Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 28(5): 2008-2017, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147389

RESUMEN

Using machine learning, we recently decomposed the neuroanatomical heterogeneity of established schizophrenia to discover two volumetric subgroups-a 'lower brain volume' subgroup (SG1) and an 'higher striatal volume' subgroup (SG2) with otherwise normal brain structure. In this study, we investigated whether the MRI signatures of these subgroups were also already present at the time of the first-episode of psychosis (FEP) and whether they were related to clinical presentation and clinical remission over 1-, 3-, and 5-years. We included 572 FEP and 424 healthy controls (HC) from 4 sites (Sao Paulo, Santander, London, Melbourne) of the PHENOM consortium. Our prior MRI subgrouping models (671 participants; USA, Germany, and China) were applied to both FEP and HC. Participants were assigned into 1 of 4 categories: subgroup 1 (SG1), subgroup 2 (SG2), no subgroup membership ('None'), and mixed SG1 + SG2 subgroups ('Mixed'). Voxel-wise analyses characterized SG1 and SG2 subgroups. Supervised machine learning analyses characterized baseline and remission signatures related to SG1 and SG2 membership. The two dominant patterns of 'lower brain volume' in SG1 and 'higher striatal volume' (with otherwise normal neuromorphology) in SG2 were identified already at the first episode of psychosis. SG1 had a significantly higher proportion of FEP (32%) vs. HC (19%) than SG2 (FEP, 21%; HC, 23%). Clinical multivariate signatures separated the SG1 and SG2 subgroups (balanced accuracy = 64%; p < 0.0001), with SG2 showing higher education but also greater positive psychosis symptoms at first presentation, and an association with symptom remission at 1-year, 5-year, and when timepoints were combined. Neuromorphological subtypes of schizophrenia are already evident at illness onset, separated by distinct clinical presentations, and differentially associated with subsequent remission. These results suggest that the subgroups may be underlying risk phenotypes that could be targeted in future treatment trials and are critical to consider when interpreting neuroimaging literature.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Humanos , Brasil , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética
2.
Cereb Cortex ; 32(8): 1625-1636, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-34519351

RESUMEN

Adult gyrification provides a window into coordinated early neurodevelopment when disruptions predispose individuals to psychiatric illness. We hypothesized that the echoes of such disruptions should be observed within structural gyrification networks in early psychiatric illness that would demonstrate associations with developmentally relevant variables rather than specific psychiatric symptoms. We employed a new data-driven method (Orthogonal Projective Non-Negative Matrix Factorization) to delineate novel gyrification-based networks of structural covariance in 308 healthy controls. Gyrification within the networks was then compared to 713 patients with recent onset psychosis or depression, and at clinical high-risk. Associations with diagnosis, symptoms, cognition, and functioning were investigated using linear models. Results demonstrated 18 novel gyrification networks in controls as verified by internal and external validation. Gyrification was reduced in patients in temporal-insular, lateral occipital, and lateral fronto-parietal networks (pFDR < 0.01) and was not moderated by illness group. Higher gyrification was associated with better cognitive performance and lifetime role functioning, but not with symptoms. The findings demonstrated that gyrification can be parsed into novel brain networks that highlight generalized illness effects linked to developmental vulnerability. When combined, our study widens the window into the etiology of psychiatric risk and its expression in adulthood.


Asunto(s)
Imagen por Resonancia Magnética , Trastornos Psicóticos , Adulto , Encéfalo/diagnóstico por imagen , Corteza Cerebral , Humanos , Imagen por Resonancia Magnética/métodos , Trastornos Psicóticos/diagnóstico por imagen , Factores de Riesgo
3.
Eur Arch Psychiatry Clin Neurosci ; 272(3): 403-413, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34535813

RESUMEN

BACKGROUND: Formal thought disorder (FTD) has been associated with more severe illness courses and functional deficits in patients with psychotic disorders. However, it remains unclear whether the presence of FTD characterises a specific subgroup of patients showing more prominent illness severity, neurocognitive and functional impairments. This study aimed to identify stable and generalizable FTD-subgroups of patients with recent-onset psychosis (ROP) by applying a comprehensive data-driven clustering approach and to test the validity of these subgroups by assessing associations between this FTD-related stratification, social and occupational functioning, and neurocognition. METHODS: 279 patients with ROP were recruited as part of the multi-site European PRONIA study (Personalised Prognostic Tools for Early Psychosis Management; www.pronia.eu). Five FTD-related symptoms (conceptual disorganization, poverty of content of speech, difficulty in abstract thinking, increased latency of response and poverty of speech) were assessed with Positive and Negative Symptom Scale (PANSS) and the Scale for the Assessment of Negative Symptoms (SANS). RESULTS: The results with two patient subgroups showing different levels of FTD were the most stable and generalizable clustering solution (predicted clustering strength value = 0.86). FTD-High subgroup had lower scores in social (pfdr < 0.001) and role (pfdr < 0.001) functioning, as well as worse neurocognitive performance in semantic (pfdr < 0.001) and phonological verbal fluency (pfdr < 0.001), short-term verbal memory (pfdr = 0.002) and abstract thinking (pfdr = 0.010), in comparison to FTD-Low group. CONCLUSIONS: Clustering techniques allowed us to identify patients with more pronounced FTD showing more severe deficits in functioning and neurocognition, thus suggesting that FTD may be a relevant marker of illness severity in the early psychosis pathway.


Asunto(s)
Trastornos Psicóticos , Cognición , Humanos , Memoria a Corto Plazo , Trastornos Psicóticos/complicaciones , Trastornos Psicóticos/diagnóstico , Trastornos Psicóticos/psicología , Semántica , Pensamiento/fisiología
4.
Brain ; 143(3): 1027-1038, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32103250

RESUMEN

Neurobiological heterogeneity in schizophrenia is poorly understood and confounds current analyses. We investigated neuroanatomical subtypes in a multi-institutional multi-ethnic cohort, using novel semi-supervised machine learning methods designed to discover patterns associated with disease rather than normal anatomical variation. Structural MRI and clinical measures in established schizophrenia (n = 307) and healthy controls (n = 364) were analysed across three sites of PHENOM (Psychosis Heterogeneity Evaluated via Dimensional Neuroimaging) consortium. Regional volumetric measures of grey matter, white matter, and CSF were used to identify distinct and reproducible neuroanatomical subtypes of schizophrenia. Two distinct neuroanatomical subtypes were found. Subtype 1 showed widespread lower grey matter volumes, most prominent in thalamus, nucleus accumbens, medial temporal, medial prefrontal/frontal and insular cortices. Subtype 2 showed increased volume in the basal ganglia and internal capsule, and otherwise normal brain volumes. Grey matter volume correlated negatively with illness duration in Subtype 1 (r = -0.201, P = 0.016) but not in Subtype 2 (r = -0.045, P = 0.652), potentially indicating different underlying neuropathological processes. The subtypes did not differ in age (t = -1.603, df = 305, P = 0.109), sex (chi-square = 0.013, df = 1, P = 0.910), illness duration (t = -0.167, df = 277, P = 0.868), antipsychotic dose (t = -0.439, df = 210, P = 0.521), age of illness onset (t = -1.355, df = 277, P = 0.177), positive symptoms (t = 0.249, df = 289, P = 0.803), negative symptoms (t = 0.151, df = 289, P = 0.879), or antipsychotic type (chi-square = 6.670, df = 3, P = 0.083). Subtype 1 had lower educational attainment than Subtype 2 (chi-square = 6.389, df = 2, P = 0.041). In conclusion, we discovered two distinct and highly reproducible neuroanatomical subtypes. Subtype 1 displayed widespread volume reduction correlating with illness duration, and worse premorbid functioning. Subtype 2 had normal and stable anatomy, except for larger basal ganglia and internal capsule, not explained by antipsychotic dose. These subtypes challenge the notion that brain volume loss is a general feature of schizophrenia and suggest differential aetiologies. They can facilitate strategies for clinical trial enrichment and stratification, and precision diagnostics.


Asunto(s)
Sustancia Gris/patología , Aprendizaje Automático , Esquizofrenia/clasificación , Esquizofrenia/patología , Sustancia Blanca/patología , Adulto , Atrofia/patología , Encéfalo/patología , Estudios de Casos y Controles , Escolaridad , Femenino , Humanos , Hipertrofia/patología , Imagen por Resonancia Magnética , Masculino , Neuroimagen , Esquizofrenia/líquido cefalorraquídeo , Adulto Joven
5.
Cereb Cortex ; 30(3): 1345-1356, 2020 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-31368487

RESUMEN

Univariate analyses of structural neuroimaging data have produced heterogeneous results regarding anatomical sex- and gender-related differences. The current study aimed at delineating and cross-validating brain volumetric surrogates of sex and gender by comparing the structural magnetic resonance imaging data of cis- and transgender subjects using multivariate pattern analysis. Gray matter (GM) tissue maps of 29 transgender men, 23 transgender women, 35 cisgender women, and 34 cisgender men were created using voxel-based morphometry and analyzed using support vector classification. Generalizability of the models was estimated using repeated nested cross-validation. For external validation, significant models were applied to hormone-treated transgender subjects (n = 32) and individuals diagnosed with depression (n = 27). Sex was identified with a balanced accuracy (BAC) of 82.6% (false discovery rate [pFDR] < 0.001) in cisgender, but only with 67.5% (pFDR = 0.04) in transgender participants indicating differences in the neuroanatomical patterns associated with sex in transgender despite the major effect of sex on GM volume irrespective of the self-identification as a woman or man. Gender identity and gender incongruence could not be reliably identified (all pFDR > 0.05). The neuroanatomical signature of sex in cisgender did not interact with depressive features (BAC = 74.7%) but was affected by hormone therapy when applied in transgender women (P < 0.001).


Asunto(s)
Encéfalo/anatomía & histología , Identidad de Género , Caracteres Sexuales , Adulto , Encéfalo/diagnóstico por imagen , Femenino , Sustancia Gris/anatomía & histología , Sustancia Gris/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Análisis Multivariante , Tamaño de los Órganos , Personas Transgénero , Adulto Joven
6.
Hum Brain Mapp ; 40(14): 4239-4252, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31228329

RESUMEN

Imaging studies have characterized functional and structural brain abnormalities in adults after premature birth, but these investigations have mostly used univariate methods that do not account for hypothesized interdependencies between brain regions or quantify accuracy in identifying individuals. To overcome these limitations, we used multivariate machine learning to identify gray matter volume (GMV) and amplitude of low frequency fluctuations (ALFF) brain patterns that best classify young adults born very preterm/very low birth weight (VP/VLBW; n = 94) from those born full-term (FT; n = 92). We then compared the spatial maps of the structural and functional brain signatures and validated them by assessing associations with clinical birth history and basic cognitive variables. Premature birth could be predicted with a balanced accuracy of 80.7% using GMV and 77.4% using ALFF. GMV predictions were mediated by a pattern of subcortical and middle temporal reductions and volumetric increases of the lateral prefrontal, medial prefrontal, and superior temporal gyrus regions. ALFF predictions were characterized by a pattern including increases in the thalamus, pre- and post-central gyri, and parietal lobes, in addition to decreases in the superior temporal gyri bilaterally. Decision scores from each classification, assessing the degree to which an individual was classified as a VP/VLBW case, were predicted by the number of days in neonatal hospitalization and birth weight. ALFF decision scores also contributed to the prediction of general IQ, which highlighted their potential clinical significance. Combined, the results clarified previous research and suggested that primary subcortical and temporal damage may be accompanied by disrupted neurodevelopment of the cortex.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiopatología , Recien Nacido Prematuro , Aprendizaje Automático , Adulto , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Recién Nacido , Estudios Longitudinales , Imagen por Resonancia Magnética/métodos , Masculino
7.
Annu Rev Clin Psychol ; 14: 91-118, 2018 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-29401044

RESUMEN

Machine learning approaches for clinical psychology and psychiatry explicitly focus on learning statistical functions from multidimensional data sets to make generalizable predictions about individuals. The goal of this review is to provide an accessible understanding of why this approach is important for future practice given its potential to augment decisions associated with the diagnosis, prognosis, and treatment of people suffering from mental illness using clinical and biological data. To this end, the limitations of current statistical paradigms in mental health research are critiqued, and an introduction is provided to critical machine learning methods used in clinical studies. A selective literature review is then presented aiming to reinforce the usefulness of machine learning methods and provide evidence of their potential. In the context of promising initial results, the current limitations of machine learning approaches are addressed, and considerations for future clinical translation are outlined.


Asunto(s)
Aprendizaje Automático , Trastornos Mentales/diagnóstico , Trastornos Mentales/terapia , Medicina de Precisión/métodos , Psiquiatría/métodos , Psicología Clínica/métodos , Humanos
8.
J Neurosci ; 34(42): 14096-107, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25319705

RESUMEN

Adolescence is a time when the ability to engage cognitive control is linked to crucial life outcomes. Despite a historical focus on prefrontal cortex functioning, recent evidence suggests that differences between individuals may relate to interactions between distributed brain regions that collectively form a cognitive control network (CCN). Other research points to a spatially distinct and functionally antagonistic system--the default-mode network (DMN)--which typically deactivates during performance of control tasks. This literature implies that individual differences in cognitive control are determined either by activation or functional connectivity of CCN regions, deactivation or functional connectivity of DMN regions, or some combination of both. We tested between these possibilities using a multilevel fMRI characterization of CCN and DMN dynamics, measured during performance of a cognitive control task and during a task-free resting state, in 73 human adolescents. Better cognitive control performance was associated with (1) reduced activation of CCN regions, but not deactivation of the DMN; (2) variations in task-related, but not resting-state, functional connectivity within a distributed network involving both the CCN and DMN; (3) functional segregation of core elements of these two systems; and (4) task-dependent functional integration of a set of peripheral nodes into either one network or the other in response to prevailing stimulus conditions. These results indicate that individual differences in adolescent cognitive control are not solely attributable to the functioning of any single region or network, but are instead dependent on a dynamic and context-dependent interplay between the CCN and DMN.


Asunto(s)
Conducta del Adolescente/fisiología , Encéfalo/fisiología , Cognición/fisiología , Red Nerviosa/fisiología , Desempeño Psicomotor/fisiología , Adolescente , Mapeo Encefálico/métodos , Femenino , Humanos , Estudios Longitudinales , Masculino
9.
Neuropsychopharmacology ; 49(3): 573-583, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37737273

RESUMEN

Cognitively impaired and spared patient subgroups were identified in psychosis and depression, and in clinical high-risk for psychosis (CHR). Studies suggest differences in underlying brain structural and functional characteristics. It is unclear whether cognitive subgroups are transdiagnostic phenomena in early stages of psychotic and affective disorder which can be validated on the neural level. Patients with recent-onset psychosis (ROP; N = 140; female = 54), recent-onset depression (ROD; N = 130; female = 73), CHR (N = 128; female = 61) and healthy controls (HC; N = 270; female = 165) were recruited through the multi-site study PRONIA. The transdiagnostic sample and individual study groups were clustered into subgroups based on their performance in eight cognitive domains and characterized by gray matter volume (sMRI) and resting-state functional connectivity (rsFC) using support vector machine (SVM) classification. We identified an impaired subgroup (NROP = 79, NROD = 30, NCHR = 37) showing cognitive impairment in executive functioning, working memory, processing speed and verbal learning (all p < 0.001). A spared subgroup (NROP = 61, NROD = 100, NCHR = 91) performed comparable to HC. Single-disease subgroups indicated that cognitive impairment is stronger pronounced in impaired ROP compared to impaired ROD and CHR. Subgroups in ROP and ROD showed specific symptom- and functioning-patterns. rsFC showed superior accuracy compared to sMRI in differentiating transdiagnostic subgroups from HC (BACimpaired = 58.5%; BACspared = 61.7%, both: p < 0.01). Cognitive findings were validated in the PRONIA replication sample (N = 409). Individual cognitive subgroups in ROP, ROD and CHR are more informative than transdiagnostic subgroups as they map onto individual cognitive impairment and specific functioning- and symptom-patterns which show limited overlap in sMRI and rsFC. CLINICAL TRIAL REGISTRY NAME: German Clinical Trials Register (DRKS). Clinical trial registry URL: https://www.drks.de/drks_web/ . Clinical trial registry number: DRKS00005042.


Asunto(s)
Disfunción Cognitiva , Trastornos Psicóticos , Femenino , Humanos , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico , Función Ejecutiva , Sustancia Gris/diagnóstico por imagen , Trastornos Psicóticos/complicaciones , Trastornos Psicóticos/diagnóstico , Masculino , Estudios Multicéntricos como Asunto
10.
Artículo en Inglés | MEDLINE | ID: mdl-38461964

RESUMEN

BACKGROUND: Psychosis and depression patients exhibit widespread neurobiological abnormalities. The analysis of dynamic functional connectivity (dFC), allows for the detection of changes in complex brain activity patterns, providing insights into common and unique processes underlying these disorders. METHODS: In the present study, we report the analysis of dFC in a large patient sample including 127 clinical high-risk patients (CHR), 142 recent-onset psychosis (ROP) patients, 134 recent-onset depression (ROD) patients, and 256 healthy controls (HC). A sliding window-based technique was used to calculate the time-dependent FC in resting-state MRI data, followed by clustering to reveal recurrent FC states in each diagnostic group. RESULTS: We identified five unique FC states, which could be identified in all groups with high consistency (rmean = 0.889, sd = 0.116). Analysis of dynamic parameters of these states showed a characteristic increase in the lifetime and frequency of a weakly-connected FC state in ROD patients (p < 0.0005) compared to most other groups, and a common increase in the lifetime of a FC state characterised by high sensorimotor and cingulo-opercular connectivities in all patient groups compared to the HC group (p < 0.0002). Canonical correlation analysis revealed a mode which exhibited significant correlations between dFC parameters and clinical variables (r = 0.617, p < 0.0029), which was associated with positive psychosis symptom severity and several dFC parameters. CONCLUSIONS: Our findings indicate diagnosis-specific alterations of dFC and underline the potential of dynamic analysis to characterize disorders such as depression, psychosis and clinical risk states.

11.
J Affect Disord ; 327: 330-339, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-36750160

RESUMEN

BACKGROUND: Reliable prediction models of treatment outcome in Major Depressive Disorder (MDD) are currently lacking in clinical practice. Data-driven outcome definitions, combining data from multiple modalities and incorporating clinician expertise might improve predictions. METHODS: We used unsupervised machine learning to identify treatment outcome classes in 1060 MDD inpatients. Subsequently, classification models were created on clinical and biological baseline information to predict treatment outcome classes and compared to the performance of two widely used classical outcome definitions. We also related the findings to results from an online survey that assessed which information clinicians use for outcome prognosis. RESULTS: Three and four outcome classes were identified by unsupervised learning. However, data-driven outcome classes did not result in more accurate prediction models. The best prediction model was targeting treatment response in its standard definition and reached accuracies of 63.9 % in the test sample, and 59.5 % and 56.9 % in the validation samples. Top predictors included sociodemographic and clinical characteristics, while biological parameters did not improve prediction accuracies. Treatment history, personality factors, prior course of the disorder, and patient attitude towards treatment were ranked as most important indicators by clinicians. LIMITATIONS: Missing data limited the power to identify biological predictors of treatment outcome from certain modalities. CONCLUSIONS: So far, the inclusion of available biological measures in addition to psychometric and clinical information did not improve predictive value of the models, which was overall low. Optimized biomarkers, stratified predictions and the inclusion of clinical expertise may improve future prediction models.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/tratamiento farmacológico , Depresión , Resultado del Tratamiento , Pronóstico , Biomarcadores
12.
Artículo en Inglés | MEDLINE | ID: mdl-37343661

RESUMEN

BACKGROUND: Formal thought disorder (FThD) is a core feature of psychosis, and its severity and long-term persistence relates to poor clinical outcomes. However, advances in developing early recognition and management tools for FThD are hindered by a lack of insight into the brain-level predictors of FThD states and progression at the individual level. METHODS: Two hundred thirty-three individuals with recent-onset psychosis were drawn from the multisite European Prognostic Tools for Early Psychosis Management study. Support vector machine classifiers were trained within a cross-validation framework to separate two FThD symptom-based subgroups (high vs. low FThD severity), using cross-sectional whole-brain multiband fractional amplitude of low frequency fluctuations, gray matter volume and white matter volume data. Moreover, we trained machine learning models on these neuroimaging readouts to predict the persistence of high FThD subgroup membership from baseline to 1-year follow-up. RESULTS: Cross-sectionally, multivariate patterns of gray matter volume within the salience, dorsal attention, visual, and ventral attention networks separated the FThD severity subgroups (balanced accuracy [BAC] = 60.8%). Longitudinally, distributed activations/deactivations within all fractional amplitude of low frequency fluctuation sub-bands (BACslow-5 = 73.2%, BACslow-4 = 72.9%, BACslow-3 = 68.0%), gray matter volume patterns overlapping with the cross-sectional ones (BAC = 62.7%), and smaller frontal white matter volume (BAC = 73.1%) predicted the persistence of high FThD severity from baseline to follow-up, with a combined multimodal balanced accuracy of BAC = 77%. CONCLUSIONS: We report the first evidence of brain structural and functional patterns predictive of FThD severity and persistence in early psychosis. These findings open up avenues for the development of neuroimaging-based diagnostic, prognostic, and treatment options for the early recognition and management of FThD and associated poor outcomes.


Asunto(s)
Imagen por Resonancia Magnética , Trastornos Psicóticos , Humanos , Estudios Transversales , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen
13.
JAMA Psychiatry ; 80(5): 498-507, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37017948

RESUMEN

Importance: Autism spectrum disorder (ASD) is associated with significant clinical, neuroanatomical, and genetic heterogeneity that limits precision diagnostics and treatment. Objective: To assess distinct neuroanatomical dimensions of ASD using novel semisupervised machine learning methods and to test whether the dimensions can serve as endophenotypes also in non-ASD populations. Design, Setting, and Participants: This cross-sectional study used imaging data from the publicly available Autism Brain Imaging Data Exchange (ABIDE) repositories as the discovery cohort. The ABIDE sample included individuals diagnosed with ASD aged between 16 and 64 years and age- and sex-match typically developing individuals. Validation cohorts included individuals with schizophrenia from the Psychosis Heterogeneity Evaluated via Dimensional Neuroimaging (PHENOM) consortium and individuals from the UK Biobank to represent the general population. The multisite discovery cohort included 16 internationally distributed imaging sites. Analyses were performed between March 2021 and March 2022. Main Outcomes and Measures: The trained semisupervised heterogeneity through discriminative analysis models were tested for reproducibility using extensive cross-validations. It was then applied to individuals from the PHENOM and the UK Biobank. It was hypothesized that neuroanatomical dimensions of ASD would display distinct clinical and genetic profiles and would be prominent also in non-ASD populations. Results: Heterogeneity through discriminative analysis models trained on T1-weighted brain magnetic resonance images of 307 individuals with ASD (mean [SD] age, 25.4 [9.8] years; 273 [88.9%] male) and 362 typically developing control individuals (mean [SD] age, 25.8 [8.9] years; 309 [85.4%] male) revealed that a 3-dimensional scheme was optimal to capture the ASD neuroanatomy. The first dimension (A1: aginglike) was associated with smaller brain volume, lower cognitive function, and aging-related genetic variants (FOXO3; Z = 4.65; P = 1.62 × 10-6). The second dimension (A2: schizophrenialike) was characterized by enlarged subcortical volumes, antipsychotic medication use (Cohen d = 0.65; false discovery rate-adjusted P = .048), partially overlapping genetic, neuroanatomical characteristics to schizophrenia (n = 307), and significant genetic heritability estimates in the general population (n = 14 786; mean [SD] h2, 0.71 [0.04]; P < 1 × 10-4). The third dimension (A3: typical ASD) was distinguished by enlarged cortical volumes, high nonverbal cognitive performance, and biological pathways implicating brain development and abnormal apoptosis (mean [SD] ß, 0.83 [0.02]; P = 4.22 × 10-6). Conclusions and Relevance: This cross-sectional study discovered 3-dimensional endophenotypic representation that may elucidate the heterogeneous neurobiological underpinnings of ASD to support precision diagnostics. The significant correspondence between A2 and schizophrenia indicates a possibility of identifying common biological mechanisms across the 2 mental health diagnoses.


Asunto(s)
Trastorno del Espectro Autista , Esquizofrenia , Humanos , Masculino , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Femenino , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética , Esquizofrenia/patología , Endofenotipos , Estudios Transversales , Reproducibilidad de los Resultados , Neuroanatomía , Encéfalo , Imagen por Resonancia Magnética/métodos
14.
Neuropsychopharmacology ; 47(12): 2051-2060, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35982238

RESUMEN

Subtle subjective visual dysfunctions (VisDys) are reported by about 50% of patients with schizophrenia and are suggested to predict psychosis states. Deeper insight into VisDys, particularly in early psychosis states, could foster the understanding of basic disease mechanisms mediating susceptibility to psychosis, and thereby inform preventive interventions. We systematically investigated the relationship between VisDys and core clinical measures across three early phase psychiatric conditions. Second, we used a novel multivariate pattern analysis approach to predict VisDys by resting-state functional connectivity within relevant brain systems. VisDys assessed with the Schizophrenia Proneness Instrument (SPI-A), clinical measures, and resting-state fMRI data were examined in recent-onset psychosis (ROP, n = 147), clinical high-risk states of psychosis (CHR, n = 143), recent-onset depression (ROD, n = 151), and healthy controls (HC, n = 280). Our multivariate pattern analysis approach used pairwise functional connectivity within occipital (ON) and frontoparietal (FPN) networks implicated in visual information processing to predict VisDys. VisDys were reported more often in ROP (50.34%), and CHR (55.94%) than in ROD (16.56%), and HC (4.28%). Higher severity of VisDys was associated with less functional remission in both CHR and ROP, and, in CHR specifically, lower quality of life (Qol), higher depressiveness, and more severe impairment of visuospatial constructability. ON functional connectivity predicted presence of VisDys in ROP (balanced accuracy 60.17%, p = 0.0001) and CHR (67.38%, p = 0.029), while in the combined ROP + CHR sample VisDys were predicted by FPN (61.11%, p = 0.006). These large-sample study findings suggest that VisDys are clinically highly relevant not only in ROP but especially in CHR, being closely related to aspects of functional outcome, depressiveness, and Qol. Findings from multivariate pattern analysis support a model of functional integrity within ON and FPN driving the VisDys phenomenon and being implicated in core disease mechanisms of early psychosis states.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Calidad de Vida
15.
Am J Psychiatry ; 179(9): 650-660, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35410495

RESUMEN

OBJECTIVE: The prevalence and significance of schizophrenia-related phenotypes at the population level is debated in the literature. Here, the authors assessed whether two recently reported neuroanatomical signatures of schizophrenia-signature 1, with widespread reduction of gray matter volume, and signature 2, with increased striatal volume-could be replicated in an independent schizophrenia sample, and investigated whether expression of these signatures can be detected at the population level and how they relate to cognition, psychosis spectrum symptoms, and schizophrenia genetic risk. METHODS: This cross-sectional study used an independent schizophrenia-control sample (N=347; ages 16-57 years) for replication of imaging signatures, and then examined two independent population-level data sets: typically developing youths and youths with psychosis spectrum symptoms in the Philadelphia Neurodevelopmental Cohort (N=359; ages 16-23 years) and adults in the UK Biobank study (N=836; ages 44-50 years). The authors quantified signature expression using support-vector machine learning and compared cognition, psychopathology, and polygenic risk between signatures. RESULTS: Two neuroanatomical signatures of schizophrenia were replicated. Signature 1 but not signature 2 was significantly more common in youths with psychosis spectrum symptoms than in typically developing youths, whereas signature 2 frequency was similar in the two groups. In both youths and adults, signature 1 was associated with worse cognitive performance than signature 2. Compared with adults with neither signature, adults expressing signature 1 had elevated schizophrenia polygenic risk scores, but this was not seen for signature 2. CONCLUSIONS: The authors successfully replicated two neuroanatomical signatures of schizophrenia and describe their prevalence in population-based samples of youths and adults. They further demonstrated distinct relationships of these signatures with psychosis symptoms, cognition, and genetic risk, potentially reflecting underlying neurobiological vulnerability.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Cognición , Estudios Transversales , Sustancia Gris/patología , Humanos , Trastornos Psicóticos/diagnóstico , Trastornos Psicóticos/epidemiología , Trastornos Psicóticos/genética , Esquizofrenia/epidemiología , Esquizofrenia/genética , Esquizofrenia/patología
16.
Med Image Anal ; 75: 102304, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34818611

RESUMEN

Disease heterogeneity is a significant obstacle to understanding pathological processes and delivering precision diagnostics and treatment. Clustering methods have gained popularity for stratifying patients into subpopulations (i.e., subtypes) of brain diseases using imaging data. However, unsupervised clustering approaches are often confounded by anatomical and functional variations not related to a disease or pathology of interest. Semi-supervised clustering techniques have been proposed to overcome this and, therefore, capture disease-specific patterns more effectively. An additional limitation of both unsupervised and semi-supervised conventional machine learning methods is that they typically model, learn and infer from data using a basis of feature sets pre-defined at a fixed anatomical or functional scale (e.g., atlas-based regions of interest). Herein we propose a novel method, "Multi-scAle heteroGeneity analysIs and Clustering" (MAGIC), to depict the multi-scale presentation of disease heterogeneity, which builds on a previously proposed semi-supervised clustering method, HYDRA. It derives multi-scale and clinically interpretable feature representations and exploits a double-cyclic optimization procedure to effectively drive identification of inter-scale-consistent disease subtypes. More importantly, to understand the conditions under which the clustering model can estimate true heterogeneity related to diseases, we conducted extensive and systematic semi-simulated experiments to evaluate the proposed method on a sizeable healthy control sample from the UK Biobank (N = 4403). We then applied MAGIC to imaging data from Alzheimer's disease (ADNI, N = 1728) and schizophrenia (PHENOM, N = 1166) patients to demonstrate its potential and challenges in dissecting the neuroanatomical heterogeneity of common brain diseases. Taken together, we aim to provide guidance regarding when such analyses can succeed or should be taken with caution. The code of the proposed method is publicly available at https://github.com/anbai106/MAGIC.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Análisis por Conglomerados , Humanos , Aprendizaje Automático Supervisado
17.
JAMA Psychiatry ; 79(9): 907-919, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35921104

RESUMEN

Importance: The behavioral and cognitive symptoms of severe psychotic disorders overlap with those seen in dementia. However, shared brain alterations remain disputed, and their relevance for patients in at-risk disease stages has not been explored so far. Objective: To use machine learning to compare the expression of structural magnetic resonance imaging (MRI) patterns of behavioral-variant frontotemporal dementia (bvFTD), Alzheimer disease (AD), and schizophrenia; estimate predictability in patients with bvFTD and schizophrenia based on sociodemographic, clinical, and biological data; and examine prognostic value, genetic underpinnings, and progression in patients with clinical high-risk (CHR) states for psychosis or recent-onset depression (ROD). Design, Setting, and Participants: This study included 1870 individuals from 5 cohorts, including (1) patients with bvFTD (n = 108), established AD (n = 44), mild cognitive impairment or early-stage AD (n = 96), schizophrenia (n = 157), or major depression (n = 102) to derive and compare diagnostic patterns and (2) patients with CHR (n = 160) or ROD (n = 161) to test patterns' prognostic relevance and progression. Healthy individuals (n = 1042) were used for age-related and cohort-related data calibration. Data were collected from January 1996 to July 2019 and analyzed between April 2020 and April 2022. Main Outcomes and Measures: Case assignments based on diagnostic patterns; sociodemographic, clinical, and biological data; 2-year functional outcomes and genetic separability of patients with CHR and ROD with high vs low pattern expression; and pattern progression from baseline to follow-up MRI scans in patients with nonrecovery vs preserved recovery. Results: Of 1870 included patients, 902 (48.2%) were female, and the mean (SD) age was 38.0 (19.3) years. The bvFTD pattern comprising prefrontal, insular, and limbic volume reductions was more expressed in patients with schizophrenia (65 of 157 [41.2%]) and major depression (22 of 102 [21.6%]) than the temporo-limbic AD patterns (28 of 157 [17.8%] and 3 of 102 [2.9%], respectively). bvFTD expression was predicted by high body mass index, psychomotor slowing, affective disinhibition, and paranoid ideation (R2 = 0.11). The schizophrenia pattern was expressed in 92 of 108 patients (85.5%) with bvFTD and was linked to the C9orf72 variant, oligoclonal banding in the cerebrospinal fluid, cognitive impairment, and younger age (R2 = 0.29). bvFTD and schizophrenia pattern expressions forecasted 2-year psychosocial impairments in patients with CHR and were predicted by polygenic risk scores for frontotemporal dementia, AD, and schizophrenia. Findings were not associated with AD or accelerated brain aging. Finally, 1-year bvFTD/schizophrenia pattern progression distinguished patients with nonrecovery from those with preserved recovery. Conclusions and Relevance: Neurobiological links may exist between bvFTD and psychosis focusing on prefrontal and salience system alterations. Further transdiagnostic investigations are needed to identify shared pathophysiological processes underlying the neuroanatomical interface between the 2 disease spectra.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Trastornos Psicóticos , Esquizofrenia , Adulto , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Femenino , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/genética , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Masculino , Pruebas Neuropsicológicas , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/genética , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética
18.
JAMA Psychiatry ; 79(7): 677-689, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35583903

RESUMEN

Importance: Approaches are needed to stratify individuals in early psychosis stages beyond positive symptom severity to investigate specificity related to affective and normative variation and to validate solutions with premorbid, longitudinal, and genetic risk measures. Objective: To use machine learning techniques to cluster, compare, and combine subgroup solutions using clinical and brain structural imaging data from early psychosis and depression stages. Design, Setting, and Participants: A multisite, naturalistic, longitudinal cohort study (10 sites in 5 European countries; including major follow-up intervals at 9 and 18 months) with a referred patient sample of those with clinical high risk for psychosis (CHR-P), recent-onset psychosis (ROP), recent-onset depression (ROD), and healthy controls were recruited between February 1, 2014, to July 1, 2019. Data were analyzed between January 2020 and January 2022. Main Outcomes and Measures: A nonnegative matrix factorization technique separately decomposed clinical (287 variables) and parcellated brain structural volume (204 gray, white, and cerebrospinal fluid regions) data across CHR-P, ROP, ROD, and healthy controls study groups. Stability criteria determined cluster number using nested cross-validation. Validation targets were compared across subgroup solutions (premorbid, longitudinal, and schizophrenia polygenic risk scores). Multiclass supervised machine learning produced a transferable solution to the validation sample. Results: There were a total of 749 individuals in the discovery group and 610 individuals in the validation group. Individuals included those with CHR-P (n = 287), ROP (n = 323), ROD (n = 285), and healthy controls (n = 464), The mean (SD) age was 25.1 (5.9) years, and 702 (51.7%) were female. A clinical 4-dimensional solution separated individuals based on positive symptoms, negative symptoms, depression, and functioning, demonstrating associations with all validation targets. Brain clustering revealed a subgroup with distributed brain volume reductions associated with negative symptoms, reduced performance IQ, and increased schizophrenia polygenic risk scores. Multilevel results distinguished between normative and illness-related brain differences. Subgroup results were largely validated in the external sample. Conclusions and Relevance: The results of this longitudinal cohort study provide stratifications beyond the expression of positive symptoms that cut across illness stages and diagnoses. Clinical results suggest the importance of negative symptoms, depression, and functioning. Brain results suggest substantial overlap across illness stages and normative variation, which may highlight a vulnerability signature independent from specific presentations. Premorbid, longitudinal, and genetic risk validation suggested clinical importance of the subgroups to preventive treatments.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Adulto , Encéfalo/diagnóstico por imagen , Análisis por Conglomerados , Femenino , Humanos , Estudios Longitudinales , Masculino , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/genética , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética
19.
NPJ Schizophr ; 7(1): 32, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34127678

RESUMEN

Age plays a crucial role in the performance of schizophrenia vs. controls (SZ-HC) neuroimaging-based machine learning (ML) models as the accuracy of identifying first-episode psychosis from controls is poor compared to chronic patients. Resolving whether this finding reflects longitudinal progression in a disorder-specific brain pattern or a systematic but non-disorder-specific deviation from a normal brain aging (BA) trajectory in schizophrenia would help the clinical translation of diagnostic ML models. We trained two ML models on structural MRI data: an SZ-HC model based on 70 schizophrenia patients and 74 controls and a BA model (based on 561 healthy individuals, age range = 66 years). We then investigated the two models' predictions in the naturalistic longitudinal Northern Finland Birth Cohort 1966 (NFBC1966) following 29 schizophrenia and 61 controls for nine years. The SZ-HC model's schizophrenia-specificity was further assessed by utilizing independent validation (62 schizophrenia, 95 controls) and depression samples (203 depression, 203 controls). We found better performance at the NFBC1966 follow-up (sensitivity = 75.9%, specificity = 83.6%) compared to the baseline (sensitivity = 58.6%, specificity = 86.9%). This finding resulted from progression in disorder-specific pattern expression in schizophrenia and was not explained by concomitant acceleration of brain aging. The disorder-specific pattern's progression reflected longitudinal changes in cognition, outcomes, and local brain changes, while BA captured treatment-related and global brain alterations. The SZ-HC model was also generalizable to independent schizophrenia validation samples but classified depression as control subjects. Our research underlines the importance of taking account of longitudinal progression in a disorder-specific pattern in schizophrenia when developing ML classifiers for different age groups.

20.
Neuropsychopharmacology ; 46(8): 1475-1483, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33723384

RESUMEN

In schizophrenia, neurocognitive subtypes can be distinguished based on cognitive performance and they are associated with neuroanatomical alterations. We investigated the existence of cognitive subtypes in shortly medicated recent onset psychosis patients, their underlying gray matter volume patterns and clinical characteristics. We used a K-means algorithm to cluster 108 psychosis patients from the multi-site EU PRONIA (Prognostic tools for early psychosis management) study based on cognitive performance and validated the solution independently (N = 53). Cognitive subgroups and healthy controls (HC; n = 195) were classified based on gray matter volume (GMV) using Support Vector Machine classification. A cognitively spared (N = 67) and impaired (N = 41) subgroup were revealed and partially independently validated (Nspared = 40, Nimpaired = 13). Impaired patients showed significantly increased negative symptomatology (pfdr = 0.003), reduced cognitive performance (pfdr < 0.001) and general functioning (pfdr < 0.035) in comparison to spared patients. Neurocognitive deficits of the impaired subgroup persist in both discovery and validation sample across several domains, including verbal memory and processing speed. A GMV pattern (balanced accuracy = 60.1%, p = 0.01) separating impaired patients from HC revealed increases and decreases across several fronto-temporal-parietal brain areas, including basal ganglia and cerebellum. Cognitive and functional disturbances alongside brain morphological changes in the impaired subgroup are consistent with a neurodevelopmental origin of psychosis. Our findings emphasize the relevance of tailored intervention early in the course of psychosis for patients suffering from the likely stronger neurodevelopmental character of the disease.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Encéfalo/diagnóstico por imagen , Cognición , Sustancia Gris/diagnóstico por imagen , Humanos , Trastornos Psicóticos/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA