefit from inhibitors of DDR pathways and replication stress. A composite biomarker involving phospho-RPA32 and RAD51 foci, lack of ATM and RAD51C expression, as well as analysis of mutational signatures could be used to identify colorectal cancers likely to respond to ATRi.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Antineoplásicos/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Daño del ADN , Replicación del ADN , Proteína Quinasa Activada por ADN/genética , Humanos , Inhibidores de Proteínas Quinasas/farmacología
8.
J Exp Clin Cancer Res ; 40(1): 185, 2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34090508

RESUMEN

Colorectal cancer (CRC) is a complex and heterogeneous disease, characterized by dismal prognosis and low survival rate in the advanced (metastatic) stage. During the last decade, the establishment of novel preclinical models, leading to the generation of translational discovery and validation platforms, has opened up a new scenario for the clinical practice of CRC patients. To bridge the results developed at the bench with the medical decision process, the ideal model should be easily scalable, reliable to predict treatment responses, and flexibly adapted for various applications in the research. As such, the improved benefit of novel therapies being tested initially on valuable and reproducible preclinical models would lie in personalized treatment recommendations based on the biology and genomics of the patient's tumor with the overall aim to avoid overtreatment and unnecessary toxicity. In this review, we summarize different in vitro and in vivo models, which proved efficacy in detection of novel CRC culprits and shed light into the biology and therapy of this complex disease. Even though cell lines and patient-derived xenografts remain the mainstay of colorectal cancer research, the field has been confidently shifting to the use of organoids as the most relevant preclinical model. Prioritization of organoids is supported by increasing body of evidence that these represent excellent tools worth further therapeutic explorations. In addition, novel preclinical models such as zebrafish avatars are emerging as useful tools for pharmacological interrogation. Finally, all available models represent complementary tools that can be utilized for precision medicine applications.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Organoides/efectos de los fármacos , Medicina de Precisión , Animales , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Humanos , Ensayos Antitumor por Modelo de Xenoinjerto , Pez Cebra/genética
9.
J Pharm Biomed Anal ; 203: 114168, 2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34089981

RESUMEN

Gene-directed enzyme/prodrug therapy represents one of the experimental treatment approaches. The system based on conversion of nontoxic prodrug 5-fluorocytosine to chemotherapeutic 5-fluorouracil by cytosine deaminase or fusion cytosine deaminase::uracil phosphoribosyl transferase belongs to the most frequently used. The detailed analysis of 5-fluorocytosine, 5-fluorouracil and its metabolites enables to understand various responses of tumour cells to treatment as well as mechanisms of resistance. A fast, sensitive and accurate methods based on liquid chromatography with high-resolution mass spectrometry (LC-HRMS) for the identification and quantification of 5-fluorocytosine, 5-fluorouracil and its major metabolites were developed. Two different hybrid high-resolution mass spectrometers sufficient for study of metabolic pathways were used. The LC-ESI IT-TOF MS method was successfully used for identification of 5-fluorocytosine, 5-fluorouracil and its metabolites in complex biological matrices (mesenchymal stromal cells and tumour cells media) and for confirmation of the metabolic conversion of 5-fluorocytosine even in chemoresistant tumour cells media samples. For quantification, the LC-HESI QExactive MS method was developed and validated. The developed method demonstrated a very good linear range for 5-fluorocytosine from 1 ng/mL to 1000 ng/mL and for its major metabolites from 5 ng/mL to 1000 ng/mL. The limits of detection and limits of quantification ranged from 1.1 to 26 ng/mL and from 3.6 to 87 ng/mL, respectively. Both developed methods confirmed the ability of gene-directed enzyme prodrug therapy to metabolically convert 5-fluorocytosine to 5-fluorouracil and its major metabolites in real samples of tumour cell media and mesenchymal stromal cells.


Asunto(s)
Flucitosina , Profármacos , Cromatografía Liquida , Citosina Desaminasa , Fluorouracilo , Espectrometría de Masas
10.
Biochem Pharmacol ; 171: 113695, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31706846

RESUMEN

Several papers have reported that calcium channel blocking drugs were associated with increased breast cancer risk and worsened prognosis. One of the most common signs of breast tumors is the presence of small deposits of calcium, known as microcalcifications. Therefore, we studied the effect of dihydropyridine nifedipine on selected calcium transport systems in MDA-MB-231 cells, originating from triple negative breast tumor and JIMT1 cells that represent a model of HER2-positive breast cancer, which possesses amplification of HER2 receptor, but cells do not response to HER2 inhibition treatment with trastuzumab. Also, we compared the effect of nifedipine on colorectal DLD1 and ovarian A2780 cancer cells. Both, inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) and type 1 sodium calcium exchanger (NCX1) were upregulated due to nifedipine in DLD1 and A2780 cells, but not in breast cancer MDA-MB-231 and JIMT1 cells. On contrary to MDA-MB-231 and JIMT1 cells, in DLD1 and A2780 cells nifedipine induced apoptosis in a concentration-dependent manner. After NCX1 silencing and subsequent treatment with nifedipine, proliferation was decreased in MDA-MB-231, increased in DLD1 cells, and not changed in JIMT1 cells. Silencing of IP3R1 revealed increase in proliferation in DLD1 and JIMT1 cells, but caused decrease in proliferation in MDA-MB-231 cell line after nifedipine treatment. Interestingly, after nifedipine treatment migration was not significantly affected in any of tested cell lines after NCX1 silencing. Due to IP3R1 silencing, significant decrease in migration occurred in MDA-MB-231 cells after nifedipine treatment, but not in other tested cells. These results support different function of the NCX1 and IP3R1 in the invasiveness of various cancer cells due to nifedipine treatment.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Nifedipino/farmacología , Antineoplásicos Inmunológicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Interferencia de ARN , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Intercambiador de Sodio-Calcio/genética , Intercambiador de Sodio-Calcio/metabolismo , Trastuzumab/farmacología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
11.
Clin Cancer Res ; 26(6): 1372-1384, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31831554

RESUMEN

PURPOSE: Defects in the homologous recombination (HR) repair pathway are of clinical interest due to sensitivity of HR-deficient cells to PARP inhibitors. We were interested in defining PARP vulnerability in patients with metastatic colorectal cancer (mCRC) carrying KRAS and BRAF mutations who display poor prognosis, have limited therapeutic options, and represent an unmet clinical need. EXPERIMENTAL DESIGN: We tested colorectal cancer cell lines, patient-derived organoids (PDO), and patient-derived xenografts (PDX) enriched for KRAS and BRAF mutations for sensitivity to the PARP inhibitor olaparib, and the chemotherapeutic agents oxaliplatin and 5-fluorouracil (5-FU). Genomic profiles and DNA repair proficiency of colorectal cancer models were compared with pharmacologic response. RESULTS: Thirteen of 99 (around 13%) colorectal cancer cell lines were highly sensitive to clinically active concentrations of olaparib and displayed functional deficiency in HR. Response to PARP blockade was positively correlated with sensitivity to oxaliplatin in colorectal cancer cell lines as well as patient-derived organoids. Treatment of PDXs with olaparib impaired tumor growth and maintenance therapy with PARP blockade after initial oxaliplatin response delayed disease progression in mice. CONCLUSIONS: These results indicate that a colorectal cancer subset characterized by poor prognosis and limited therapeutic options is vulnerable to PARP inhibition and suggest that PDO-based drug-screening assays can be used to identify patients with colorectal cancer likely to benefit from olaparib. As patients with mCRC almost invariably receive therapies based on oxaliplatin, "maintenance" treatment with PARP inhibitors warrants further clinical investigation.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Oxaliplatino/farmacología , Ftalazinas/farmacología , Piperazinas/farmacología , Reparación del ADN por Recombinación , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mutación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Cancers (Basel) ; 11(9)2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31443351

RESUMEN

Cisplatin resistance in testicular germ cell tumors (TGCTs) is a clinical challenge. We investigated the underlying mechanisms associated with cancer stem cell (CSC) markers and modalities circumventing the chemoresistance. Chemoresistant models (designated as CisR) of human embryonal carcinoma cell lines NTERA-2 and NCCIT were derived and characterized using flow cytometry, gene expression, functional and protein arrays. Tumorigenicity was determined on immunodeficient mouse model. Disulfiram was used to examine chemosensitization of resistant cells. ALDH1A3 isoform expression was evaluated by immunohistochemistry in 216 patients' tissue samples. Chemoresistant cells were significantly more resistant to cisplatin, carboplatin and oxaliplatin compared to parental cells. NTERA-2 CisR cells exhibited altered morphology and increased tumorigenicity. High ALDH1A3 expression and increased ALDH activity were detected in both refractory cell lines. Disulfiram in combination with cisplatin showed synergy for NTERA-2 CisR and NCCIT CisR cells and inhibited growth of NTERA-2 CisR xenografts. Significantly higher ALDH1A3 expression was detected in TGCTs patients' tissue samples compared to normal testicular tissue. We characterized novel clinically relevant model of chemoresistant TGCTs, for the first time identified the ALDH1A3 as a therapeutic target in TGCTs and more importantly, showed that disulfiram represents a viable treatment option for refractory TGCTs.

13.
Cell Death Dis ; 10(3): 186, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30796197

RESUMEN

Although the involvement of type 1 (IP3R1) and type 2 (IP3R2) inositol 1,4,5-trisphosphate receptors in apoptosis induction has been well documented in different cancer cells and tissues, the function of type 3 IP3R (IP3R3) is still elusive. Therefore, in this work we focused on the role of IP3R3 in tumor cells in vitro and in vivo. We determined increased expression of this receptor in clear cell renal cell carcinoma compared to matched unaffected part of the kidney from the same patient. Thus, we hypothesized about different functions of IP3R3 compared to IP3R1 and IP3R2 in tumor cells. Silencing of IP3R1 prevented apoptosis induction in colorectal cancer DLD1 cells, ovarian cancer A2780 cells, and clear cell renal cell carcinoma RCC4 cells, compared to apoptosis in cells treated with scrambled siRNA. As expected, silencing of IP3R3 and subsequent apoptosis induction resulted in increased levels of apoptosis in all these cells. Further, we prepared a DLD1/IP3R3_del cell line using CRISPR/Cas9 gene editing method. These cells were injected into nude mice and tumor's volume was compared with tumors induced by DLD1 cells. Lower volume of tumors originated from DLD1/IP3R3_del cells was observed after 12 days, compared to wild type DLD1 cells. Also, the migration of these cells was lesser compared to wild type DLD1 cells. Apoptosis under hypoxic conditions was more pronounced in DLD1/IP3R3_del cells than in DLD1 cells. These results clearly show that IP3R3 has proliferative and anti-apoptotic effect in tumor cells, on contrary to the pro-apoptotic effect of IP3R1.


Asunto(s)
Apoptosis , Carcinoma de Células Renales/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/fisiología , Neoplasias Renales/metabolismo , Anciano , Animales , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Femenino , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Trasplante Heterólogo
14.
Clin Cancer Res ; 25(20): 6243-6259, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31375513

RESUMEN

PURPOSE: Patient-derived xenograft (PDX) models accurately recapitulate the tumor of origin in terms of histopathology, genomic landscape, and therapeutic response, but some limitations due to costs associated with their maintenance and restricted amenability for large-scale screenings still exist. To overcome these issues, we established a platform of 2D cell lines (xeno-cell lines, XL), derived from PDXs of colorectal cancer with matched patient germline gDNA available. EXPERIMENTAL DESIGN: Whole-exome and transcriptome sequencing analyses were performed. Biomarkers of response and resistance to anti-HER therapy were annotated. Dependency on the WRN helicase gene was assessed in MSS, MSI-H, and MSI-like XLs using a reverse genetics functional approach. RESULTS: XLs recapitulated the entire spectrum of colorectal cancer transcriptional subtypes. Exome and RNA-seq analyses delineated several molecular biomarkers of response and resistance to EGFR and HER2 blockade. Genotype-driven responses observed in vitro in XLs were confirmed in vivo in the matched PDXs. MSI-H models were dependent upon WRN gene expression, while loss of WRN did not affect MSS XLs growth. Interestingly, one MSS XL with transcriptional MSI-like traits was sensitive to WRN depletion. CONCLUSIONS: The XL platform represents a preclinical tool for functional gene validation and proof-of-concept studies to identify novel druggable vulnerabilities in colorectal cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/genética , Resistencia a Antineoplásicos/genética , Inestabilidad de Microsatélites , Adulto , Anciano , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Estudios de Cohortes , Colon/patología , Colon/cirugía , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Femenino , Dosificación de Gen , Humanos , Lapatinib/farmacología , Lapatinib/uso terapéutico , Masculino , Ratones , Persona de Mediana Edad , Medicina de Precisión , Cultivo Primario de Células , RNA-Seq , Recto/patología , Recto/cirugía , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Resultado del Tratamiento , Helicasa del Síndrome de Werner/genética , Secuenciación del Exoma , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Cancer Gene Ther ; 25(11-12): 285-299, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29925898

RESUMEN

Gene-directed enzyme/prodrug therapy (GDEPT) mediated by mesenchymal stromal cells (MSC) was already approved for clinical study on a progressive disease refractory to standard therapy. In this work, we examined the effect of several GDEPT approaches on chemoresistant cells. First, we derived 5-fluorouracil (5-FU)-resistant variant of human colorectal adenocarcinoma cells HT-29 designated HT-29/EGFP/FUR. Our data show that the upregulation of thymidylate synthase (TS) and downregulation of thymidine phosphorylase (TP), orotate phosphoribosyl transferase (OPRT) and dihydropyrimidine dehydrogenase (DPD) contributed to the 5-FU resistance in cancer cells. Next, we combined the MSC expressing either yeast cytosine deaminase (CD-MSC) or fusion yeast CD::uracil phosphoribosyl transferase (CD::UPRT-MSC) and prodrug 5-fluorocytosine (5-FC) in a cell-mediated GDEPT approach. Bystander cytotoxic effect in the direct co-cultures of the tumor and therapeutic cells mixed in a 5:1 ratio resulted in 55% and 70% inhibition of proliferation, respectively. However, the acquired chemoresistance to 5-FU can be overcome by introducing the prodrug-converting transgene into the tumor cells. When the transgene CD::UPRT was expressed in the chemoresistant cells (CD::UPRT-FUR), substantial suicide effect and a 90% decrease in viability was observed using non-toxic concentration of 62.5 µg/ml 5-FC. In summary, we demonstrate here that the transgene introduction circumvented 5-FU resistance in the tumor cells.


Asunto(s)
Fluorouracilo/uso terapéutico , Terapia Genética/métodos , Profármacos/uso terapéutico , Animales , Línea Celular Tumoral , Fluorouracilo/farmacología , Humanos , Ratones , Ratones SCID , Profármacos/farmacología
16.
Cancer Lett ; 408: 1-9, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28838843

RESUMEN

Mesenchymal stromal cells (MSCs) were introduced as tumor-targeted vehicles suitable for delivery of the gene-directed enzyme/prodrug therapy more than 10 years ago. Over these years key properties of tumor cells and MSCs, which are crucial for the treatment efficiency, were examined; and there are some critical issues to be considered for the maximum antitumor effect. Moreover, engineered MSCs expressing enzymes capable of activating non-toxic prodrugs achieved long-term curative effect even in metastatic and hard-to-treat tumor types in pre-clinical scenario(s). These gene-modified MSCs are termed prodrug-activating MSCs throughout the text and represent promising approach for further clinical application. This review summarizes major determinants to be considered for the application of the prodrug-activating MSCs in antitumor therapy in order to maximize therapeutic efficiency.


Asunto(s)
Antineoplásicos/uso terapéutico , Terapia Genética , Células Madre Mesenquimatosas/citología , Neoplasias/genética , Neoplasias/terapia , Profármacos/uso terapéutico , Animales , Humanos , Células Madre Mesenquimatosas/metabolismo , Neoplasias/patología
18.
J Exp Clin Cancer Res ; 34: 33, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25884597

RESUMEN

BACKGROUND: Metastatic spread of tumor cells remains a serious problem in cancer treatment. Gene-directed enzyme/prodrug therapy mediated by tumor-homing genetically engineered mesenchymal stromal cells (MSC) represents a promising therapeutic modality for elimination of disseminated cells. Efficacy of gene-directed enzyme/prodrug therapy can be improved by combination of individual systems. We aimed to define the combination effect of two systems of gene therapy mediated by MSC, and evaluate the ability of systemically administered genetically engineered mesenchymal stromal cells to inhibit the growth of experimental metastases derived from human breast adenocarcinoma cells MDA-MB-231/EGFP. METHODS: Human adipose tissue-derived mesenchymal stromal cells (AT-MSC) were retrovirally transduced with fusion yeast cytosine deaminase::uracil phosphoribosyltransferase (CD::UPRT) or with Herpes simplex virus thymidine kinase (HSVtk). Engineered MSC were cocultured with tumor cells in the presence of prodrugs 5-fluorocytosin (5-FC) and ganciclovir (GCV). Combination effect of these enzyme/prodrug approaches was calculated. SCID/bg mice bearing experimental lung metastases were treated with CD::UPRT-MSC, HSVtk-MSC or both in combination in the presence of respective prodrug(s). Treatment efficiency was evaluated by EGFP-positive cell detection by flow cytometry combined with real-time PCR quantification of human cells in mouse organs. Results were confirmed by histological and immunohistochemical examination. RESULTS: We demonstrated various extent of synergy depending on tested cell line and experimental setup. The strongest synergism was observed on breast cancer-derived cell line MDA-MB-231/EGFP. Systemic administration of CD::UPRT-MSC and HSVtk-MSC in combination with 5-FC and GCV inhibited growth of MDA-MB-231 induced lung metastases. CONCLUSIONS: Combined gene-directed enzyme/prodrug therapy mediated by MSC exerted synergic cytotoxic effect and resulted in high therapeutic efficacy in vivo.


Asunto(s)
Ganciclovir/farmacología , Terapia Genética , Neoplasias Pulmonares/patología , Células Madre Mesenquimatosas/metabolismo , Timidina Quinasa/genética , Transducción Genética , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/terapia , Trasplante de Células Madre Mesenquimatosas , Ratones , Virus de la Leucemia Murina de Moloney/genética , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA