Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 58(9): 2899-2903, 2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30589180

RESUMEN

Allosteric information transfer in proteins has been linked to distinct vibrational energy transfer (VET) pathways in a number of theoretical studies. Experimental evidence for such pathways, however, is sparse because site-selective injection of vibrational energy into a protein, that is, localized heating, is required for their investigation. Here, we solved this problem by the site-specific incorporation of the non-canonical amino acid ß-(1-azulenyl)-l-alanine (AzAla) through genetic code expansion. As an exception to Kasha's rule, AzAla undergoes ultrafast internal conversion and heating after S1 excitation while upon S2 excitation, it serves as a fluorescent label. We equipped PDZ3, a protein interaction domain of postsynaptic density protein 95, with this ultrafast heater at two distinct positions. We indeed observed VET from the incorporation sites in the protein to a bound peptide ligand on the picosecond timescale by ultrafast IR spectroscopy. This approach based on genetically encoded AzAla paves the way for detailed studies of VET and its role in a wide range of proteins.


Asunto(s)
Alanina/química , Transferencia de Energía , Alanina/genética , Modelos Moleculares , Vibración
2.
Chembiochem ; 18(23): 2340-2350, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-28950050

RESUMEN

The impact of the incorporation of a non-natural amino acid (NNAA) on protein structure, dynamics, and ligand binding has not been studied rigorously so far. NNAAs are regularly used to modify proteins post-translationally in vivo and in vitro through click chemistry. Herein, structural characterisation of the impact of the incorporation of azidohomoalanine (AZH) into the model protein domain PDZ3 is examined by means of NMR spectroscopy and X-ray crystallography. The structure and dynamics of the apo state of AZH-modified PDZ3 remain mostly unperturbed. Furthermore, the binding of two PDZ3 binding peptides are unchanged upon incorporation of AZH. The interface of the AZH-modified PDZ3 and an azulene-linked peptide for vibrational energy transfer studies has been mapped by means of chemical shift perturbations and NOEs between the unlabelled azulene-linked peptide and the isotopically labelled protein. Co-crystallisation and soaking failed for the peptide-bound holo complex. NMR spectroscopy, however, allowed determination of the protein-ligand interface. Although the incorporation of AZH was minimally invasive for PDZ3, structural analysis of NNAA-modified proteins through the methodology presented herein should be performed to ensure structural integrity of the studied target.


Asunto(s)
Alanina/análogos & derivados , Homólogo 4 de la Proteína Discs Large/química , Ligandos , Alanina/química , Secuencia de Aminoácidos , Dicroismo Circular , Cristalografía por Rayos X , Homólogo 4 de la Proteína Discs Large/genética , Homólogo 4 de la Proteína Discs Large/metabolismo , Marcaje Isotópico , Espectroscopía de Resonancia Magnética , Mutagénesis , Dominios PDZ/genética , Dominios PDZ/fisiología , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química
3.
Nat Commun ; 12(1): 3284, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078890

RESUMEN

Vibrational energy transfer (VET) is essential for protein function. It is responsible for efficient energy dissipation in reaction sites, and has been linked to pathways of allosteric communication. While it is understood that VET occurs via backbone as well as via non-covalent contacts, little is known about the competition of these two transport channels, which determines the VET pathways. To tackle this problem, we equipped the ß-hairpin fold of a tryptophan zipper with pairs of non-canonical amino acids, one serving as a VET injector and one as a VET sensor in a femtosecond pump probe experiment. Accompanying extensive non-equilibrium molecular dynamics simulations combined with a master equation analysis unravel the VET pathways. Our joint experimental/computational endeavor reveals the efficiency of backbone vs. contact transport, showing that even if cutting short backbone stretches of only 3 to 4 amino acids in a protein, hydrogen bonds are the dominant VET pathway.


Asunto(s)
Alanina/análogos & derivados , Proteínas/química , Triptófano/química , Regulación Alostérica , Azulenos/química , Transferencia de Energía , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Teoría Cuántica , Soluciones , Termodinámica , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA