Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mol Cell ; 75(1): 66-75.e5, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31175012

RESUMEN

Liquid granules rich in intrinsically disordered proteins and RNA play key roles in critical cellular functions such as RNA processing and translation. Many details of the mechanism via which this occurs remain to be elucidated. Motivated by the lacuna in the field and by the prospects of developing de novo artificial granules that provide extrinsic control of translation, we report a bottom-up approach to engineer ribonucleoprotein granules composed of a recombinant RNA-binding IDP that exhibits phase behavior in water. We developed a kinetic model to illustrate that these granules inhibit translation through reversible or irreversible sequestration of mRNA. Within monodisperse droplets capable of transcription and translation, we experimentally demonstrate temporal inhibition of translation by using designer IDPs that exhibit tunable phase behavior. This work lays the foundation for developing artificial granules that promise to further our mechanistic understanding of their naturally occurring counterparts.


Asunto(s)
Células Artificiales/metabolismo , Gránulos Citoplasmáticos/genética , Proteínas Intrínsecamente Desordenadas/genética , Peptidomiméticos/metabolismo , ARN Mensajero/genética , Ribonucleoproteínas/genética , Secuencia de Aminoácidos , Células Artificiales/citología , Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/metabolismo , Elastina/química , Elastina/genética , Elastina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Modelos Biológicos , Peptidomiméticos/química , Transición de Fase , Plásmidos/genética , Plásmidos/metabolismo , Biosíntesis de Proteínas , Ingeniería de Proteínas/métodos , ARN/genética , ARN/metabolismo , ARN Mensajero/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo
2.
Nano Lett ; 22(14): 5898-5908, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35839459

RESUMEN

The development of platinum(Pt)-drugs for cancer therapy has stalled, as no new Pt-drugs have been approved in over a decade. Packaging small molecule drugs into nanoparticles is a way to enhance their therapeutic efficacy. To date, there has been no direct comparison of relative merits of the choice of Pt oxidation state in the same nanoparticle system that would allow its optimal design. To address this lacuna, we designed a recombinant asymmetric triblock polypeptide (ATBP) that self-assembles into rod-shaped micelles and chelates Pt(II) or enables covalent conjugation of Pt(IV) with similar morphology and stability. Both ATBP-Pt(II) and ATBP-Pt(IV) nanoparticles enhanced the half-life of Pt by ∼45-fold, but ATBP-Pt(IV) had superior tumor regression efficacy compared to ATBP-Pt(II) and cisplatin. These results suggest loading Pt(IV) into genetically engineered nanoparticles may yield a new generation of more effective platinum-drug nanoformulations.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Profármacos , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Cisplatino/química , Cisplatino/uso terapéutico , Ratones , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Péptidos/uso terapéutico , Platino (Metal)/química , Profármacos/química
3.
Nat Chem Biol ; 15(10): 1017-1024, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31527836

RESUMEN

Small-scale production of biologics has great potential for enhancing the accessibility of biomanufacturing. By exploiting cell-material feedback, we have designed a concise platform to achieve versatile production, analysis and purification of diverse proteins and protein complexes. The core of our technology is a microbial swarmbot, which consists of a stimulus-sensitive polymeric microcapsule encapsulating engineered bacteria. By sensing the confinement, the bacteria undergo programmed partial lysis at a high local density. Conversely, the encapsulating material shrinks responding to the changing chemical environment caused by cell growth, squeezing out the protein products released by bacterial lysis. This platform is then integrated with downstream modules to enable quantification of enzymatic kinetics, purification of diverse proteins, quantitative control of protein interactions and assembly of functional protein complexes and multienzyme metabolic pathways. Our work demonstrates the use of the cell-material feedback to engineer a modular and flexible platform with sophisticated yet well-defined programmed functions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bioingeniería , Escherichia coli/metabolismo , Proteínas Bacterianas/genética , Reactores Biológicos , Regulación de la Expresión Génica , Ingeniería Genética , Plásmidos
4.
Biomacromolecules ; 22(10): 4347-4356, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34477380

RESUMEN

Valency is a fundamental principle to control macromolecular interactions and is used to target specific cell types by multivalent ligand-receptor interactions using self-assembled nanoparticle carriers. At the concentrations encountered in solid tumors upon systemic administration, these nanoparticles are, however, likely to show critical micelle concentration (CMC)-dependent disassembly and thus loss of function. To overcome this limitation, core-crosslinkable micelles of genetically encoded resilin-/elastin-like diblock polypeptides were recombinantly synthesized. The amphiphilic constructs were covalently photo-crosslinked through the genetically encoded unnatural amino acid para-azidophenylalanine in their hydrophobic block and they carried different anticancer ligands on their hydrophilic block: the wild-type tenth human fibronectin type III domain, a GRGDSPAS peptide-both targeting αvß3 integrin-and an engineered variant of the third fibronectin type III domain of tenascin C that is a death receptor 5 agonist. Although uncrosslinked micelles lost most of their targeting ability below their CMC, the crosslinked analogues remained active at concentrations up to 1000-fold lower than the CMC, with binding affinities that are comparable to antibodies.


Asunto(s)
Elastina , Neoplasias , Elastina/genética , Humanos , Proteínas de Insectos , Micelas , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Péptidos/genética
5.
Biomacromolecules ; 22(9): 3827-3838, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34387460

RESUMEN

Diblock copolymers are valued for their ability to form thin films with nanoscale features that typically reflect those of their microphase-separated structures in concentrated solution. Here, we show that such self-assembled structures can be easily formed with diblock copolymers composed of thermally responsive polypeptides, such as resilin-like polypeptides (RLP) and elastin-like polypeptides (ELP), by exploiting the inverse temperature transition behavior of ELPs in aqueous media. Specifically, we examine the self-assembly of a series of RLP-b-ELP diblock copolypeptides in concentrated aqueous solution (30 and 50 wt %) by small-angle X-ray scattering (SAXS). By systematically varying RLP block length and temperature (10-45 °C), we observed microphase separation into hexagonally packed cylinders and lamellae. By analyzing the observed order-order transitions (OOT) and order-disorder transitions (ODT), we determined that self-assembly in this system is primarily driven by polymer-solvent interactions. While these thermally responsive polymers showed clear ODTs and OOTs at certain temperatures, temperature only had a weak effect on the spacing of the resulting nanostructures. In contrast, we found that nanostructure spacing was far more sensitive to RLP block length. Finally, we used atomic force microscopy (AFM) to demonstrate that spin casting RLP-b-ELP diblock copolypeptides also produce nanostructured thin films with spacings that correlate with those in concentrated solution.


Asunto(s)
Elastina , Proteínas de Insectos , Dispersión del Ángulo Pequeño , Difracción de Rayos X
6.
Nano Lett ; 20(4): 2396-2409, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32125864

RESUMEN

Small-molecule therapeutics demonstrate suboptimal pharmacokinetics and bioavailability due to their hydrophobicity and size. One way to overcome these limitations-and improve their efficacy-is to use "stealth" macromolecular carriers that evade uptake by the reticuloendothelial system. Although unstructured polypeptides are of increasing interest as macromolecular drug carriers, current recombinant polypeptides in the clinical pipeline typically lack stealth properties. We address this challenge by developing new unstructured polypeptides, called zwitterionic polypeptides (ZIPPs), that exhibit "stealth" behavior in vivo. We show that conjugating paclitaxel to a ZIPP imparts amphiphilicity to the polypeptide chain that is sufficient to drive its self-assembly into micelles. This in turn increases the half-life of paclitaxel by 17-fold compared to free paclitaxel, and by 1.6-fold compared to the nonstealth control, i.e., ELP-paclitaxel. Treatment of mice bearing highly aggressive prostate or colon cancer with a single dose of ZIPP-paclitaxel nanoparticles leads to near-complete eradication of the tumor, and these nanoparticles have a wider therapeutic window than Abraxane, an FDA-approved taxane nanoformulation.


Asunto(s)
Paclitaxel Unido a Albúmina/uso terapéutico , Antineoplásicos/uso terapéutico , Nanoconjugados/uso terapéutico , Neoplasias/tratamiento farmacológico , Paclitaxel/uso terapéutico , Péptidos/uso terapéutico , Animales , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Humanos , Ratones , Ratones Desnudos , Nanoconjugados/análisis , Paclitaxel/farmacocinética , Péptidos/farmacocinética , Resultado del Tratamiento
7.
Nano Lett ; 19(9): 6124-6132, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31389705

RESUMEN

We describe a genetically encoded micelle for targeted delivery consisting of a diblock polypeptide with segments derived from repetitive protein motifs inspired by Drosophila melanogaster Rec-1 resilin and human tropoelastin with a C-terminal fusion of an integrin-targeting fibronectin type III domain. By systematically varying the weight fraction of the hydrophilic elastin-like polypeptide (ELP) block and molecular weight of the diblock polypeptide, we designed micelles of different morphologies that modulate the binding avidity of the human wild-type 10th fibronectin domain (Fn3) as a function of shape. We show that wormlike micelles that present the Fn3 domain have a 1000-fold greater avidity for the αvß3 receptor compared to the monomer ligand and an avidity that is greater than a clinically relevant antibody that is driven by their multivalency. The amplified avidity of these micelles leads to significantly increased cellular internalization, a feature that may have utility for the intracellular delivery of drugs that are loaded into the core of these micelles.


Asunto(s)
Proteínas de Drosophila/química , Sistemas de Liberación de Medicamentos , Fibronectinas/química , Nanopartículas/química , Tropoelastina/química , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/química , Drosophila melanogaster/genética , Elastina/química , Elastina/genética , Dominio de Fibronectina del Tipo III/genética , Fibronectinas/genética , Humanos , Ligandos , Micelas , Péptidos/química , Péptidos/farmacología , Temperatura , Tropoelastina/genética
8.
Nano Lett ; 19(1): 247-254, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30540482

RESUMEN

Polypeptides are promising carriers for chemotherapeutics: they have minimal toxicity, can be recombinantly synthesized with precise control over molecular weight, and enhance drug pharmacokinetics as self-assembled nanoparticles. Polypeptide-based systems also provide the ability to achieve active targeting with genetically encoded targeting ligands. While passive targeting promotes accumulation of nanocarriers in solid tumors, active targeting provides an additional layer of tunable control and widens the therapeutic window. However, fusion of most targeting proteins to polypeptide carriers exposes the limitations of this approach: the residues that are used for drug attachment are also promiscuously distributed on protein surfaces. We present here a universal methodology to solve this problem by the site-specific attachment of extrinsic moieties to polypeptide drug delivery systems without cross-reactivity to fused targeting domains. We incorporate an unnatural amino acid, p-acetylphenylalanine, to provide a biorthogonal ketone for attachment of doxorubicin in the presence of reactive amino acids in a nanobody-targeted, elastin-like polypeptide nanoparticle. These nanoparticles exhibit significantly greater cytotoxicity than nontargeted controls in multiple cancer cell lines.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Péptidos/química , Animales , Línea Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacología , Elastina/química , Elastina/farmacología , Humanos , Ligandos , Micelas , Nanopartículas/administración & dosificación , Péptidos/farmacología , Fenilalanina/análogos & derivados , Fenilalanina/química , Fenilalanina/farmacología
9.
J Am Chem Soc ; 141(2): 945-951, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30608674

RESUMEN

Biological systems use post-translational modifications (PTMs) to control the structure, location, and function of proteins after expression. Despite the ubiquity of PTMs in biology, their use to create genetically encoded recombinant biomaterials is limited. We have utilized a natural lipidation PTM (hedgehog-mediated cholesterol modification of proteins) to create a class of hybrid biomaterials called cholesterol-modified polypeptides (CHaMPs) that exhibit programmable self-assembly at the nanoscale. To demonstrate the biomedical utility of CHaMPs, we used this approach to append cholesterol to biologically active peptide exendin-4 that is an approved drug for the treatment of type II diabetes. The exendin-cholesterol conjugate self-assembled into micelles, and these micelles activate the glucagon-like peptide-1 receptor with a potency comparable to that of current gold standard treatments.


Asunto(s)
Colesterol/metabolismo , Exenatida/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Colesterol/química , Drosophila melanogaster/química , Escherichia coli/genética , Exenatida/química , Exenatida/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Células HEK293 , Humanos , Micelas , Prueba de Estudio Conceptual , Ingeniería de Proteínas
10.
Biochemistry ; 57(17): 2405-2414, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29683665

RESUMEN

A flurry of research in recent years has revealed the molecular origins of many membraneless organelles to be the liquid phase separation of intrinsically disordered proteins (IDPs). Consequently, protein disorder has emerged as an important driver of intracellular compartmentalization by providing specialized microenvironments chemically distinct from the surrounding medium. Though the importance of protein disorder and its relationship to intracellular phase behavior are clear, a detailed understanding of how such phase behavior can be predicted and controlled remains elusive. While research in IDPs has largely focused on the implications of structural disorder on cellular function and disease, another field, that of artificial protein polymers, has focused on the de novo design of protein polymers with controllable material properties. A subset of these polymers, specifically those derived from structural proteins such as elastin and resilin, are also disordered sequences that undergo liquid-liquid phase separation. This phase separation has been used in a variety of biomedical applications, and researchers studying these polymers have developed methods to precisely characterize and tune their phase behavior. Despite their disparate origins, both fields are complementary as they study the phase behavior of intrinsically disordered polypeptides. This Perspective hopes to stimulate collaborative efforts by highlighting the similarities between these two fields and by providing examples of how such collaboration could be mutually beneficial.


Asunto(s)
Compartimento Celular/genética , Microambiente Celular/genética , Proteínas Intrínsecamente Desordenadas/genética , Orgánulos/genética , Membrana Celular/química , Membrana Celular/genética , Elastina/química , Elastina/genética , Humanos , Proteínas de Insectos/química , Proteínas de Insectos/genética , Proteínas Intrínsecamente Desordenadas/química , Orgánulos/química , Péptidos/química , Péptidos/genética , Polímeros , Conformación Proteica
11.
Nano Lett ; 17(10): 5995-6005, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28853896

RESUMEN

Many promising targeting ligands are hydrophobic peptides, and these ligands often show limited accessibility to receptors, resulting in suboptimal targeting. A systematic study to elucidate the rules for the design of linkers that optimize their presentation on nanoparticles has not been carried out to date. In this study, we recombinantly synthesized an elastin-like polypeptide diblock copolymer (ELPBC) that self-assembles into monodisperse micelles. AHNP and EC1, two hydrophobic ErbB2-targeted peptide ligands, were incorporated at the C-terminus of the ELPBC with an intervening peptide linker. We tested more than 20 designs of peptide linkers, where the linker could be precisely engineered at the gene level to systematically investigate the molecular parameters-sequence, length, and charge-of the peptide linker that optimally assist ligands in targeting the ErbB2 receptor on cancer cells. We found that peptide linkers with a minimal length of 12 hydrophilic amino acids and an overall cationic charge-and that impart a zeta potential of the micelle that is close to neutral-were necessary to enhance the uptake of peptide-modified ELPBC micelles by cancer cells that overexpress the ErbB2 receptor. This work advances our understanding of the optimal presentation of hydrophobic ligands by nanoparticles and suggests design rules for peptide linkers for targeted delivery by polymer micelles, an emerging class of nanoparticle carriers for drugs and imaging agents.


Asunto(s)
Portadores de Fármacos/metabolismo , Sistemas de Liberación de Medicamentos , Elastina/metabolismo , Micelas , Nanopartículas/metabolismo , Péptidos/metabolismo , Receptor ErbB-2/metabolismo , Línea Celular Tumoral , Portadores de Fármacos/química , Elastina/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Péptidos/química , Polímeros/química
12.
Biomacromolecules ; 18(8): 2419-2426, 2017 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-28570078

RESUMEN

Reported here is the synthesis of perfectly sequence defined, monodisperse diblock copolypeptides of hydrophilic elastin-like and hydrophobic resilin-like polypeptide blocks and characterization of their self-assembly as a function of structural parameters by light scattering, cryo-TEM, and small-angle neutron scattering. A subset of these diblock copolypeptides exhibit lower critical solution temperature and upper critical solution temperature phase behavior and self-assemble into spherical or cylindrical micelles. Their morphologies are dictated by their chain length, degree of hydrophilicity, and hydrophilic weight fraction of the ELP block. We find that (1) independent of the length of the corona-forming ELP block there is a minimum threshold in the length of the RLP block below which self-assembly does not occur, but that once that threshold is crossed, (2) the RLP block length is a unique molecular parameter to independently tune self-assembly and (3) increasing the hydrophobicity of the corona-forming ELP drives a transition from spherical to cylindrical morphology. Unlike the self-assembly of purely ELP-based block copolymers, the self-assembly of RLP-ELPs can be understood by simple principles of polymer physics relating hydrophilic weight fraction and polymer-polymer and polymer-solvent interactions to micellar morphology, which is important as it provides a route for the de novo design of desired nanoscale morphologies from first principles.


Asunto(s)
Elastina , Proteínas de Insectos , Micelas , Difracción de Neutrones , Proteínas Recombinantes de Fusión , Dispersión del Ángulo Pequeño , Elastina/biosíntesis , Elastina/química , Elastina/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Insectos/biosíntesis , Proteínas de Insectos/química , Proteínas de Insectos/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética
13.
Angew Chem Int Ed Engl ; 56(45): 13979-13984, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-28879687

RESUMEN

Inspired by biohybrid molecules that are synthesized in Nature through post-translational modification (PTM), we have exploited a eukaryotic PTM to recombinantly synthesize lipid-polypeptide hybrid materials. By co-expressing yeast N-myristoyltransferase with an elastin-like polypeptide (ELP) fused to a short recognition sequence in E. coli, we show robust and high-yield modification of the ELP with myristic acid. The ELP's reversible phase behavior is retained upon myristoylation and can be tuned to span a 30-60 °C. Myristoylated ELPs provide a versatile platform for genetically pre-programming self-assembly into micelles of varied size and shape. Their lipid cores can be loaded with hydrophobic small molecules by passive diffusion. Encapsulated doxorubicin and paclitaxel exhibit cytotoxic effects on 4T1 and PC3-luc cells, respectively, with potencies similar to chemically conjugated counterparts, and longer plasma circulation than free drug upon intravenous injection in mice.


Asunto(s)
Lípidos/química , Péptidos/química , Preparaciones Farmacéuticas/química , Polímeros/síntesis química , Aciltransferasas/química , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Cromatografía Líquida de Alta Presión , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Doxorrubicina/farmacocinética , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Calor , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Paclitaxel/administración & dosificación , Paclitaxel/química , Paclitaxel/farmacocinética , Polímeros/química , Prueba de Estudio Conceptual , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
14.
Bioconjug Chem ; 23(6): 1266-75, 2012 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-22607514

RESUMEN

Platelet transfusion is used for treating a variety of bleeding complications. Natural platelet-based transfusion products have very short storage life (3-7 days) and high risks of biological contamination and side effects. Consequently, there is significant clinical interest in synthetic platelet-mimetic constructs that can promote hemostasis, while allowing convenient large-scale production, easy portability, long storage life, and minimal biological risks. To this end, research efforts are being directed toward particles that can amplify aggregation of activated platelets or can mimic platelet's ability to undergo adhesion to various vascular matrix proteins. Here, we report on a synthetic construct design that combines the mimicry of platelet's shear-dependent adhesion to vWF and shear-independent adhesion to collagen under flow, on a single particle. For this, we have used 150-nm-diameter liposomes as model particles and have decorated their surface simultaneously with vWF-binding and collagen-binding recombinant protein fragments or synthetic peptide motifs. We demonstrate in vitro that these surface-modified liposomes are able to adhere onto vWF surfaces in a shear-dependent fashion and onto collagen surfaces in a shear-independent fashion under flow. Moreover, when the vWF-binding and the collagen-binding were integrated on a single liposomal platform, the resultant heteromultivalent liposomes showed significantly enhanced adhesion to a vWF/collagen mixed surface compared to liposomes bearing vWF-binding or collagen-binding ligands only, as long as the ligand motifs did not spatially interfere with each other. Altogether, our results establish the feasibility of efficiently mimicking platelet's dual adhesion mechanisms on synthetic particles.


Asunto(s)
Plaquetas/citología , Liposomas/metabolismo , Adhesividad Plaquetaria , Animales , Plaquetas/metabolismo , Células CHO , Colágeno/metabolismo , Cricetulus , Humanos , Ligandos , Modelos Moleculares , Proteínas Recombinantes/metabolismo , Propiedades de Superficie , Factor de von Willebrand/metabolismo
15.
Cell Gene Ther Insights ; 8(10): 1287-1300, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37712070

RESUMEN

Demand for gene therapies capable of treating previously inaccessible targets has risen precipitously in the past decade. Adeno-associated viruses (AAVs) are the preferred vector for gene delivery because of their favorable safety profile and tissue tropism, but they have significant manufacturing challenges, with end-to-end yields as low as 10-30%. To combat these low yields, we developed IsoTag™AAV, a novel purification technology for AAV that is a departure from the chromatographic paradigm in downstream processing. This proprietary technology uses a self-scaffolding recombinant protein reagent that can improve manufacturing yields. It enables purification by cost-effective and scalable filtration processes and improves product quality with minimal optimization. Herein, we describe the development of IsoTag™AAV, provide a head-to-head comparison to industry-leading affinity chromatography (evaluation carried out through a joint research project with Capsida Biotherapeutics), and demonstrate how it can reduce cost of goods for a clinical AAV program by 25%.

16.
Nat Chem ; 12(9): 814-825, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32747754

RESUMEN

Phase separation of intrinsically disordered proteins (IDPs) is a remarkable feature of living cells to dynamically control intracellular partitioning. Despite the numerous new IDPs that have been identified, progress towards rational engineering in cells has been limited. To address this limitation, we systematically scanned the sequence space of native IDPs and designed artificial IDPs (A-IDPs) with different molecular weights and aromatic content, which exhibit variable condensate saturation concentrations and temperature cloud points in vitro and in cells. We created A-IDP puncta using these simple principles, which are capable of sequestering an enzyme and whose catalytic efficiency can be manipulated by the molecular weight of the A-IDP. These results provide a robust engineered platform for creating puncta with new, phase-separation-mediated control of biological function in living cells.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Secuencia de Aminoácidos , Línea Celular , Dispersión Dinámica de Luz , Escherichia coli/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Cinética , Peso Molecular , Mutagénesis , Proteómica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Temperatura de Transición
17.
Sci Adv ; 5(10): eaax5177, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31667345

RESUMEN

The phase separation behavior of intrinsically disordered proteins (IDPs) is thought of as analogous to that of polymers that undergo equilibrium lower or upper critical solution temperature (LCST and UCST, respectively) phase transition. This view, however, ignores possible nonequilibrium properties of protein assemblies. Here, by studying IDP polymers (IDPPs) composed of repeat motifs that encode LCST or UCST phase behavior, we discovered that IDPs can access a wide spectrum of nonequilibrium, hysteretic phase behaviors. Experimentally and through simulations, we show that hysteresis in IDPPs is tunable and that it emerges through increasingly stable interchain interactions in the insoluble phase. To explore the utility of hysteretic IDPPs, we engineer self-assembling nanostructures with tunable stability. These findings shine light on the rich phase separation behavior of IDPs and illustrate hysteresis as a design parameter to program nonequilibrium phase behavior in self-assembling materials.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Aminoácidos/química , Proteínas Anticongelantes/química , Dicroismo Circular , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Nanopartículas/química , Transición de Fase , Prolina/química , Temperatura , Urea/química
18.
Nat Chem ; 10(5): 496-505, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29556049

RESUMEN

Post-translational modification of proteins is a strategy widely used in biological systems. It expands the diversity of the proteome and allows for tailoring of both the function and localization of proteins within cells as well as the material properties of structural proteins and matrices. Despite their ubiquity in biology, with a few exceptions, the potential of post-translational modifications in biomaterials synthesis has remained largely untapped. As a proof of concept to demonstrate the feasibility of creating a genetically encoded biohybrid material through post-translational modification, we report here the generation of a family of three stimulus-responsive hybrid materials-fatty-acid-modified elastin-like polypeptides-using a one-pot recombinant expression and post-translational lipidation methodology. These hybrid biomaterials contain an amphiphilic domain, composed of a ß-sheet-forming peptide that is post-translationally functionalized with a C14 alkyl chain, fused to a thermally responsive elastin-like polypeptide. They exhibit temperature-triggered hierarchical self-assembly across multiple length scales with varied structure and material properties that can be controlled at the sequence level.


Asunto(s)
Materiales Biocompatibles/química , Lípidos/química , Péptidos/química , Temperatura , Microscopía por Crioelectrón , Elastina/química , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Procesamiento Proteico-Postraduccional
19.
FEBS Lett ; 589(19 Pt A): 2477-86, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26325592

RESUMEN

Elastin-like polypeptides (ELPs) are a class of stimuli-responsive biopolymers inspired by the intrinsically disordered domains of tropoelastin that are composed of repeats of the VPGXG pentapeptide motif, where X is a "guest residue". They undergo a reversible, thermally triggered lower critical solution temperature (LCST) phase transition, which has been utilized for a variety of applications including protein purification, affinity capture, immunoassays, and drug delivery. ELPs have been extensively studied as protein polymers and as biomaterials, but their relationship to other disordered proteins has heretofore not been established. The biophysical properties of ELPs that lend them their unique material behavior are similar to the properties of many intrinsically disordered proteins (IDP). Their low sequence complexity, phase behavior, and elastic properties make them an interesting "minimal" artificial IDP, and the study of ELPs can hence provide insights into the behavior of other more complex IDPs. Motivated by this emerging realization of the similarities between ELPs and IDPs, this review discusses the biophysical properties of ELPs, their biomedical utility, and their relationship to other disordered polypeptide sequences.


Asunto(s)
Elastina/química , Proteínas Intrínsecamente Desordenadas/química , Péptidos/química , Temperatura de Transición , Secuencia de Aminoácidos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Químicos , Modelos Moleculares , Conformación Proteica
20.
Biomaterials ; 32(35): 9504-14, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21906806

RESUMEN

Activated platelets play multiple roles in vascular diseases. Hence, a delivery vehicle that can specifically target activated platelets and stay retained under a hemodynamic environment can potentially enhance the efficacy of vehicle-encapsulated vascular drug by protecting it from rapid plasma deactivation, reducing its systemic non-specific side-effects, and increasing its therapeutic index at disease sites undergoing platelet hyperactivity. We rationalized that liposomal nanoconstructs surface-modified with two kinds of peptide that simultaneously bind integrin α(IIb)ß(3) and P-selectin on activated platelets can provide synergistic mechanisms for enhanced selectivity to vascular disease sites. We further hypothesized that dual-receptor targeting will enhance binding strength and retention under flow. We tested this using fluorescently-labeled liposomes, surface-modified by an RGD peptide targeted to active α(IIb)ß(3) and an EWVDV peptide targeted to P-selectin. The liposomes were studied for their platelet-specific interactions inside a parallel plate flow chamber at low-to-high shear stresses. The interaction specificity was further confirmed by flow cytometry. Our results indicate that liposomes surface-modified with both RGD and EWVDV simultaneously have higher selectivity as well as retention to activated platelets under flow compared to liposomes bearing any one peptide type. These results establish the potential of our nanoconstructs for enhanced site-selective drug delivery in vascular diseases.


Asunto(s)
Plaquetas/metabolismo , Vasos Sanguíneos/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Liposomas/química , Nanoestructuras/química , Activación Plaquetaria , Secuencia de Aminoácidos , Plaquetas/efectos de los fármacos , Vasos Sanguíneos/efectos de los fármacos , Citometría de Flujo , Humanos , Ligandos , Microscopía Fluorescente , Datos de Secuencia Molecular , Oligopéptidos/farmacología , Activación Plaquetaria/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Receptores de Superficie Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA