Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell ; 83(13): 2222-2239.e5, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37329883

RESUMEN

The transcriptional termination of unstable non-coding RNAs (ncRNAs) is poorly understood compared to coding transcripts. We recently identified ZC3H4-WDR82 ("restrictor") as restricting human ncRNA transcription, but how it does this is unknown. Here, we show that ZC3H4 additionally associates with ARS2 and the nuclear exosome targeting complex. The domains of ZC3H4 that contact ARS2 and WDR82 are required for ncRNA restriction, suggesting their presence in a functional complex. Consistently, ZC3H4, WDR82, and ARS2 co-transcriptionally control an overlapping population of ncRNAs. ZC3H4 is proximal to the negative elongation factor, PNUTS, which we show enables restrictor function and is required to terminate the transcription of all major RNA polymerase II transcript classes. In contrast to short ncRNAs, longer protein-coding transcription is supported by U1 snRNA, which shields transcripts from restrictor and PNUTS at hundreds of genes. These data provide important insights into the mechanism and control of transcription by restrictor and PNUTS.


Asunto(s)
ARN Polimerasa II , Transcripción Genética , Humanos , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Núcleo Celular/metabolismo , ARN no Traducido/genética , Proteínas Cromosómicas no Histona/genética
2.
Genes Dev ; 34(1-2): 132-145, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31805520

RESUMEN

The allosteric and torpedo models have been used for 30 yr to explain how transcription terminates on protein-coding genes. The former invokes termination via conformational changes in the transcription complex and the latter proposes that degradation of the downstream product of poly(A) signal (PAS) processing is important. Here, we describe a single mechanism incorporating features of both models. We show that termination is completely abolished by rapid elimination of CPSF73, which causes very extensive transcriptional readthrough genome-wide. This is because CPSF73 functions upstream of modifications to the elongation complex and provides an entry site for the XRN2 torpedo. Rapid depletion of XRN2 enriches these events that we show are underpinned by protein phosphatase 1 (PP1) activity, the inhibition of which extends readthrough in the absence of XRN2. Our results suggest a combined allosteric/torpedo mechanism, in which PP1-dependent slowing down of polymerases over termination regions facilitates their pursuit/capture by XRN2 following PAS processing.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Terminación de la Transcripción Genética/fisiología , Línea Celular , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Exorribonucleasas/metabolismo , Eliminación de Gen , Células HCT116 , Humanos , ARN/metabolismo , ARN Polimerasa II/metabolismo , Receptores de Neuropéptido Y/metabolismo , Ribonucleasa H/metabolismo
3.
Genes Dev ; 32(2): 127-139, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29432121

RESUMEN

Termination is a ubiquitous phase in every transcription cycle but is incompletely understood and a subject of debate. We used gene editing as a new approach to address its mechanism through engineered conditional depletion of the 5' → 3' exonuclease Xrn2 or the polyadenylation signal (PAS) endonuclease CPSF73 (cleavage and polyadenylation specificity factor 73). The ability to rapidly control Xrn2 reveals a clear and general role for it in cotranscriptional degradation of 3' flanking region RNA and transcriptional termination. This defect is characterized genome-wide at high resolution using mammalian native elongating transcript sequencing (mNET-seq). An Xrn2 effect on termination requires prior RNA cleavage, and we provide evidence for this by showing that catalytically inactive CPSF73 cannot restore termination to cells lacking functional CPSF73. Notably, Xrn2 plays no significant role in either Histone or small nuclear RNA (snRNA) gene termination even though both RNA classes undergo 3' end cleavage. In sum, efficient termination on most protein-coding genes involves CPSF73-mediated RNA cleavage and cotranscriptional degradation of polymerase-associated RNA by Xrn2. However, as CPSF73 loss caused more extensive readthrough transcription than Xrn2 elimination, it likely plays a more underpinning role in termination.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Exorribonucleasas/fisiología , ARN Polimerasa II/metabolismo , Terminación de la Transcripción Genética , Regiones no Traducidas 3' , Línea Celular , Factor de Especificidad de Desdoblamiento y Poliadenilación/antagonistas & inhibidores , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Exorribonucleasas/antagonistas & inhibidores , Exorribonucleasas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Histonas , Humanos , Ácidos Indolacéticos/farmacología , Mutación , ARN Nuclear Pequeño/genética , Análisis de Secuencia de ARN
4.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34521754

RESUMEN

Eukaryote-eukaryote endosymbiosis was responsible for the spread of chloroplast (plastid) organelles. Stability is required for the metabolic and genetic integration that drives the establishment of new organelles, yet the mechanisms that act to stabilize emergent endosymbioses-between two fundamentally selfish biological organisms-are unclear. Theory suggests that enforcement mechanisms, which punish misbehavior, may act to stabilize such interactions by resolving conflict. However, how such mechanisms can emerge in a facultative endosymbiosis has yet to be explored. Here, we propose that endosymbiont-host RNA-RNA interactions, arising from digestion of the endosymbiont population, can result in a cost to host growth for breakdown of the endosymbiosis. Using the model facultative endosymbiosis between Paramecium bursaria and Chlorella spp., we demonstrate that this mechanism is dependent on the host RNA-interference (RNAi) system. We reveal through small RNA (sRNA) sequencing that endosymbiont-derived messenger RNA (mRNA) released upon endosymbiont digestion can be processed by the host RNAi system into 23-nt sRNA. We predict multiple regions of shared sequence identity between endosymbiont and host mRNA, and demonstrate through delivery of synthetic endosymbiont sRNA that exposure to these regions can knock down expression of complementary host genes, resulting in a cost to host growth. This process of host gene knockdown in response to endosymbiont-derived RNA processing by host RNAi factors, which we term "RNAi collisions," represents a mechanism that can promote stability in a facultative eukaryote-eukaryote endosymbiosis. Specifically, by imposing a cost for breakdown of the endosymbiosis, endosymbiont-host RNA-RNA interactions may drive maintenance of the symbiosis across fluctuating ecological conditions.


Asunto(s)
Procesos Fototróficos/genética , ARN/genética , Simbiosis/genética , Chlorella/genética , Cloroplastos/genética , Eucariontes/genética , Paramecium/genética , Plastidios/genética , Interferencia de ARN/fisiología
5.
Trends Genet ; 36(9): 664-675, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32527618

RESUMEN

RNA polymerase II (Pol II) transcribes hundreds of thousands of transcription units - a reaction always brought to a close by its termination. Because Pol II transcribes multiple gene types, its termination occurs in a variety of ways, with the polymerase being responsive to different inputs. Moreover, it is not just a default process occurring at the end of genes. Promoter-proximal and premature termination is common and might in turn regulate gene expression levels. Although some transcription termination mechanisms have been debated for decades, research is only just underway on emergent processes. We provide an updated view of transcription termination in human cells, highlighting common themes and some interesting differences between the contexts in which it occurs.


Asunto(s)
Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Terminación de la Transcripción Genética , Transcripción Genética , Animales , Humanos , ARN Polimerasa II/genética
6.
Elife ; 132024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976490

RESUMEN

RNA polymerase II (RNAPII) transcription initiates bidirectionally at many human protein-coding genes. Sense transcription usually dominates and leads to messenger RNA production, whereas antisense transcription rapidly terminates. The basis for this directionality is not fully understood. Here, we show that sense transcriptional initiation is more efficient than in the antisense direction, which establishes initial promoter directionality. After transcription begins, the opposing functions of the endonucleolytic subunit of Integrator, INTS11, and cyclin-dependent kinase 9 (CDK9) maintain directionality. Specifically, INTS11 terminates antisense transcription, whereas sense transcription is protected from INTS11-dependent attenuation by CDK9 activity. Strikingly, INTS11 attenuates transcription in both directions upon CDK9 inhibition, and the engineered recruitment of CDK9 desensitises transcription to INTS11. Therefore, the preferential initiation of sense transcription and the opposing activities of CDK9 and INTS11 explain mammalian promoter directionality.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina , Regiones Promotoras Genéticas , Iniciación de la Transcripción Genética , Quinasa 9 Dependiente de la Ciclina/metabolismo , Quinasa 9 Dependiente de la Ciclina/genética , Humanos , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Transcripción Genética , Regulación de la Expresión Génica , Proteínas Nucleares , Factores de Elongación Transcripcional
7.
R Soc Open Sci ; 8(4): 210140, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33996132

RESUMEN

Endosymbiosis was fundamental for the evolution of eukaryotic complexity. Endosymbiotic interactions can be dissected through forward- and reverse-genetic experiments, such as RNA-interference (RNAi). However, distinguishing small (s)RNA pathways in a eukaryote-eukaryote endosymbiotic interaction is challenging. Here, we investigate the repertoire of RNAi pathway protein-encoding genes in the model nascent endosymbiotic system, Paramecium bursaria-Chlorella spp. Using comparative genomics and transcriptomics supported by phylogenetics, we identify essential proteome components of the small interfering (si)RNA, scan (scn)RNA and internal eliminated sequence (ies)RNA pathways. Our analyses reveal that copies of these components have been retained throughout successive whole genome duplication (WGD) events in the Paramecium clade. We validate feeding-induced siRNA-based RNAi in P. bursaria via knock-down of the splicing factor, u2af1, which we show to be crucial to host growth. Finally, using simultaneous knock-down 'paradox' controls to rescue the effect of u2af1 knock-down, we demonstrate that feeding-induced RNAi in P. bursaria is dependent upon a core pathway of host-encoded Dcr1, Piwi and Pds1 components. Our experiments confirm the presence of a functional, host-derived RNAi pathway in P. bursaria that generates 23-nt siRNA, validating the use of the P. bursaria-Chlorella spp. system to investigate the genetic basis of a nascent endosymbiosis.

8.
Cell Rep ; 33(4): 108319, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33113359

RESUMEN

Many RNA polymerases terminate transcription using allosteric/intrinsic mechanisms, whereby protein alterations or nucleotide sequences promote their release from DNA. RNA polymerase II (Pol II) is somewhat different based on its behavior at protein-coding genes where termination additionally requires endoribonucleolytic cleavage and subsequent 5'→3' exoribonuclease activity. The Pol-II-transcribed small nuclear RNAs (snRNAs) also undergo endoribonucleolytic cleavage by the Integrator complex, which promotes their transcriptional termination. Here, we confirm the involvement of Integrator but show that Integrator-independent processes can terminate snRNA transcription both in its absence and naturally. This is often associated with exosome degradation of snRNA precursors that long-read sequencing analysis reveals as frequently terminating at T-runs located downstream of some snRNAs. This finding suggests a unifying vulnerability of RNA polymerases to such sequences given their well-known roles in terminating Pol III and bacterial RNA polymerase.


Asunto(s)
ARN Polimerasa II/metabolismo , ARN Nuclear Pequeño/metabolismo , Terminación de la Transcripción Genética/fisiología , Humanos
9.
Cell Rep ; 26(10): 2779-2791.e5, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30840897

RESUMEN

Cell-based studies of human ribonucleases traditionally rely on methods that deplete proteins slowly. We engineered cells in which the 3'→5' exoribonucleases of the exosome complex, DIS3 and EXOSC10, can be rapidly eliminated to assess their immediate roles in nuclear RNA biology. The loss of DIS3 has the greatest impact, causing the substantial accumulation of thousands of transcripts within 60 min. These transcripts include enhancer RNAs, promoter upstream transcripts (PROMPTs), and products of premature cleavage and polyadenylation (PCPA). These transcripts are unaffected by the rapid loss of EXOSC10, suggesting that they are rarely targeted to it. More direct detection of EXOSC10-bound transcripts revealed its substrates to prominently include short 3' extended ribosomal and small nucleolar RNAs. Finally, the 5'→3' exoribonuclease, XRN2, has little activity on exosome substrates, but its elimination uncovers different mechanisms for the early termination of transcription from protein-coding gene promoters.


Asunto(s)
Exorribonucleasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , ARN Nuclear/metabolismo , ARN/metabolismo , Exorribonucleasas/deficiencia , Exorribonucleasas/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/deficiencia , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Regulación de la Expresión Génica , Células HCT116 , Células HEK293 , Humanos , ARN/genética , ARN Nuclear/genética , Transcripción Genética
10.
Transcription ; 9(5): 321-326, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30035655

RESUMEN

Every transcription cycle ends in termination when RNA polymerase dissociates from the DNA. Although conceptually simple, the mechanism has proven somewhat elusive in eukaryotic systems. Gene-editing and high resolution polymerase mapping now offer clarification of important steps preceding transcriptional termination by RNA polymerase II in human cells.


Asunto(s)
Exorribonucleasas/metabolismo , ARN Polimerasa II/metabolismo , Estabilidad del ARN , Terminación de la Transcripción Genética , Células Cultivadas , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Escherichia coli/genética , Exorribonucleasas/genética , Humanos , Modelos Genéticos , Poliadenilación , Regiones Promotoras Genéticas , Señales de Poliadenilación de ARN 3' , ARN Polimerasa II/genética
11.
Biosci Rep ; 37(3)2017 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-28424370

RESUMEN

The affinity of epigallocatechin gallate (EGCG) for human serum albumin (HSA) was measured in physiological conditions using NMR and isothermal titration calorimetry (ITC). NMR estimated the Ka (self-dissociation constant) of EGCG as 50 mM. NMR showed two binding events: strong (n1=1.8 ± 0.2; Kd1 =19 ± 12 µM) and weak (n2∼20; Kd2 =40 ± 20 mM). ITC also showed two binding events: strong (n1=2.5 ± 0.03; Kd1 =21.6 ± 4.0 µM) and weak (n2=9 ± 1; Kd2 =22 ± 4 mM). The two techniques are consistent, with an unexpectedly high number of bound EGCG. The strong binding is consistent with binding in the two Sudlow pockets. These results imply that almost all EGCG is transported in the blood bound to albumin and explains the wide tissue distribution and chemical stability of EGCG in vivo.


Asunto(s)
Catequina/análogos & derivados , Albúmina Sérica Humana/química , Sitios de Unión/fisiología , Calorimetría/métodos , Catequina/química , Humanos , Unión Proteica/fisiología , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA