Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur Heart J ; 45(20): 1783-1800, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38606889

RESUMEN

Clinical risk scores based on traditional risk factors of atherosclerosis correlate imprecisely to an individual's complex pathophysiological predisposition to atherosclerosis and provide limited accuracy for predicting major adverse cardiovascular events (MACE). Over the past two decades, computed tomography scanners and techniques for coronary computed tomography angiography (CCTA) analysis have substantially improved, enabling more precise atherosclerotic plaque quantification and characterization. The accuracy of CCTA for quantifying stenosis and atherosclerosis has been validated in numerous multicentre studies and has shown consistent incremental prognostic value for MACE over the clinical risk spectrum in different populations. Serial CCTA studies have advanced our understanding of vascular biology and atherosclerotic disease progression. The direct disease visualization of CCTA has the potential to be used synergistically with indirect markers of risk to significantly improve prevention of MACE, pending large-scale randomized evaluation.


Asunto(s)
Angiografía por Tomografía Computarizada , Angiografía Coronaria , Enfermedad de la Arteria Coronaria , Humanos , Angiografía por Tomografía Computarizada/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/diagnóstico , Medición de Riesgo/métodos , Angiografía Coronaria/métodos , Placa Aterosclerótica/diagnóstico por imagen , Factores de Riesgo de Enfermedad Cardiaca , Pronóstico , Estenosis Coronaria/diagnóstico por imagen
2.
Am J Ther ; 30(4): e313-e320, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36731003

RESUMEN

BACKGROUND: Direct oral anticoagulants (DOACs) have been associated with less calcification and coronary plaque progression than warfarin. Whether different DOACs have different effects on coronary plaque burden and progression is not known. We compared the 12-month effects of apixaban and rivaroxaban on plaque characteristics and vascular morphology in patients with atrial fibrillation through quantitative cardiac computed tomographic angiography. STUDY QUESTION: In patients with nonvalvular atrial fibrillation using apixaban or rivaroxaban, are there differences in plaque quantification and progression measured with cardiac computed tomography? STUDY DESIGN: This is a post hoc analysis of 2 paired prospective, single-centered, randomized, open-label trials with blinded adjudication of results. In total, 74 patients were prospectively randomized in parallel trials: 29 to apixaban (2.5-5 mg BID) and 45 to rivaroxaban (20 mg QD). Serial cardiac computed tomographic angiography was performed at baseline and 52 weeks. MEASURES AND OUTCOMES: Comprehensive whole-heart analysis was performed for differences in the progression of percent atheroma volume (PAV), calcified plaque (CP) PAV, noncalcified plaque (NCP) PAV, positive arterial remodeling (PR) ≥1.10, and high-risk plaque (Cleerly Labs, New York, NY). RESULTS: Both groups had progression of all 3 plaque types (apixaban: CP 8.7 mm 3 , NCP 69.7 mm 3 , and LD-NCP 27.2 mm 3 ; rivaroxaban: CP 22.9 mm 3 , NCP 66.3 mm 3 , and LD-NCP 11.0 mm 3 ) and a total annual plaque PAV change (apixaban: PAV 1.5%, PAV-CP 0.12%, and PAV-NCP 0.92%; rivaroxaban: PAV 2.1%, PAV-CP 0.46%, and PAV-NCP 1.40%). There was significantly lower PAV-CP progression in the apixaban group compared with the rivaroxaban group (0.12% vs. 0.46% P = 0.02). High-risk plaque characteristics showed a significant change in PR of apixaban versus rivaroxaban ( P = 0.01). When the propensity score weighting model is applied, only PR changes are statistically significant ( P = 0.04). CONCLUSIONS: In both groups, there is progression of all types of plaque. There was a significant difference between apixaban and rivaroxaban on coronary calcification, with significantly lower calcific plaque progression in the apixaban group, and change in positive remodeling. With weighted modeling, only PR changes are statistically significant between the 2 DOACs.


Asunto(s)
Fibrilación Atrial , Placa Aterosclerótica , Accidente Cerebrovascular , Humanos , Rivaroxabán/efectos adversos , Fibrilación Atrial/complicaciones , Fibrilación Atrial/tratamiento farmacológico , Anticoagulantes/efectos adversos , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/complicaciones , Estudios Prospectivos , Piridonas/efectos adversos , Tomografía Computarizada por Rayos X/métodos , Dabigatrán , Accidente Cerebrovascular/complicaciones
3.
AJR Am J Roentgenol ; 219(3): 407-419, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35441530

RESUMEN

BACKGROUND. Deep learning frameworks have been applied to interpretation of coronary CTA performed for coronary artery disease (CAD) evaluation. OBJECTIVE. The purpose of our study was to compare the diagnostic performance of myocardial perfusion imaging (MPI) and coronary CTA with artificial intelligence quantitative CT (AI-QCT) interpretation for detection of obstructive CAD on invasive angiography and to assess the downstream impact of including coronary CTA with AI-QCT in diagnostic algorithms. METHODS. This study entailed a retrospective post hoc analysis of the derivation cohort of the prospective 23-center Computed Tomographic Evaluation of Atherosclerotic Determinants of Myocardial Ischemia (CREDENCE) trial. The study included 301 patients (88 women and 213 men; mean age, 64.4 ± 10.2 [SD] years) recruited from May 2014 to May 2017 with stable symptoms of myocardial ischemia referred for nonemergent invasive angiography. Patients underwent coronary CTA and MPI before angiography with quantitative coronary angiography (QCA) measurements and fractional flow reserve (FFR). CTA examinations were analyzed using an FDA-cleared cloud-based software platform that performs AI-QCT for stenosis determination. Diagnostic performance was evaluated. Diagnostic algorithms were compared. RESULTS. Among 102 patients with no ischemia on MPI, AI-QCT identified obstructive (≥ 50%) stenosis in 54% of patients, including severe (≥ 70%) stenosis in 20%. Among 199 patients with ischemia on MPI, AI-QCT identified nonobstructive (1-49%) stenosis in 23%. AI-QCT had significantly higher AUC (all p < .001) than MPI for predicting ≥ 50% stenosis by QCA (0.88 vs 0.66), ≥ 70% stenosis by QCA (0.92 vs 0.81), and FFR < 0.80 (0.90 vs 0.71). An AI-QCT result of ≥ 50% stenosis and ischemia on stress MPI had sensitivity of 95% versus 74% and specificity of 63% versus 43% for detecting ≥ 50% stenosis by QCA measurement. Compared with performing MPI in all patients and those showing ischemia undergoing invasive angiography, a scenario of performing coronary CTA with AIQCT in all patients and those showing ≥ 70% stenosis undergoing invasive angiography would reduce invasive angiography utilization by 39%; a scenario of performing MPI in all patients and those showing ischemia undergoing coronary CTA with AI-QCT and those with ≥ 70% stenosis on AI-QCT undergoing invasive angiography would reduce invasive angiography utilization by 49%. CONCLUSION. Coronary CTA with AI-QCT had higher diagnostic performance than MPI for detecting obstructive CAD. CLINICAL IMPACT. A diagnostic algorithm incorporating AI-QCT could substantially reduce unnecessary downstream invasive testing and costs. TRIAL REGISTRATION. Clinicaltrials.gov NCT02173275.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Isquemia Miocárdica , Imagen de Perfusión Miocárdica , Anciano , Inteligencia Artificial , Angiografía por Tomografía Computarizada/métodos , Constricción Patológica , Angiografía Coronaria/métodos , Estenosis Coronaria/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Isquemia Miocárdica/diagnóstico por imagen , Valor Predictivo de las Pruebas , Estudios Prospectivos , Estándares de Referencia , Estudios Retrospectivos
4.
BMC Cardiovasc Disord ; 22(1): 506, 2022 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-36435762

RESUMEN

BACKGROUND: Studies have shown that quantitative evaluation of coronary artery plaque on Coronary Computed Tomography Angiography (CCTA) can identify patients at risk of cardiac events. Recent demonstration of artificial intelligence (AI) assisted CCTA shows that it allows for evaluation of CAD and plaque characteristics. Based on publications to date, we are the first group to perform AI augmented CCTA serial analysis of changes in coronary plaque characteristics over 13 years. We evaluated whether AI assisted CCTA can accurately assess changes in coronary plaque progression, which has potential clinical prognostic value in CAD management. CASE PRESENTATION: 51-year-old male with hypertension, hyperlipidemia and family history of myocardial infarction, underwent CCTA exams for anginal symptom evaluation and CAD assessment. 5 CCTAs were performed between 2008 and 2021. Quantitative atherosclerosis plaque characterization (APC) using an AI platform (Cleerly), was performed to assess CAD burden. Total plaque volume (TPV) change-over-time demonstrated decreasing low-density non-calcified plaque (LD-NCP) with increasing overall NCP and calcified-plaque (CP). Examination of individual segments revealed a proximal-LAD lesion with decreasing NCP over-time and increasing CP. In contrast, although the D2/D1/ramus lesions showed increasing stenosis, CP, and total plaque, there were no significant differences in NCP over-time, with stable NCP and increased CP. Remarkably, we also consistently visualized small plaques, which typically readers may interpret as false positives due to artifacts. But in this case, they reappeared each study in the same locations, generally progressing in size and demonstrating expected plaque transformation over-time. CONCLUSIONS: We performed the first AI augmented CCTA based serial analysis of changes in coronary plaque characteristics over 13 years. We were able to consistently assess progression of plaque volumes, stenosis, and APCs with this novel methodology. We found a significant increase in TPV composed of decreasing LD-NCP, and increasing NCP and CP, with variations in the evolution of APCs between vessels. Although the significance of evolving APCs needs to be investigated, this case demonstrates AI-based CCTA analysis can serve as valuable clinical tool to accurately define unique CAD characteristics over time. Prospective trails are needed to assess whether quantification of APCs provides prognostic capabilities to improve clinical care.


Asunto(s)
Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Masculino , Humanos , Persona de Mediana Edad , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/terapia , Angiografía por Tomografía Computarizada , Angiografía Coronaria/métodos , Inteligencia Artificial , Estudios Prospectivos , Constricción Patológica
5.
J Clin Ultrasound ; 48(6): 337-342, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32357249

RESUMEN

In emergency department (ED) cases with clinically suspected diverticulitis, diagnostic imaging is often needed for diagnostic confirmation, to exclude complications, and to direct patient management. Patients typically undergo a CT scan in the ED; however, in a subset of cases with suspected diverticulitis, point-of-care ultrasound (POCUS) may provide sufficient data to confirm the diagnosis and ascertain a safe plan for outpatient management.We review the main sonographic features of diverticulitis and discuss the diagnostic accuracy and potential benefits of a POCUS First model.


Asunto(s)
Diverticulitis/diagnóstico por imagen , Sistemas de Atención de Punto , Ultrasonografía/métodos , Anciano , Servicio de Urgencia en Hospital , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tomografía Computarizada por Rayos X
6.
Am J Emerg Med ; 35(12): 1984.e3-1984.e7, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28851498

RESUMEN

OBJECTIVE: To assess the impact of an ultrasound hypotension protocol in identifying life-threatening diagnoses that were missed in the initial evaluation of patients with hypotension and shock. METHODS: A subset of cases from a previously published prospective study of hypotensive patients who presented at the Emergency Department in a single, academic tertiary care hospital is described. An ultrasound-trained emergency physician performed an ultrasound on each patient using a standardized hypotension protocol. In each case, the differential diagnosis and management plan was solicited from the treating physician immediately before and after the ultrasound. This is a case series of patients with missed diagnoses in whom ultrasound led to a dramatic shift in diagnosis and management by detecting life threatening pathologies. RESULTS: Following a published prospective study of the effect on an ultrasound protocol in 118 hypotensive patients, we identified a series of cases that ultrasound protocol unexpectedly determined serious life threatening diagnoses such as Takotsubo cardiomyopathy, pulmonary embolism, pericardial effusion with tamponade physiology, abdominal aortic aneurysm and perforated viscus resulting in proper diagnoses and management. These hypotensive patients had completely unsuspected but critical diagnoses explaining their hypotension, who in every case had their management altered to target the newly identified life-threatening condition. CONCLUSIONS: A hypotension protocol is an optimal use of ultrasound that exemplifies "right time, right place", and impacts decision-making at the bedside. In cases with undifferentiated hypotension, ultrasound is often the most readily available option to ensure that the most immediate life-threatening conditions are quickly identified and addressed in the order of their risk potential.


Asunto(s)
Cuidados Críticos , Servicio de Urgencia en Hospital , Hipotensión/diagnóstico por imagen , Hipotensión/diagnóstico , Sistemas de Atención de Punto , Ultrasonografía , Adulto , Anciano , Anciano de 80 o más Años , Diagnóstico Diferencial , Femenino , Humanos , Hipotensión/terapia , Masculino , Persona de Mediana Edad , Sistemas de Atención de Punto/estadística & datos numéricos , Estudios Prospectivos
7.
J Cardiovasc Comput Tomogr ; 18(4): 366-374, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38664074

RESUMEN

BACKGROUND: Among patients with obstructive coronary artery disease (CAD) on coronary computed tomography angiography (CTA), downstream positron emission tomography (PET) perfusion imaging can be performed to assess the presence of myocardial ischemia. A novel artificial-intelligence-guided quantitative computed tomography ischemia algorithm (AI-QCTischemia) aims to predict ischemia directly from coronary CTA images. We aimed to study the prognostic value of AI-QCTischemia among patients with obstructive CAD on coronary CTA and normal or abnormal downstream PET perfusion. METHODS: AI-QCTischemia was calculated by blinded analysts among patients from the retrospective coronary CTA cohort at Turku University Hospital, Finland, with obstructive CAD on initial visual reading (diameter stenosis ≥50%) being referred for downstream 15O-H2O-PET adenosine stress perfusion imaging. All coronary arteries with their side branches were assessed by AI-QCTischemia. Absolute stress myocardial blood flow ≤2.3 â€‹ml/g/min in ≥2 adjacent segments was considered abnormal. The primary endpoint was death, myocardial infarction, or unstable angina pectoris. The median follow-up was 6.2 [IQR 4.4-8.3] years. RESULTS: 662 of 768 (86%) patients had conclusive AI-QCTischemia result. In patients with normal 15O-H2O-PET perfusion, an abnormal AI-QCTischemia result (n â€‹= â€‹147/331) vs. normal AI-QCTischemia result (n â€‹= â€‹184/331) was associated with a significantly higher crude and adjusted rates of the primary endpoint (adjusted HR 2.47, 95% CI 1.17-5.21, p â€‹= â€‹0.018). This did not pertain to patients with abnormal 15O-H2O-PET perfusion (abnormal AI-QCTischemia result (n â€‹= â€‹269/331) vs. normal AI-QCTischemia result (n â€‹= â€‹62/331); adjusted HR 1.09, 95% CI 0.58-2.02, p â€‹= â€‹0.794) (p-interaction â€‹= â€‹0.039). CONCLUSION: Among patients with obstructive CAD on coronary CTA referred for downstream 15O-H2O-PET perfusion imaging, AI-QCTischemia showed incremental prognostic value among patients with preserved perfusion by 15O-H2O-PET imaging, but not among those with reduced perfusion.


Asunto(s)
Algoritmos , Inteligencia Artificial , Angiografía por Tomografía Computarizada , Angiografía Coronaria , Enfermedad de la Arteria Coronaria , Circulación Coronaria , Imagen de Perfusión Miocárdica , Valor Predictivo de las Pruebas , Humanos , Femenino , Masculino , Imagen de Perfusión Miocárdica/métodos , Estudios Retrospectivos , Persona de Mediana Edad , Anciano , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/fisiopatología , Enfermedad de la Arteria Coronaria/mortalidad , Pronóstico , Finlandia , Factores de Tiempo , Estenosis Coronaria/diagnóstico por imagen , Estenosis Coronaria/fisiopatología , Estenosis Coronaria/mortalidad , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/fisiopatología , Reproducibilidad de los Resultados , Factores de Riesgo , Índice de Severidad de la Enfermedad , Tomografía de Emisión de Positrones , Adenosina/administración & dosificación , Vasodilatadores , Angina Inestable/diagnóstico por imagen , Angina Inestable/etiología , Angina Inestable/mortalidad , Angina Inestable/fisiopatología
8.
Int J Cardiovasc Imaging ; 40(6): 1201-1209, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38630211

RESUMEN

This study assesses the agreement of Artificial Intelligence-Quantitative Computed Tomography (AI-QCT) with qualitative approaches to atherosclerotic disease burden codified in the multisociety 2022 CAD-RADS 2.0 Expert Consensus. 105 patients who underwent cardiac computed tomography angiography (CCTA) for chest pain were evaluated by a blinded core laboratory through FDA-cleared software (Cleerly, Denver, CO) that performs AI-QCT through artificial intelligence, analyzing factors such as % stenosis, plaque volume, and plaque composition. AI-QCT plaque volume was then staged by recently validated prognostic thresholds, and compared with CAD-RADS 2.0 clinical methods of plaque evaluation (segment involvement score (SIS), coronary artery calcium score (CACS), visual assessment, and CAD-RADS percent (%) stenosis) by expert consensus blinded to the AI-QCT core lab reads. Average age of subjects were 59 ± 11 years; 44% women, with 50% of patients at CAD-RADS 1-2 and 21% at CAD-RADS 3 and above by expert consensus. AI-QCT quantitative plaque burden staging had excellent agreement of 93% (k = 0.87 95% CI: 0.79-0.96) with SIS. There was moderate agreement between AI-QCT quantitative plaque volume and categories of visual assessment (64.4%; k = 0.488 [0.38-0.60]), and CACS (66.3%; k = 0.488 [0.36-0.61]). Agreement between AI-QCT plaque volume stage and CAD-RADS % stenosis category was also moderate. There was discordance at small plaque volumes. With ongoing validation, these results demonstrate a potential for AI-QCT as a rapid, reproducible approach to quantify total plaque burden.


Asunto(s)
Inteligencia Artificial , Angiografía por Tomografía Computarizada , Angiografía Coronaria , Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Placa Aterosclerótica , Valor Predictivo de las Pruebas , Índice de Severidad de la Enfermedad , Calcificación Vascular , Humanos , Femenino , Persona de Mediana Edad , Masculino , Anciano , Reproducibilidad de los Resultados , Calcificación Vascular/diagnóstico por imagen , Estenosis Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Vasos Coronarios/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador , Tomografía Computarizada Multidetector , Variaciones Dependientes del Observador
9.
Eur J Prev Cardiol ; 31(7): 892-900, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38243822

RESUMEN

AIMS: Familial hypercholesterolaemia (FH) patients are subjected to a high lifetime exposure to low density lipoprotein cholesterol (LDL-C), despite use of lipid-lowering therapy (LLT). This study aimed to quantify the extent of subclinical atherosclerosis and to evaluate the association between lifetime cumulative LDL-C exposure and coronary atherosclerosis in young FH patients. METHODS AND RESULTS: Familial hypercholesterolaemia patients, divided into a subgroup of early treated (LLT initiated <25 years) and late treated (LLT initiated ≥25 years) patients, and an age- and sex-matched unaffected control group, underwent coronary CT angiography (CCTA) with artificial intelligence-guided analysis. Ninety genetically diagnosed FH patients and 45 unaffected volunteers (mean age 41 ± 3 years, 51 (38%) female) were included. Familial hypercholesterolaemia patients had higher cumulative LDL-C exposure (181 ± 54 vs. 105 ± 33 mmol/L ∗ years) and higher prevalence of coronary plaque compared with controls (46 [51%] vs. 10 [22%], OR 3.66 [95%CI 1.62-8.27]). Every 75 mmol/L ∗ years cumulative exposure to LDL-C was associated with a doubling in per cent atheroma volume (total plaque volume divided by total vessel volume). Early treated patients had a modestly lower cumulative LDL-C exposure compared with late treated FH patients (167 ± 41 vs. 194 ± 61 mmol/L ∗ years; P = 0.045), without significant difference in coronary atherosclerosis. Familial hypercholesterolaemia patients with above-median cumulative LDL-C exposure had significantly higher plaque prevalence (OR 3.62 [95%CI 1.62-8.27]; P = 0.001), compared with patients with below-median exposure. CONCLUSION: Lifetime exposure to LDL-C determines coronary plaque burden in FH, underlining the need of early as well as potent treatment initiation. Periodic CCTA may offer a unique opportunity to monitor coronary atherosclerosis and personalize treatment in FH.


This study reveals that young patients with familial hypercholesterolaemia (FH), as compared with individuals without FH, have a higher build-up of coronary artery plaque, linked directly to their increased lifetime exposure to LDL cholesterol. Genetically confirmed FH patients have a higher coronary plaque burden than those without FH, with every 75 mmol/L ∗ years increase in lifetime cumulative LDL cholesterol exposure resulting in a two-fold increase in total plaque volume. Early and potent LDL cholesterol lowering treatments are crucial for FH patients to prevent future cardiovascular diseases.


Asunto(s)
LDL-Colesterol , Angiografía por Tomografía Computarizada , Angiografía Coronaria , Enfermedad de la Arteria Coronaria , Hiperlipoproteinemia Tipo II , Humanos , Hiperlipoproteinemia Tipo II/sangre , Hiperlipoproteinemia Tipo II/complicaciones , Hiperlipoproteinemia Tipo II/tratamiento farmacológico , Femenino , Masculino , LDL-Colesterol/sangre , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/prevención & control , Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/etiología , Enfermedad de la Arteria Coronaria/sangre , Adulto , Biomarcadores/sangre , Factores de Tiempo , Prevalencia , Persona de Mediana Edad , Placa Aterosclerótica , Factores de Riesgo , Estudios de Casos y Controles , Resultado del Tratamiento , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico
10.
JACC Cardiovasc Imaging ; 17(3): 269-280, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37480907

RESUMEN

BACKGROUND: The recent development of artificial intelligence-guided quantitative coronary computed tomography angiography analysis (AI-QCT) has enabled rapid analysis of atherosclerotic plaque burden and characteristics. OBJECTIVES: This study set out to investigate the 10-year prognostic value of atherosclerotic burden derived from AI-QCT and to compare the spectrum of plaque to manually assessed coronary computed tomography angiography (CCTA), coronary artery calcium scoring (CACS), and clinical risk characteristics. METHODS: This was a long-term follow-up study of 536 patients referred for suspected coronary artery disease. CCTA scans were analyzed with AI-QCT and plaque burden was classified with a plaque staging system (stage 0: 0% percentage atheroma volume [PAV]; stage 1: >0%-5% PAV; stage 2: >5%-15% PAV; stage 3: >15% PAV). The primary major adverse cardiac event (MACE) outcome was a composite of nonfatal myocardial infarction, nonfatal stroke, coronary revascularization, and all-cause mortality. RESULTS: The mean age at baseline was 58.6 years and 297 patients (55%) were male. During a median follow-up of 10.3 years (IQR: 8.6-11.5 years), 114 patients (21%) experienced the primary outcome. Compared to stages 0 and 1, patients with stage 3 PAV and percentage of noncalcified plaque volume of >7.5% had a more than 3-fold (adjusted HR: 3.57; 95% CI 2.12-6.00; P < 0.001) and 4-fold (adjusted HR: 4.37; 95% CI: 2.51-7.62; P < 0.001) increased risk of MACE, respectively. Addition of AI-QCT improved a model with clinical risk factors and CACS at different time points during follow-up (10-year AUC: 0.82 [95% CI: 0.78-0.87] vs 0.73 [95% CI: 0.68-0.79]; P < 0.001; net reclassification improvement: 0.21 [95% CI: 0.09-0.38]). Furthermore, AI-QCT achieved an improved area under the curve compared to Coronary Artery Disease Reporting and Data System 2.0 (10-year AUC: 0.78; 95% CI: 0.73-0.83; P = 0.023) and manual QCT (10-year AUC: 0.78; 95% CI: 0.73-0.83; P = 0.040), although net reclassification improvement was modest (0.09 [95% CI: -0.02 to 0.29] and 0.04 [95% CI: -0.05 to 0.27], respectively). CONCLUSIONS: Through 10-year follow-up, AI-QCT plaque staging showed important prognostic value for MACE and showed additional discriminatory value over clinical risk factors, CACS, and manual guideline-recommended CCTA assessment.


Asunto(s)
Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Humanos , Masculino , Femenino , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/terapia , Inteligencia Artificial , Estudios de Seguimiento , Valor Predictivo de las Pruebas , Arterias , Angiografía Coronaria
11.
Eur Heart J Cardiovasc Imaging ; 25(6): 857-866, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38270472

RESUMEN

AIMS: The incremental impact of atherosclerosis imaging-quantitative computed tomography (AI-QCT) on diagnostic certainty and downstream patient management is not yet known. The aim of this study was to compare the clinical utility of the routine implementation of AI-QCT versus conventional visual coronary CT angiography (CCTA) interpretation. METHODS AND RESULTS: In this multi-centre cross-over study in 5 expert CCTA sites, 750 consecutive adult patients referred for CCTA were prospectively recruited. Blinded to the AI-QCT analysis, site physicians established patient diagnoses and plans for downstream non-invasive testing, coronary intervention, and medication management based on the conventional site assessment. Next, physicians were asked to repeat their assessments based upon AI-QCT results. The included patients had an age of 63.8 ± 12.2 years; 433 (57.7%) were male. Compared with the conventional site CCTA evaluation, AI-QCT analysis improved physician's confidence two- to five-fold at every step of the care pathway and was associated with change in diagnosis or management in the majority of patients (428; 57.1%; P < 0.001), including for measures such as Coronary Artery Disease-Reporting and Data System (CAD-RADS) (295; 39.3%; P < 0.001) and plaque burden (197; 26.3%; P < 0.001). After AI-QCT including ischaemia assessment, the need for downstream non-invasive and invasive testing was reduced by 37.1% (P < 0.001), compared with the conventional site CCTA evaluation. Incremental to the site CCTA evaluation alone, AI-QCT resulted in statin initiation/increase an aspirin initiation in an additional 28.1% (P < 0.001) and 23.0% (P < 0.001) of patients, respectively. CONCLUSION: The use of AI-QCT improves diagnostic certainty and may result in reduced downstream need for non-invasive testing and increased rates of preventive medical therapy.


Asunto(s)
Angiografía por Tomografía Computarizada , Angiografía Coronaria , Enfermedad de la Arteria Coronaria , Estudios Cruzados , Humanos , Masculino , Femenino , Persona de Mediana Edad , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Angiografía por Tomografía Computarizada/métodos , Angiografía Coronaria/métodos , Estudios Prospectivos , Anciano , Revascularización Miocárdica , Tomografía Computarizada por Rayos X/métodos
12.
Artículo en Inglés | MEDLINE | ID: mdl-38483420

RESUMEN

BACKGROUND: Noninvasive stress testing is commonly used for detection of coronary ischemia but possesses variable accuracy and may result in excessive health care costs. OBJECTIVES: This study aimed to derive and validate an artificial intelligence-guided quantitative coronary computed tomography angiography (AI-QCT) model for the diagnosis of coronary ischemia that integrates atherosclerosis and vascular morphology measures (AI-QCTISCHEMIA) and to evaluate its prognostic utility for major adverse cardiovascular events (MACE). METHODS: A post hoc analysis of the CREDENCE (Computed Tomographic Evaluation of Atherosclerotic Determinants of Myocardial Ischemia) and PACIFIC-1 (Comparison of Coronary Computed Tomography Angiography, Single Photon Emission Computed Tomography [SPECT], Positron Emission Tomography [PET], and Hybrid Imaging for Diagnosis of Ischemic Heart Disease Determined by Fractional Flow Reserve) studies was performed. In both studies, symptomatic patients with suspected stable coronary artery disease had prospectively undergone coronary computed tomography angiography (CTA), myocardial perfusion imaging (MPI), SPECT, or PET, fractional flow reserve by CT (FFRCT), and invasive coronary angiography in conjunction with invasive FFR measurements. The AI-QCTISCHEMIA model was developed in the derivation cohort of the CREDENCE study, and its diagnostic performance for coronary ischemia (FFR ≤0.80) was evaluated in the CREDENCE validation cohort and PACIFIC-1. Its prognostic value was investigated in PACIFIC-1. RESULTS: In CREDENCE validation (n = 305, age 64.4 ± 9.8 years, 210 [69%] male), the diagnostic performance by area under the receiver-operating characteristics curve (AUC) on per-patient level was 0.80 (95% CI: 0.75-0.85) for AI-QCTISCHEMIA, 0.69 (95% CI: 0.63-0.74; P < 0.001) for FFRCT, and 0.65 (95% CI: 0.59-0.71; P < 0.001) for MPI. In PACIFIC-1 (n = 208, age 58.1 ± 8.7 years, 132 [63%] male), the AUCs were 0.85 (95% CI: 0.79-0.91) for AI-QCTISCHEMIA, 0.78 (95% CI: 0.72-0.84; P = 0.037) for FFRCT, 0.89 (95% CI: 0.84-0.93; P = 0.262) for PET, and 0.72 (95% CI: 0.67-0.78; P < 0.001) for SPECT. Adjusted for clinical risk factors and coronary CTA-determined obstructive stenosis, a positive AI-QCTISCHEMIA test was associated with an HR of 7.6 (95% CI: 1.2-47.0; P = 0.030) for MACE. CONCLUSIONS: This newly developed coronary CTA-based ischemia model using coronary atherosclerosis and vascular morphology characteristics accurately diagnoses coronary ischemia by invasive FFR and provides robust prognostic utility for MACE beyond presence of stenosis.

13.
Radiology ; 268(3): 702-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23579045

RESUMEN

PURPOSE: To evaluate beam-hardening (BH) artifact reduction in coronary computed tomography (CT) angiography with dual-energy CT, to define the optimal monochromatic-energy levels for coronary and myocardial signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in dual-energy CT, and to compare these levels with single-energy CT. MATERIALS AND METHODS: The study was approved by the institutional review board and/or ethics committee at each site. Patients provided informed consent. Thirty-nine patients were prospectively enrolled to undergo dual-energy CT, and 25 also underwent single-energy CT. Myocardial and coronary SNR, CNR, and iodine concentration were measured across multiple segments at varying monochromatic energy levels (40-140 keV). BH was defined as signal decrease in basal inferior wall versus midinferior wall, and signal increase in midseptum versus midinferior wall. Generalized estimating equation was used to identify optimal monochromatic-energy levels and compare them with single-energy CT. RESULTS: BH was noted at single-energy CT with basal inferior wall mean reduction of 19.7 HU ± 29.2 (standard deviation) and midseptum increase of 46.3 HU ± 36.3. There was reduction in this artifact at 90 keV or greater (1.7 HU ± 18.4 in basal inferior wall and 20.1 HU ± 37.5 in midseptum at 90 keV; P < .05). SNR and CNR were higher in the myocardium and coronary arteries at 60-80 keV than single-energy CT (myocardium: SNR, 3.02 vs 2.39, and CNR, 6.73 vs 5.16; coronary arteries: SNR, 10.83 vs 7.75, and CNR, 13.31 vs 9.54; P < .01). Mean iodine concentration in resting myocardium was 2.19 mg/mL ± 0.57. CONCLUSION: Rapid kilovolt peak-switching dual-energy CT resulted in significant BH reduction and improvements in SNR and CNR in the myocardium and coronary arteries.


Asunto(s)
Algoritmos , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Intensificación de Imagen Radiográfica/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Imagen Radiográfica por Emisión de Doble Fotón/métodos , Tomografía Computarizada por Rayos X/métodos , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
14.
Obesity (Silver Spring) ; 31(10): 2460-2466, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37559558

RESUMEN

OBJECTIVE: Obesity is associated with all-cause mortality and cardiovascular disease (CVD). Visceral fat (VF) is an important CVD risk metric given its independent correlation with myocardial infarction and stroke. This study aims to clarify the relationship between the presence and severity of VF with the presence and severity of coronary artery plaque. METHODS: In 145 consecutive asymptomatic patients, atherosclerosis imaging-quantitative computed tomography was performed for total plaque volume (TPV) and percentage atheroma volume, as well as the volume of noncalcified plaque (NCP), calcified plaque, and low-density NCP (LD-NCP), diameter stenosis, and vascular remodeling. This study also included VF analysis and subcutaneous fat analysis, recording of outer waist circumference, and percentage body fat analysis. RESULTS: The mean age of the patients was 56.1 [SD 8.5] years, and 84.0% were male. Measures of visceral adiposity (mean [SD, Q1-Q3 thresholds]) included estimated body fat, 28.7% (9.0%, 24.1%-33.0%); VF, 169.8 cm2 (92.3, 102.0-219.0 cm2 ); and subcutaneous fat, 223.6 mm2 (114.2, 142.5-288.0 mm2 ). The Spearman correlation coefficients of VF and plaque volume included TPV 0.22 (p = 0.0074), calcified plaque 0.12 (p = 0.62), NCP 0.25 (p = 0.0023), and LD-NCP 0.37 (p < 0.0001). There was a progression of the median coronary plaque volume for each quartile of VF including TPV (Q1: 19.8, Q2: 48.1, Q3: 86.4, and Q4: 136.6 mm3 [p = 0.0098]), NCP (Q1: 15.7, Q2: 35.4, Q3: 86.4, and Q4: 136.6 mm3 [p = 0.0032]), and LD-NCP (Q1: 0.6, Q2: 0.81, Q3: 2.0, and Q4: 5.0 mm3 [p < 0.0001]). CONCLUSIONS: These findings demonstrate progression with regard to VF and TPV, NCP volume, and LD-NCP volume. Notably, there was a progression of VF and amount of LD-NCP, which is known to be high risk for future cardiovascular events. A consistent progression may indicate the future utility of VF in CVD risk stratification.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Placa Aterosclerótica , Humanos , Masculino , Persona de Mediana Edad , Femenino , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Angiografía por Tomografía Computarizada/métodos , Grasa Intraabdominal/diagnóstico por imagen , Angiografía Coronaria/métodos , Placa Aterosclerótica/diagnóstico por imagen , Vasos Coronarios/diagnóstico por imagen
15.
Artículo en Inglés | MEDLINE | ID: mdl-38084894

RESUMEN

AIMS: Coronary computed tomography angiography (CTA) imaging is used to diagnose patients with suspected coronary artery disease (CAD). A novel artificial-intelligence-guided quantitative computed tomography ischemia algorithm (AI-QCTischemia) aims to identify myocardial ischemia directly from CTA images and may be helpful to improve risk stratification. The aims were 1) the prognostic value of AI-QCTischemia among symptomatic patients with suspected CAD entering diagnostic imaging with coronary CTA, and 2) the prognostic value of AI-QCTischemia separately among patients with no/non-obstructive CAD (≤50% visual diameter stenosis) and obstructive CAD (>50% visual diameter stenosis). METHODS AND RESULTS: For this cohort study, AI-QCTischemia was calculated by blinded analysts among patients with suspected CAD undergoing coronary CTA. The primary endpoint was the composite of death, myocardial infarction (MI), or unstable angina pectoris (uAP) (median follow-up 6.9 years). 1880/2271 (83%) patients were analyzable by AI-QCTischemia. Patients with an abnormal AI-QCTischemia result (n = 509/1880) vs. patients with a normal AI-QCTischemia result (n = 1371/1880) had significantly higher crude and adjusted rates of the primary endpoint (HRadj 1.96,95% CI 1.46-2.63, p < 0.001; covariates: age/sex/hypertension/diabetes/smoking/typical angina). An abnormal AI-QCTischemia result was associated with significantly higher crude and adjusted rates of the primary endpoint among patients with no/non-obstructive CAD (n = 1373/1847) (HRadj 1.81,95% CI 1.09-3.00, p = 0.022), but not among those with obstructive CAD (n = 474/1847) (HRadj 1.26,95% CI 0.75-2.12, p = 0.386) (p-interaction = 0.032). CONCLUSION: Among patients with suspected CAD, an abnormal AI-QCTischemia result was associated with a 2-fold increased adjusted rate of long-term death, MI, or uAP. AI-QCTischemia may be useful to improve risk stratification, especially among patients with no/non-obstructive CAD on coronary CTA.

16.
Am J Med ; 136(3): 260-269.e7, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36509122

RESUMEN

IMPORTANCE: Although atherosclerosis represents the primary driver of coronary artery disease, evaluation and treatment approaches have historically relied upon indirect markers of atherosclerosis that include surrogates (cholesterol), signs (angina), and sequelae (ischemia) of atherosclerosis. Direct quantification and characterization of atherosclerosis may encourage a precision heart care paradigm that improves diagnosis, risk stratification, therapeutic decision-making, and longitudinal disease tracking in a personalized fashion. OBSERVATIONS: The American College of Cardiology Innovations in Prevention Working Group introduce the Atherosclerosis Treatment Algorithms that personalize medical interventions based upon atherosclerosis findings from coronary computed tomography angiography (CTA) and cardiovascular risk factors. Through integration of coronary CTA-based atherosclerosis evaluation, clinical practice guidelines, and contemporary randomized controlled trial evidence, the Atherosclerosis Treatment Algorithms leverage patient-specific atherosclerosis burden and progression as primary targets for therapeutic intervention. After defining stages of atherosclerosis severity by coronary CTA, Atherosclerosis Treatment Algorithms are described for worsening stages of atherosclerosis for patients with lipid disorders, diabetes, hypertension, obesity, and tobacco use. The authors anticipate a rapid pace of research in the field, and conclude by providing perspectives on future needs that may improve efforts to optimize precision prevention of coronary artery disease. Importantly, the Atherosclerosis Treatment Algorithms are not endorsed by the American College of Cardiology, and should not be interpreted as a statement of American College of Cardiology policy. CONCLUSIONS AND RELEVANCE: We describe a precision heart care approach that emphasizes atherosclerosis as the primary disease target for evaluation and treatment. To our knowledge, this is the first proposal to use coronary atherosclerosis burden and progression to personalize therapy selection and therapy changes, respectively. DISCLOSURE: The American College of Cardiology Foundation has made an investment in Cleerly, Inc., makers of a software solution that utilizes coronary CT angiography findings to evaluate coronary artery disease.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Humanos , Estados Unidos , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/terapia , Revascularización Miocárdica/métodos , Factores de Riesgo , Toma de Decisiones
17.
J Cardiovasc Comput Tomogr ; 17(6): 401-406, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37679247

RESUMEN

BACKGROUND: Coronary CT angiography (CCTA) is a first-line noninvasive imaging modality for evaluating coronary artery disease (CAD). Recent advances in CCTA technology enabled semi-automated detection of coronary arteries and atherosclerosis. However, there have been to date no large-scale validation studies of automated assessment of coronary atherosclerosis phenotype and coronary artery dimensions by artificial intelligence (AI) compared to current standard invasive imaging. METHODS: INVICTUS registry is a multicenter, retrospective, and prospective study designed to evaluate the dimensions of coronary arteries, as well as the characteristic, volume, and phenotype of coronary atherosclerosis by CCTA, compared with the invasive imaging modalities including intravascular ultrasound (IVUS), near-infrared spectroscopy (NIRS)-IVUS and optical coherence tomography (OCT). All patients clinically underwent both CCTA and invasive imaging modalities within three months. RESULTS: Patients data are sent to the core-laboratories to analyze for stenosis severity, plaque characteristics and volume. The variables for CCTA are measured using an AI-based automated software and assessed independently with the variables measured at the imaging core laboratories for IVUS, NIRS-IVUS, and OCT in a blind fashion. CONCLUSION: The INVICTUS registry will provide new insights into the diagnostic value of CCTA for determining coronary atherosclerosis phenotype and coronary artery dimensions compared to IVUS, NIRS-IVUS, and OCT. Our findings will potentially shed new light on precision medicine informed by an AI-based coronary CTA assessment of coronary atherosclerosis burden, composition, and severity. (ClinicalTrials.gov: NCT04066062).


Asunto(s)
Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Angiografía por Tomografía Computarizada , Tomografía de Coherencia Óptica , Inteligencia Artificial , Estudios Prospectivos , Estudios Retrospectivos , Ultrasonografía Intervencional/métodos , Valor Predictivo de las Pruebas , Angiografía Coronaria/métodos , Vasos Coronarios/diagnóstico por imagen
18.
Atherosclerosis ; 386: 117363, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37944269

RESUMEN

BACKGROUND AND AIMS: Artificial intelligence quantitative CT (AI-QCT) determines coronary plaque morphology with high efficiency and accuracy. Yet, its performance to quantify lipid-rich plaque remains unclear. This study investigated the performance of AI-QCT for the detection of low-density noncalcified plaque (LD-NCP) using near-infrared spectroscopy-intravascular ultrasound (NIRS-IVUS). METHODS: The INVICTUS Registry is a multi-center registry enrolling patients undergoing clinically indicated coronary CT angiography and IVUS, NIRS-IVUS, or optical coherence tomography. We assessed the performance of various Hounsfield unit (HU) and volume thresholds of LD-NCP using maxLCBI4mm ≥ 400 as the reference standard and the correlation of the vessel area, lumen area, plaque burden, and lesion length between AI-QCT and IVUS. RESULTS: This study included 133 atherosclerotic plaques from 47 patients who underwent coronary CT angiography and NIRS-IVUS The area under the curve of LD-NCP<30HU was 0.97 (95% confidence interval [CI]: 0.93-1.00] with an optimal volume threshold of 2.30 mm3. Accuracy, sensitivity, and specificity were 94% (95% CI: 88-96%], 93% (95% CI: 76-98%), and 94% (95% CI: 88-98%), respectively, using <30 HU and 2.3 mm3, versus 42%, 100%, and 27% using <30 HU and >0 mm3 volume of LD-NCP (p < 0.001 for accuracy and specificity). AI-QCT strongly correlated with IVUS measurements; vessel area (r2 = 0.87), lumen area (r2 = 0.87), plaque burden (r2 = 0.78) and lesion length (r2 = 0.88), respectively. CONCLUSIONS: AI-QCT demonstrated excellent diagnostic performance in detecting significant LD-NCP using maxLCBI4mm ≥ 400 as the reference standard. Additionally, vessel area, lumen area, plaque burden, and lesion length derived from AI-QCT strongly correlated with respective IVUS measurements.


Asunto(s)
Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/diagnóstico , Enfermedad de la Arteria Coronaria/diagnóstico , Inteligencia Artificial , Espectroscopía Infrarroja Corta , Ultrasonografía Intervencional/métodos , Tomografía Computarizada por Rayos X/métodos , Angiografía Coronaria/métodos , Angiografía por Tomografía Computarizada , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/patología , Lípidos , Valor Predictivo de las Pruebas
19.
JACC Cardiovasc Imaging ; 16(2): 193-205, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35183478

RESUMEN

BACKGROUND: Clinical reads of coronary computed tomography angiography (CTA), especially by less experienced readers, may result in overestimation of coronary artery disease stenosis severity compared with expert interpretation. Artificial intelligence (AI)-based solutions applied to coronary CTA may overcome these limitations. OBJECTIVES: This study compared the performance for detection and grading of coronary stenoses using artificial intelligence-enabled quantitative coronary computed tomography (AI-QCT) angiography analyses to core lab-interpreted coronary CTA, core lab quantitative coronary angiography (QCA), and invasive fractional flow reserve (FFR). METHODS: Coronary CTA, FFR, and QCA data from 303 stable patients (64 ± 10 years of age, 71% male) from the CREDENCE (Computed TomogRaphic Evaluation of Atherosclerotic DEtermiNants of Myocardial IsChEmia) trial were retrospectively analyzed using an Food and Drug Administration-cleared cloud-based software that performs AI-enabled coronary segmentation, lumen and vessel wall determination, plaque quantification and characterization, and stenosis determination. RESULTS: Disease prevalence was high, with 32.0%, 35.0%, 21.0%, and 13.0% demonstrating ≥50% stenosis in 0, 1, 2, and 3 coronary vessel territories, respectively. Average AI-QCT analysis time was 10.3 ± 2.7 minutes. AI-QCT evaluation demonstrated per-patient sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 94%, 68%, 81%, 90%, and 84%, respectively, for ≥50% stenosis, and of 94%, 82%, 69%, 97%, and 86%, respectively, for detection of ≥70% stenosis. There was high correlation between stenosis detected on AI-QCT evaluation vs QCA on a per-vessel and per-patient basis (intraclass correlation coefficient = 0.73 and 0.73, respectively; P < 0.001 for both). False positive AI-QCT findings were noted in in 62 of 848 (7.3%) vessels (stenosis of ≥70% by AI-QCT and QCA of <70%); however, 41 (66.1%) of these had an FFR of <0.8. CONCLUSIONS: A novel AI-based evaluation of coronary CTA enables rapid and accurate identification and exclusion of high-grade stenosis and with close agreement to blinded, core lab-interpreted quantitative coronary angiography. (Computed TomogRaphic Evaluation of Atherosclerotic DEtermiNants of Myocardial IsChEmia [CREDENCE]; NCT02173275).


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Isquemia Miocárdica , Humanos , Masculino , Femenino , Angiografía Coronaria/métodos , Angiografía por Tomografía Computarizada/métodos , Constricción Patológica , Inteligencia Artificial , Estudios Retrospectivos , Valor Predictivo de las Pruebas , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Estenosis Coronaria/diagnóstico por imagen , Índice de Severidad de la Enfermedad
20.
Clin Cardiol ; 46(5): 477-483, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36847047

RESUMEN

AIMS: We compared diagnostic performance, costs, and association with major adverse cardiovascular events (MACE) of clinical coronary computed tomography angiography (CCTA) interpretation versus semiautomated approach that use artificial intelligence and machine learning for atherosclerosis imaging-quantitative computed tomography (AI-QCT) for patients being referred for nonemergent invasive coronary angiography (ICA). METHODS: CCTA data from individuals enrolled into the randomized controlled Computed Tomographic Angiography for Selective Cardiac Catheterization trial for an American College of Cardiology (ACC)/American Heart Association (AHA) guideline indication for ICA were analyzed. Site interpretation of CCTAs were compared to those analyzed by a cloud-based software (Cleerly, Inc.) that performs AI-QCT for stenosis determination, coronary vascular measurements and quantification and characterization of atherosclerotic plaque. CCTA interpretation and AI-QCT guided findings were related to MACE at 1-year follow-up. RESULTS: Seven hundred forty-seven stable patients (60 ± 12.2 years, 49% women) were included. Using AI-QCT, 9% of patients had no CAD compared with 34% for clinical CCTA interpretation. Application of AI-QCT to identify obstructive coronary stenosis at the ≥50% and ≥70% threshold would have reduced ICA by 87% and 95%, respectively. Clinical outcomes for patients without AI-QCT-identified obstructive stenosis was excellent; for 78% of patients with maximum stenosis < 50%, no cardiovascular death or acute myocardial infarction occurred. When applying an AI-QCT referral management approach to avoid ICA in patients with <50% or <70% stenosis, overall costs were reduced by 26% and 34%, respectively. CONCLUSIONS: In stable patients referred for ACC/AHA guideline-indicated nonemergent ICA, application of artificial intelligence and machine learning for AI-QCT can significantly reduce ICA rates and costs with no change in 1-year MACE.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Humanos , Femenino , Masculino , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/complicaciones , Angiografía Coronaria/métodos , Constricción Patológica/complicaciones , Inteligencia Artificial , Tomografía Computarizada por Rayos X , Estenosis Coronaria/complicaciones , Angiografía por Tomografía Computarizada/métodos , Aterosclerosis/complicaciones , Derivación y Consulta , Valor Predictivo de las Pruebas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA