Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 542(7640): 219-222, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28135723

RESUMEN

The instability and accelerated melting of the Antarctic Ice Sheet are among the foremost elements of contemporary global climate change. The increased freshwater output from Antarctica is important in determining sea level rise, the fate of Antarctic sea ice and its effect on the Earth's albedo, ongoing changes in global deep-ocean ventilation, and the evolution of Southern Ocean ecosystems and carbon cycling. A key uncertainty in assessing and predicting the impacts of Antarctic Ice Sheet melting concerns the vertical distribution of the exported meltwater. This is usually represented by climate-scale models as a near-surface freshwater input to the ocean, yet measurements around Antarctica reveal the meltwater to be concentrated at deeper levels. Here we use observations of the turbulent properties of the meltwater outflows from beneath a rapidly melting Antarctic ice shelf to identify the mechanism responsible for the depth of the meltwater. We show that the initial ascent of the meltwater outflow from the ice shelf cavity triggers a centrifugal overturning instability that grows by extracting kinetic energy from the lateral shear of the background oceanic flow. The instability promotes vigorous lateral export, rapid dilution by turbulent mixing, and finally settling of meltwater at depth. We use an idealized ocean circulation model to show that this mechanism is relevant to a broad spectrum of Antarctic ice shelves. Our findings demonstrate that the mechanism producing meltwater at depth is a dynamically robust feature of Antarctic melting that should be incorporated into climate-scale models.


Asunto(s)
Congelación , Agua Dulce/análisis , Cubierta de Hielo/química , Agua de Mar/química , Movimientos del Agua , Regiones Antárticas , Ciclo del Carbono , Clima , Cambio Climático , Ecosistema , Modelos Teóricos , Océanos y Mares , Agua de Mar/análisis
3.
Nat Commun ; 14(1): 1479, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932070

RESUMEN

Mass loss from the West Antarctic Ice Sheet is dominated by glaciers draining into the Amundsen Sea Embayment (ASE), yet the impact of anomalous precipitation on the mass balance of the ASE is poorly known. Here we present a 25-year (1996-2021) record of ASE input-output mass balance and evaluate how two periods of anomalous precipitation affected its sea level contribution. Since 1996, the ASE has lost 3331 ± 424 Gt ice, contributing 9.2 ± 1.2 mm to global sea level. Overall, surface mass balance anomalies contributed little (7.7%) to total mass loss; however, two anomalous precipitation events had larger, albeit short-lived, impacts on rates of mass change. During 2009-2013, persistently low snowfall led to an additional 51 ± 4 Gt yr-1 mass loss in those years (contributing positively to the total loss of 195 ± 4 Gt yr-1). Contrastingly, extreme precipitation in the winters of 2019 and 2020 decreased mass loss by 60 ± 16 Gt yr-1 during those years (contributing negatively to the total loss of 107 ± 15 Gt yr-1). These results emphasise the important impact of extreme snowfall variability on the short-term sea level contribution from West Antarctica.

4.
Nat Commun ; 13(1): 1138, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241654

RESUMEN

Recent rapid thinning of West Antarctic ice shelves are believed to be caused by intrusions of warm deep water that induce basal melting and seaward meltwater export. This study uses data from three bottom-mounted mooring arrays to show seasonal variability and local forcing for the currents moving into and out of the Dotson ice shelf cavity. A southward flow of warm, salty water had maximum current velocities along the eastern channel slope, while northward outflows of freshened ice shelf meltwater spread at intermediate depth above the western slope. The inflow correlated with the local ocean surface stress curl. At the western slope, meltwater outflows followed the warm influx along the eastern slope with a ~2-3 month delay. Ocean circulation near Dotson Ice Shelf, affected by sea ice distribution and wind, appears to significantly control the inflow of warm water and subsequent ice shelf melting on seasonal time-scales.


Asunto(s)
Cubierta de Hielo , Agua de Mar , Regiones Antárticas , Estaciones del Año , Agua
5.
Nat Commun ; 13(1): 306, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35027549

RESUMEN

Pine Island Ice Shelf (PIIS) buttresses the Pine Island Glacier, the key contributor to sea-level rise. PIIS has thinned owing to ocean-driven melting, and its calving front has retreated, leading to buttressing loss. PIIS melting depends primarily on the thermocline variability in its front. Furthermore, local ocean circulation shifts adjust heat transport within Pine Island Bay (PIB), yet oceanic processes underlying the ice front retreat remain unclear. Here, we report a PIB double-gyre that moves with the PIIS calving front and hypothesise that it controls ocean heat input towards PIIS. Glacial melt generates cyclonic and anticyclonic gyres near and off PIIS, and meltwater outflows converge into the anticyclonic gyre with a deep-convex-downward thermocline. The double-gyre migrated eastward as the calving front retreated, placing the anticyclonic gyre over a shallow seafloor ridge, reducing the ocean heat input towards PIIS. Reconfigurations of meltwater-driven gyres associated with moving ice boundaries might be crucial in modulating ocean heat delivery to glacial ice.

6.
Sci Adv ; 7(43): eabi5738, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34678060

RESUMEN

The spatial distribution of ocean-induced melting beneath buttressing ice shelves is often cited as an important factor controlling Antarctica's sea-level contribution. Using numerical simulations, we investigate the relative sensitivity of grounded-ice loss to the spatial distribution and overall volume of ice-shelf melt over two centuries. Contrary to earlier work, we find only minor sensitivity to melt distribution (<6%), with a linear dependence of ice loss on the total melt. Thus, less complex models that need not reproduce the detailed melt distribution may simplify the projection of future sea level. The linear sensitivity suggests a contribution of up to 5.1 cm from Pine Island Glacier over the next two centuries given anticipated levels of ocean warming, provided its ice shelf does not collapse because of other causes.

7.
Sci Adv ; 7(24)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34117064

RESUMEN

Speedup of Pine Island Glacier over the past several decades has made it Antarctica's largest contributor to sea-level rise. The past speedup is largely due to grounding-line retreat in response to ocean-induced thinning that reduced ice-shelf buttressing. While speeds remained fairly steady from 2009 to late 2017, our Copernicus Sentinel 1A/B-derived velocity data show a >12% speedup over the past 3 years, coincident with a 19-km retreat of the ice shelf. We use an ice-flow model to simulate this loss, finding that accelerated calving can explain the recent speedup, independent of the grounding-line, melt-driven processes responsible for past speedups. If the ice shelf's rapid retreat continues, it could further destabilize the glacier far sooner than would be expected due to surface- or ocean-melting processes.

8.
Nat Commun ; 12(1): 1133, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33623011

RESUMEN

The Getz region of West Antarctica is losing ice at an increasing rate; however, the forcing mechanisms remain unclear. Here we use satellite observations and an ice sheet model to measure the change in ice speed and mass balance of the drainage basin over the last 25-years. Our results show a mean increase in speed of 23.8 % between 1994 and 2018, with three glaciers accelerating by over 44 %. Speedup across the Getz basin is linear, with speedup and thinning directly correlated confirming the presence of dynamic imbalance. Since 1994, 315 Gt of ice has been lost contributing 0.9 ± 0.6 mm global mean sea level, with increased loss since 2010 caused by a snowfall reduction. Overall, dynamic imbalance accounts for two thirds of the mass loss from this region of West Antarctica over the past 25-years, with a longer-term response to ocean forcing the likely driving mechanism.

9.
Sci Rep ; 9(1): 16649, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31757979

RESUMEN

In the Amundsen Sea, modified Circumpolar Deep Water (mCDW) intrudes into ice shelf cavities, causing high ice shelf melting near the ice sheet grounding lines, accelerating ice flow, and controlling the pace of future Antarctic contributions to global sea level. The pathways of mCDW towards grounding lines are crucial as they directly control the heat reaching the ice. A realistic representation of mCDW circulation, however, remains challenging due to the sparsity of in-situ observations and the difficulty of ocean models to reproduce the available observations. In this study, we use an unprecedentedly high-resolution (200 m horizontal and 10 m vertical grid spacing) ocean model that resolves shelf-sea and sub-ice-shelf environments in qualitative agreement with existing observations during austral summer conditions. We demonstrate that the waters reaching the Pine Island and Thwaites grounding lines follow specific, topographically-constrained routes, all passing through a relatively small area located around 104°W and 74.3°S. The temporal and spatial variabilities of ice shelf melt rates are dominantly controlled by the sub-ice shelf ocean current. Our findings highlight the importance of accurate and high-resolution ocean bathymetry and subglacial topography for determining mCDW pathways and ice shelf melt rates.

10.
Nat Commun ; 8: 14507, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28211473

RESUMEN

Pine Island Glacier (PIG) terminates in a rapidly melting ice shelf, and ocean circulation and temperature are implicated in the retreat and growing contribution to sea level rise of PIG and nearby glaciers. However, the variability of the ocean forcing of PIG has been poorly constrained due to a lack of multi-year observations. Here we show, using a unique record close to the Pine Island Ice Shelf (PIIS), that there is considerable oceanic variability at seasonal and interannual timescales, including a pronounced cold period from October 2011 to May 2013. This variability can be largely explained by two processes: cumulative ocean surface heat fluxes and sea ice formation close to PIIS; and interannual reversals in ocean currents and associated heat transport within Pine Island Bay, driven by a combination of local and remote forcing. Local atmospheric forcing therefore plays an important role in driving oceanic variability close to PIIS.

11.
Science ; 343(6167): 174-8, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24385606

RESUMEN

Pine Island Glacier has thinned and accelerated over recent decades, significantly contributing to global sea-level rise. Increased oceanic melting of its ice shelf is thought to have triggered those changes. Observations and numerical modeling reveal large fluctuations in the ocean heat available in the adjacent bay and enhanced sensitivity of ice-shelf melting to water temperatures at intermediate depth, as a seabed ridge blocks the deepest and warmest waters from reaching the thickest ice. Oceanic melting decreased by 50% between January 2010 and 2012, with ocean conditions in 2012 partly attributable to atmospheric forcing associated with a strong La Niña event. Both atmospheric variability and local ice shelf and seabed geometry play fundamental roles in determining the response of the Antarctic Ice Sheet to climate.


Asunto(s)
Cambio Climático , Cubierta de Hielo , Islas , Congelación
12.
J Forensic Sci ; 53(6): 1434-6, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18752554

RESUMEN

The authors describe a case of suicide in the workplace. A 45-year-old man employed by a fruit and vegetable packing company was found dead in a room containing a modified atmosphere for the packaging of fruits and vegetables. The rescue team measured the carbon monoxide (CO) concentration of the ambient air with a digital CO tester and found a level higher than 600 particles per million. Analysis of an arterial blood sample taken with an airtight syringe revealed the absence of CO but high levels of carbon dioxide (CO(2)). Autopsy revealed no significant injury and police investigators found a handwritten note of intent, describing a recent personal crisis. The authors concluded that the cause of death was suicide by asphyxiation secondary to CO(2) intoxication and notably oxygen (O(2)) depletion. This manner of suicide is rare and most cases previously described in the literature were accidental intoxications. To the best of our knowledge, this is the first case of suicide by CO(2) intoxication and O(2) depletion in a room with a modified atmosphere.


Asunto(s)
Asfixia/etiología , Dióxido de Carbono/envenenamiento , Ambiente Controlado , Hipoxia/etiología , Suicidio , Dióxido de Carbono/sangre , Medicina Legal , Humanos , Masculino , Persona de Mediana Edad , Lugar de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA