Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961289

RESUMEN

Brain computation performed by billions of nerve cells relies on a sufficient and uninterrupted nutrient and oxygen supply1,2. Astrocytes, the ubiquitous glial neighbours of neurons, govern brain glucose uptake and metabolism3,4, but the exact mechanisms of metabolic coupling between neurons and astrocytes that ensure on-demand support of neuronal energy needs are not fully understood5,6. Here we show, using experimental in vitro and in vivo animal models, that neuronal activity-dependent metabolic activation of astrocytes is mediated by neuromodulator adenosine acting on astrocytic A2B receptors. Stimulation of A2B receptors recruits the canonical cyclic adenosine 3',5'-monophosphate-protein kinase A signalling pathway, leading to rapid activation of astrocyte glucose metabolism and the release of lactate, which supplements the extracellular pool of readily available energy substrates. Experimental mouse models involving conditional deletion of the gene encoding A2B receptors in astrocytes showed that adenosine-mediated metabolic signalling is essential for maintaining synaptic function, especially under conditions of high energy demand or reduced energy supply. Knockdown of A2B receptor expression in astrocytes led to a major reprogramming of brain energy metabolism, prevented synaptic plasticity in the hippocampus, severely impaired recognition memory and disrupted sleep. These data identify the adenosine A2B receptor as an astrocytic sensor of neuronal activity and show that cAMP signalling in astrocytes tunes brain energy metabolism to support its fundamental functions such as sleep and memory.

2.
Circ Res ; 134(6): 675-694, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38484024

RESUMEN

The impact of circadian rhythms on cardiovascular function and disease development is well established, with numerous studies in genetically modified animals emphasizing the circadian molecular clock's significance in the pathogenesis and pathophysiology of myocardial ischemia and heart failure progression. However, translational preclinical studies targeting the heart's circadian biology are just now emerging and are leading to the development of a novel field of medicine termed circadian medicine. In this review, we explore circadian molecular mechanisms and novel therapies, including (1) intense light, (2) small molecules modulating the circadian mechanism, and (3) chronotherapies such as cardiovascular drugs and meal timings. These promise significant clinical translation in circadian medicine for cardiovascular disease. (4) Additionally, we address the differential functioning of the circadian mechanism in males versus females, emphasizing the consideration of biological sex, gender, and aging in circadian therapies for cardiovascular disease.


Asunto(s)
Relojes Circadianos , Insuficiencia Cardíaca , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Masculino , Animales , Daño por Reperfusión Miocárdica/patología , Ritmo Circadiano , Cronoterapia , Insuficiencia Cardíaca/terapia
3.
BMC Anesthesiol ; 23(1): 16, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627551

RESUMEN

BACKGROUND: Reusable laryngoscopes have been reported to be superior to disposable laryngoscopes with plastic blades during emergent intubations. Surprisingly, at our institution a quality reporting system revealed a high number of equipment failures with reusable laryngoscopes in an emergency out-of-OR (operating room) setting. As recent studies indicated an improved quality of disposable laryngoscopes, we hypothesized that a thoroughly evaluated disposable laryngoscope would result in less equipment failure in an emergency out-of-OR setting. METHODS: To perform a more standardized and time efficient analysis, four distinct disposable laryngoscope blade/handle configurations were trialed during standard intubations (n = 4 × 30) in the OR by experienced anesthesia providers who completed a 6-question, Likert-scale/open-ended survey for product evaluation. The 'best' disposable blade was implemented in an emergency out-of-OR setting and equipment failure rates were monitored over a 3-year period. RESULTS: Different disposable laryngoscopes were equal regarding sturdiness, illumination and airway visualization. The laryngoscope with the highest overall score was significantly higher scored than the laryngoscope with the lowest overall score. All disposable laryngoscopes were more cost effective than the reusable ones, and the top scored laryngoscope demonstrated the highest 5-year cost-saving ($210 K). Implementation of the top scored disposable laryngoscope into an emergency out-of-OR setting reduced the equipment failure incidence from high 20s to 0. CONCLUSION: Disposable laryngoscopes are cost effective and superior to reusable laryngoscopes in an emergency out-of-OR setting. We demonstrate that the implementation of a disposable laryngoscope in the emergency out-of-OR setting resulted in a near elimination of equipment related quality submissions which ultimately enhances patient safety.


Asunto(s)
Laringoscopios , Humanos , Intubación Intratraqueal , Equipos Desechables , Encuestas y Cuestionarios , Falla de Equipo , Diseño de Equipo
4.
Am J Physiol Lung Cell Mol Physiol ; 322(5): L647-L661, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35272486

RESUMEN

Circadian amplitude enhancement has the potential to be organ protective but has not been studied in acute lung injury (ALI). Consistent light and dark cycles are crucial for the amplitude regulation of the circadian rhythm protein Period2 (PER2). Housing mice under intense instead of ambient light for 1 wk (light: dark cycle:14h:10h), we demonstrated a robust increase of pulmonary PER2 trough and peak levels, which is consistent with circadian amplitude enhancement. A search for the affected lung cell type suggested alveolar type 2 (ATII) cells as strong candidates for light induction of PER2. A head-to-head comparison of mice with cell-type-specific deletion of Per2 in ATII, endothelial, or myeloid cells uncovered a dramatic phenotype in mice with an ATII-specific deletion of Per2. During Pseudomonas aeruginosa-induced ALI, mice with Per2 deletion in ATII cells showed 0% survival, whereas 85% of control mice survived. Subsequent studies demonstrated that intense light therapy dampened lung inflammation or improved the alveolar barrier function during P. aeruginosa-induced ALI, which was abolished in mice with an ATII-specific deletion of Per2. A genome-wide mRNA array uncovered bactericidal/permeability-increasing fold-containing family B member 1 (BPIFB1) as a downstream target of intense light-elicited ATII-PER2 mediated lung protection. Using the flavonoid and PER2 amplitude enhancer nobiletin, we recapitulated the lung-protective and anti-inflammatory effects of light and BPIFB1, respectively. Together, our studies demonstrate that light-elicited amplitude enhancement of ATII-specific PER2 is a critical control point of inflammatory pathways during bacterial ALI.


Asunto(s)
Lesión Pulmonar Aguda , Proteínas Circadianas Period , Lesión Pulmonar Aguda/prevención & control , Animales , Ritmo Circadiano , Pulmón/metabolismo , Ratones , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
5.
FASEB J ; 35(4): e21468, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33687752

RESUMEN

Acute lung injury (ALI) is an inflammatory lung disease, which manifests itself in patients as acute respiratory distress syndrome (ARDS). Previous studies have implicated alveolar-epithelial succinate in ALI protection. Therefore, we hypothesized that targeting alveolar succinate dehydrogenase SDH A would result in elevated succinate levels and concomitant lung protection. Wild-type (WT) mice or transgenic mice with targeted alveolar-epithelial Sdha or hypoxia-inducible transcription factor Hif1a deletion were exposed to ALI induced by mechanical ventilation. Succinate metabolism was assessed in alveolar-epithelial via mass spectrometry as well as redox measurements and evaluation of lung injury. In WT mice, ALI induced by mechanical ventilation decreased SDHA activity and increased succinate in alveolar-epithelial. In vitro, cell-permeable succinate decreased epithelial inflammation during stretch injury. Mice with inducible alveolar-epithelial Sdha deletion (Sdhaloxp/loxp SPC-CreER mice) revealed reduced lung inflammation, improved alveolar barrier function, and attenuated histologic injury. Consistent with a functional role of succinate to stabilize HIF, Sdhaloxp/loxp SPC-CreER experienced enhanced Hif1a levels during hypoxia or ALI. Conversely, Hif1aloxp/loxp SPC-CreER showed increased inflammation with ALI induced by mechanical ventilation. Finally, wild-type mice treated with intra-tracheal dimethlysuccinate were protected during ALI. These data suggest that targeting alveolar-epithelial SDHA dampens ALI via succinate-mediated stabilization of HIF1A. Translational extensions of our studies implicate succinate treatment in attenuating alveolar inflammation in patients suffering from ARDS.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Pulmón/metabolismo , Neumonía/metabolismo , Succinato Deshidrogenasa/metabolismo , Animales , Humanos , Inflamación/metabolismo , Ratones Transgénicos , Alveolos Pulmonares/metabolismo
6.
Arterioscler Thromb Vasc Biol ; 40(4): 901-913, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32102568

RESUMEN

OBJECTIVE: Cardiac myosin (CM) is structurally similar to skeletal muscle myosin, which has procoagulant activity. Here, we evaluated CM's ex vivo, in vivo, and in vitro activities related to hemostasis and thrombosis. Approach and Results: Perfusion of fresh human blood over CM-coated surfaces caused thrombus formation and fibrin deposition. Addition of CM to blood passing over collagen-coated surfaces enhanced fibrin formation. In a murine ischemia/reperfusion injury model, exogenous CM, when administered intravenously, augmented myocardial infarction and troponin I release. In hemophilia A mice, intravenously administered CM reduced tail-cut-initiated bleeding. These data provide proof of concept for CM's in vivo procoagulant properties. In vitro studies clarified some mechanisms for CM's procoagulant properties. Thrombin generation assays showed that CM, like skeletal muscle myosin, enhanced thrombin generation in human platelet-rich and platelet-poor plasmas and also in mixtures of purified factors Xa, Va, and prothrombin. Binding studies showed that CM, like skeletal muscle myosin, directly binds factor Xa, supporting the concept that the CM surface is a site for prothrombinase assembly. In tPA (tissue-type plasminogen activator)-induced plasma clot lysis assays, CM was antifibrinolytic due to robust CM-dependent thrombin generation that enhanced activation of TAFI (thrombin activatable fibrinolysis inhibitor). CONCLUSIONS: CM in vitro is procoagulant and prothrombotic. CM in vivo can augment myocardial damage and can be prohemostatic in the presence of bleeding. CM's procoagulant and antifibrinolytic activities likely involve, at least in part, its ability to bind factor Xa and enhance thrombin generation. Future work is needed to clarify CM's pathophysiology and its mechanistic influences on hemostasis or thrombosis.


Asunto(s)
Coagulación Sanguínea , Miosinas Cardíacas/metabolismo , Hemostasis , Trombina/biosíntesis , Trombosis/fisiopatología , Animales , Plaquetas/metabolismo , Miosinas Cardíacas/fisiología , Modelos Animales de Enfermedad , Factor Va/metabolismo , Factor Xa/metabolismo , Hemorragia/fisiopatología , Humanos , Masculino , Ratones Endogámicos C57BL , Protrombina/metabolismo
7.
Anesthesiology ; 132(4): 763-780, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31794514

RESUMEN

BACKGROUND: During myocardial ischemia, hypoxia-inducible factors are stabilized and provide protection from ischemia and reperfusion injury. Recent studies show that myocyte-specific hypoxia-inducible factor 2A promotes myocardial ischemia tolerance through induction of epidermal growth factor, amphiregulin. Here, the authors hypothesized that hypoxia-inducible factor 2A may enhance epidermal growth factor receptor 1 (ERBB1) expression in the myocardium that could interface between growth factors and its effect on providing tolerance to ischemia and reperfusion injury. METHODS: Human myocardial tissues were obtained from ischemic heart disease patients and normal control patients to compare ERBB1 expression. Myocyte-specific Hif2a or ErbB1 knockout mice were generated to observe the effect of Hif2a knockdown in regulating ERBB1 expression and to examine the role of ERBB1 during myocardial ischemia and reperfusion injury. RESULTS: Initial studies of myocardial tissues from patients with ischemic heart disease showed increased ERBB1 protein (1.12 ± 0.24 vs. 13.01 ± 2.20, P < 0.001). In contrast, ERBB1 transcript was unchanged. Studies using short hairpin RNA repression of Hif2A or Hif2a Myosin Cre+ mice directly implicated hypoxia-inducible factor 2A in ERBB1 protein induction during hypoxia or after myocardial ischemia, respectively. Repression of RNA-binding protein 4 abolished hypoxia-inducible factor 2A-dependent induction of ERBB1 protein. Moreover, ErbB1 Myosin Cre+ mice experienced larger infarct sizes (22.46 ± 4.06 vs. 46.14 ± 1.81, P < 0.001) and could not be rescued via amphiregulin treatment. CONCLUSIONS: These findings suggest that hypoxia-inducible factor 2A promotes transcription-independent induction of ERBB1 protein and implicates epidermal growth factor signaling in protection from myocardial ischemia and reperfusion injury.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Receptores ErbB/biosíntesis , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Transcripción Genética/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Receptores ErbB/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Daño por Reperfusión Miocárdica/genética , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo
8.
Crit Care Med ; 46(6): e600-e608, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29489460

RESUMEN

OBJECTIVES: Delirium occurs in approximately 30% of critically ill patients, and the risk of dying during admission doubles in those patients. Molecular mechanisms causing delirium are largely unknown. However, critical illness and the ICU environment consistently disrupt circadian rhythms, and circadian disruptions are strongly associated with delirium. Exposure to benzodiazepines and constant light are suspected risk factors for the development of delirium. Thus, we tested the functional role of the circadian rhythm protein Period 2 (PER2) in different mouse models resembling delirium. DESIGN: Animal study. SETTING: University experimental laboratory. SUBJECTS: Wildtype, Per2 mice. INTERVENTIONS: Midazolam, lipopolysaccharide (lipopolysaccharide), constant light, nobiletin, or sham-treated animals. MEASUREMENTS AND MAIN RESULTS: Midazolam significantly reduced the expression of PER2 in the suprachiasmatic nucleus and the hippocampus of wild-type mice. Behavioral tests following midazolam exposure revealed a robust phenotype including executive dysfunction and memory impairment suggestive of delirium. These findings indicated a critical role of hippocampal expressed PER2. Similar results were obtained in mice exposed to lipopolysaccharide or constant light. Subsequent studies in Per2 mice confirmed a functional role of PER2 in a midazolam-induced delirium-like phenotype. Using the small molecule nobiletin to enhance PER2 function, the cognitive deficits induced by midazolam or constant light were attenuated in wild-type mice. CONCLUSIONS: These experiments identify a novel role for PER2 during a midazolam- or constant light-induced delirium-like state, highlight the importance of hippocampal PER2 expression for cognitive function, and suggest the PER2 enhancer nobiletin as potential therapy in delirium-like conditions associated with circadian disruption.


Asunto(s)
Trastornos Cronobiológicos/tratamiento farmacológico , Delirio/tratamiento farmacológico , Proteínas Circadianas Period/uso terapéutico , Animales , Trastornos Cronobiológicos/etiología , Trastornos Cronobiológicos/metabolismo , Delirio/etiología , Delirio/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Trastornos de la Memoria/inducido químicamente , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Midazolam/farmacología , Actividad Motora/efectos de los fármacos , Proteínas Circadianas Period/fisiología , Núcleo Supraquiasmático/metabolismo
9.
J Immunol ; 195(4): 1732-43, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26136425

RESUMEN

The adenosine A2b receptor (Adora2b) has been implicated in cardioprotection from myocardial ischemia. As such, Adora2b was found to be critical in ischemic preconditioning (IP) or ischemia/reperfusion (IR) injury of the heart. Whereas Adora2b is present on various cells types, the tissue-specific role of Adora2b in cardioprotection is still unknown. To study the tissue-specific role of Adora2b signaling on inflammatory cells, endothelia, or myocytes during myocardial ischemia in vivo, we intercrossed floxed Adora2b mice with Lyz2-Cre(+), VE-cadherin-Cre(+), or myosin-Cre(+) transgenic mice, respectively. Mice were exposed to 60 min of myocardial ischemia with or without IP (four times for 5 min) followed by 120 min of reperfusion. Cardioprotection by IP was abolished in Adora2b(f/f)-VE-cadherin-Cre(+) or Adora2b(f/f)-myosin-Cre(+), indicating that Adora2b signaling on endothelia or myocytes mediates IP. In contrast, primarily Adora2b signaling on inflammatory cells was necessary to provide cardioprotection in IR injury, indicated by significantly larger infarcts and higher troponin levels in Adora2b(f/f)-Lyz2-Cre(+) mice only. Cytokine profiling of IR injury in Adora2b(f/f)-Lyz2-Cre(+) mice pointed toward polymorphonuclear neutrophils (PMNs). Analysis of PMNs from Adora2b(f/f)-Lyz2-Cre(+) confirmed PMNs as one source of identified tissue cytokines. Finally, adoptive transfer of Adora2b(-/-) PMNs revealed a critical role of Adora2b on PMNs in cardioprotection from IR injury. Adora2b signaling mediates different types of cardioprotection in a tissue-specific manner. These findings have implications for the use of Adora2b agonists in the treatment or prevention of myocardial injury by ischemia.


Asunto(s)
Regulación de la Expresión Génica , Receptor de Adenosina A2B/genética , Receptor de Adenosina A2B/metabolismo , Traslado Adoptivo , Animales , Células de la Médula Ósea/metabolismo , Modelos Animales de Enfermedad , Endotelio/metabolismo , Eliminación de Gen , Precondicionamiento Isquémico Miocárdico , Masculino , Ratones , Ratones Noqueados , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Neutrófilos/inmunología , Especificidad de Órganos/genética , Transducción de Señal
10.
PLoS Biol ; 11(9): e1001665, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24086109

RESUMEN

BACKGROUND: While acute lung injury (ALI) contributes significantly to critical illness, it resolves spontaneously in many instances. The majority of patients experiencing ALI require mechanical ventilation. Therefore, we hypothesized that mechanical ventilation and concomitant stretch-exposure of pulmonary epithelia could activate endogenous pathways important in lung protection. METHODS AND FINDINGS: To examine transcriptional responses during ALI, we exposed pulmonary epithelia to cyclic mechanical stretch conditions--an in vitro model resembling mechanical ventilation. A genome-wide screen revealed a transcriptional response similar to hypoxia signaling. Surprisingly, we found that stabilization of hypoxia-inducible factor 1A (HIF1A) during stretch conditions in vitro or during ventilator-induced ALI in vivo occurs under normoxic conditions. Extension of these findings identified a functional role for stretch-induced inhibition of succinate dehydrogenase (SDH) in mediating normoxic HIF1A stabilization, concomitant increases in glycolytic capacity, and improved tricarboxylic acid (TCA) cycle function. Pharmacologic studies with HIF activator or inhibitor treatment implicated HIF1A-stabilization in attenuating pulmonary edema and lung inflammation during ALI in vivo. Systematic deletion of HIF1A in the lungs, endothelia, myeloid cells, or pulmonary epithelia linked these findings to alveolar-epithelial HIF1A. In vivo analysis of ¹³C-glucose metabolites utilizing liquid-chromatography tandem mass-spectrometry demonstrated that increases in glycolytic capacity, improvement of mitochondrial respiration, and concomitant attenuation of lung inflammation during ALI were specific for alveolar-epithelial expressed HIF1A. CONCLUSIONS: These studies reveal a surprising role for HIF1A in lung protection during ALI, where normoxic HIF1A stabilization and HIF-dependent control of alveolar-epithelial glucose metabolism function as an endogenous feedback loop to dampen lung inflammation.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Alveolos Pulmonares/metabolismo , Mucosa Respiratoria/metabolismo , Lesión Pulmonar Aguda/genética , Animales , Metabolismo de los Hidratos de Carbono , Línea Celular , Respiración de la Célula , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Edema Pulmonar/metabolismo , Transducción de Señal , Succinato Deshidrogenasa/metabolismo
11.
J Immunol ; 192(3): 1249-56, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24391213

RESUMEN

Although acute lung injury (ALI) contributes significantly to critical illness, resolution often occurs spontaneously through endogenous pathways. We recently found that mechanical ventilation increases levels of pulmonary adenosine, a signaling molecule known to attenuate lung inflammation. In this study, we hypothesized a contribution of transcriptionally controlled pathways to pulmonary adenosine receptor (ADOR) signaling during ALI. We gained initial insight from microarray analysis of pulmonary epithelia exposed to conditions of cyclic mechanical stretch, a mimic for ventilation-induced lung disease. Surprisingly, these studies revealed a selective induction of the ADORA2B. Using real-time RT-PCR and Western blotting, we confirmed an up to 9-fold induction of the ADORA2B following cyclic mechanical stretch (A549, Calu-3, or human primary alveolar epithelial cells). Studies using ADORA2B promoter constructs identified a prominent region within the ADORA2B promoter conveying stretch responsiveness. This region of the promoter contained a binding site for the transcription factor hypoxia-inducible factor (HIF)-1. Additional studies using site-directed mutagenesis or transcription factor binding assays demonstrated a functional role for HIF-1 in stretch-induced increases of ADORA2B expression. Moreover, studies of ventilator-induced lung injury revealed induction of the ADORA2B during ALI in vivo that was abolished following HIF inhibition or genetic deletion of Hif1a. Together, these studies implicate HIF in the transcriptional control of pulmonary adenosine signaling during ALI.


Asunto(s)
Lesión Pulmonar Aguda/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Receptor de Adenosina A2B/genética , Estrés Mecánico , Lesión Pulmonar Inducida por Ventilación Mecánica/fisiopatología , Lesión Pulmonar Aguda/metabolismo , Adenosina/fisiología , Animales , Sitios de Unión , Células Cultivadas , Células Epiteliales/fisiología , Femenino , Genes Reporteros , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/deficiencia , Pulmón/metabolismo , Pulmón/fisiopatología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Regiones Promotoras Genéticas/genética , Receptor de Adenosina A2B/biosíntesis , Receptor de Adenosina A2B/fisiología , Transcripción Genética
13.
FASEB J ; 27(8): 3078-89, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23603835

RESUMEN

The signaling molecule adenosine has been implicated in attenuating acute lung injury (ALI). Adenosine signaling is terminated by its uptake through equilibrative nucleoside transporters (ENTs). We hypothesized that ENT-dependent adenosine uptake could be targeted to enhance adenosine-mediated lung protection. To address this hypothesis, we exposed mice to high-pressure mechanical ventilation to induce ALI. Initial studies demonstrated time-dependent repression of ENT1 and ENT2 transcript and protein levels during ALI. To examine the contention that ENT repression represents an endogenous adaptive response, we performed functional studies with the ENT inhibitor dipyridamole. Dipyridamole treatment (1 mg/kg; EC50=10 µM) was associated with significant increases in ALI survival time (277 vs. 395 min; P<0.05). Subsequent studies in gene-targeted mice for Ent1 or Ent2 revealed a selective phenotype in Ent2(-/-) mice, including attenuated pulmonary edema and improved gas exchange during ALI in conjunction with elevated adenosine levels in the bronchoalveolar fluid. Furthermore, studies in genetic models for adenosine receptors implicated the A2B adenosine receptor (Adora2b) in mediating ENT-dependent lung protection. Notably, dipyridamole-dependent attenuation of lung inflammation was abolished in mice with alveolar epithelial Adora2b gene deletion. Our newly identified crosstalk pathway between ENT2 and alveolar epithelial Adora2b in lung protection during ALI opens possibilities for combined therapies targeted to this protein set.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Receptor de Adenosina A2B/metabolismo , Transducción de Señal , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/prevención & control , Adenosina/metabolismo , Animales , Líquido del Lavado Bronquioalveolar/química , Línea Celular , Dipiridamol/farmacología , Tranportador Equilibrativo 1 de Nucleósido/genética , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Transportador Equilibrativo 2 de Nucleósido/antagonistas & inhibidores , Transportador Equilibrativo 2 de Nucleósido/genética , Expresión Génica , Humanos , Immunoblotting , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Alveolos Pulmonares/metabolismo , Intercambio Gaseoso Pulmonar/efectos de los fármacos , Intercambio Gaseoso Pulmonar/genética , Receptor de Adenosina A2B/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Vasodilatadores/farmacología
14.
Anal Chem ; 85(12): 5965-73, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23682691

RESUMEN

Sensitive and reliable analysis of sugars and sugar phosphates in tissues and cells is essential for many biological and cell engineering studies. However, the successful analysis of these endogenous compounds in biological samples by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) is often difficult because of their poor chromatographic retention properties in reversed-phase LC, the complex biological matrices, and the ionization suppression in ESI. This situation is further complicated by the existence of their multiple structural isomers in vivo. This work describes the combination of reductive amination using 3-amino-9-ethylcarbazole, with a new LC approach using a pentafluorophenyl core-shell ultrahigh performance (UP) LC column and methylphosphonic acid as an efficient tail-sweeping reagent for improved chromatographic separation. This new method was used for selected detection and accurate quantitation of the major free and phosphorylated reducing sugars in mouse heart tissue. Among the detected compounds, accurate quantitation of glyceraldehyde, ribose, glucose, glycerylaldehyde-3-phosphate, ribose-5-phosphate, glucose-6-phosphate, and mannose-6-phosphate was achieved by UPLC/multiple-reaction monitoring (MRM)-MS, with analytical accuracies ranging from 87.4% to 109.4% and CVs of ≤8.5% (n = 6). To demonstrate isotope-resolved metabolic profiling, we used UPLC/quadrupole time-of-flight (QTOF)-MS to analyze the isotope distribution patterns of C3 to C6 free and phosphorylated reducing sugars in heart tissues from (13)C-labeled wild type and knockout mice. In conclusion, the preanalytical derivatization-LC/ESI-MS method has resulted in selective determination of free and phosphorylated reducing sugars without the interferences from their nonreducing structural isomers in mouse heart tissue, with analytical sensitivities in the femtomole to low picomole range.


Asunto(s)
Carbohidratos/análisis , Miocardio/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Fosfatos de Azúcar/análisis , Animales , Cromatografía Liquida/métodos , Ratones , Ratones Noqueados
15.
Electrophoresis ; 34(19): 2891-900, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23580203

RESUMEN

Multiple hydroxy-, keto-, di-, and tri-carboxylic acids are among the cellular metabolites of central carbon metabolism (CCM). Sensitive and reliable analysis of these carboxylates is important for many biological and cell engineering studies. In this work, we examined 3-nitrophenylhydrazine as a derivatizing reagent and optimized the reaction conditions for the measurement of ten CCM-related carboxylic compounds, including glycolate, lactate, malate, fumarate, succinate, citrate, isocitrate, pyruvate, oxaloacetate, and α-ketoglutarate as their 3-nitrophenylhydrazones using LC/MS with ESI. With the derivatization protocol which we have developed, and using negative-ion multiple-reaction monitoring on a triple-quadrupole instrument, all of the carboxylates showed good linearity within a dynamic range of ca. 200 to more than 2000. The on-column LODs and LOQs were from high femtomoles to low picomoles. The analytical accuracies for eight of the ten analytes were determined to be between 89.5 to 114.8% (CV≤7.4%, n = 6). Using a QTOF instrument, the isotopic distribution patterns of these carboxylates, extracted from a (13) C-labeled mouse heart, were successfully determined by UPLC/MS with full-mass detection, indicating the possible utility of this analytical method for metabolic flux analysis. In summary, this work demonstrates an efficient chemical derivatization LC/MS method for metabolomic analysis of these key CCM intermediates in a biological matrix.


Asunto(s)
Ácidos Carboxílicos/análisis , Ácidos Carboxílicos/metabolismo , Metabolómica/métodos , Miocardio/metabolismo , Fenilhidrazinas/química , Animales , Carbono/metabolismo , Cromatografía Liquida/métodos , Ratones , Miocardio/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos
16.
Ann Transl Med ; 11(12): 420, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38213806

RESUMEN

Background: Up to 30% of patients worldwide have a significant complication related to their tracheostomy. We report a case of a 'cannot ventilate' event resulting in cardiac arrest due to an unexpected airway occlusion in a patient with a pre-existing brain injury The following case report is unique as the patient had developed a mucus plug that turned into a crystal following a coronavirus disease 19 (COVID-19) infection. Case Description: The patient was a young adult who suffered a traumatic brain injury from a motor vehicle collision. He presented for elective cystoscopy to treat recurrent urinary tract infections. During induction of anesthesia, the patient became agitated, desaturated, and ventilation became impossible. With chest compressions underway the tracheostomy was removed, and the patient was quickly and successfully orally intubated using a video-laryngoscope. Subsequent inspection of the tracheostomy tube revealed a mucus plug in the distal portion which had hardened into a rock-like appearance. The inner cannula was also missing. Follow-up revealed that the patient recently had a COVID-19 infection and because of this received less frequent suctioning of his tracheostomy tube. Conclusions: Reviewing the literature, we recognized that there has been no case report documenting a mucus plug that turned into a stone. Reviewing guidelines for handling tracheostomy emergencies, we recognize that there are no anesthesia specific guidelines in the USA. We also recognize that there are no established checklists for patients with tracheostomy undergoing surgery. We therefore recommend establishing a routine checklist and anesthesia specific guideline for emergencies that follows every patient with a tracheostomy undergoing surgery.

17.
Ann Transl Med ; 11(9): 319, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37404989

RESUMEN

Circadian rhythms are essential to physiological homeostasis, but often disrupted in the intensive care unit (ICU) due to the absence of natural zeitgebers and exposure to treatments which affect circadian regulators. This is increasingly recognized as a contributor to morbidity and mortality across a variety of medical conditions including critical illness. Maintenance of circadian rhythms is particularly relevant to critically ill patients, who are restricted not only to the ICU environment but often bed bound. Circadian rhythms have been evaluated in several ICU studies, but effective therapies to maintain, restore, or amplify circadian rhythms have not been fully established yet. Circadian entrainment and circadian amplitude enhancement are integral to patients' overall health and well-being, and likely even more important during response to and recovery from critical illness. In fact, studies have shown that enhancing the amplitude of circadian cycles has significant beneficial effects on health and wellbeing. In this review, we discuss up-to-date literature on novel circadian mechanism that could not only restore but enhance circadian rhythms in critical illness by using a MEGA bundle consisting of intense light therapy each morning, cyclic nutrition support, timed physical therapy, nighttime melatonin administration, morning administration of circadian rhythm amplitude enhancers, cyclic temperature control and a nocturnal sleep hygiene bundle.

18.
Crit Care Explor ; 5(3): e0878, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36875558

RESUMEN

The use of hyperoxemia during cardiac surgery remains controversial. We hypothesized that intraoperative hyperoxemia during cardiac surgery is associated with an increased risk of postoperative pulmonary complications. DESIGN: Retrospective cohort study. SETTING: We analyzed intraoperative data from five hospitals within the Multicenter Perioperative Outcomes Group between January 1, 2014, and December 31, 2019. We assessed intraoperative oxygenation of adult patients undergoing cardiac surgery with cardiopulmonary bypass (CPB). Hyperoxemia pre and post CPB was quantified as the area under the curve (AUC) of Fio2 above 0.21 in minutes when the corresponding peripheral oxygen saturation was greater than 92% measured by pulse oximetry. We quantified hyperoxemia during CPB as the AUC of Pao2 greater than 200 mm Hg measured by arterial blood gas. We analyzed the association of hyperoxemia during all phases of cardiac surgery with the frequency of postoperative pulmonary complications within 30 days, including acute respiratory insufficiency or failure, acute respiratory distress syndrome, need for reintubation, and pneumonia. PATIENTS: Twenty-one thousand six hundred thirty-two cardiac surgical patients. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: During 21,632 distinct cardiac surgery cases, 96.4% of patients spent at least 1 minute in hyperoxemia (99.1% pre-CPB, 98.5% intra-CPB, and 96.4% post-CPB). Increasing exposure to hyperoxemia was associated with an increased risk of postoperative pulmonary complications throughout three distinct surgical periods. During CPB, increasing exposure to hyperoxemia was associated with an increased odds of developing postoperative pulmonary complications (p < 0.001) in a linear manner. Hyperoxemia before CPB (p < 0.001) and after CPB (p = 0.02) were associated with increased odds of developing postoperative pulmonary complications in a U-shaped relationship. CONCLUSIONS: Hyperoxemia occurs almost universally during cardiac surgery. Exposure to hyperoxemia assessed continuously as an AUC during the intraoperative period, but particularly during CPB, was associated with an increased incidence of postoperative pulmonary complications.

19.
Transl Pediatr ; 12(12): 2222-2231, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38197113

RESUMEN

Background: Selecting the optimal tracheal tube size is critically important for pediatric patients. Age-based formulas are often used, but still have limitations. The aim of this prospective study was to investigate whether middle finger measurements correlate with cuffed tracheal tube size and to further develop a prediction model based on these measurements. Methods: Patients under 12 years of age scheduled for elective surgery involving tracheal intubation were enrolled in the study. The length was determined from the tip of the distal metacarpal to the palm's root on the palm side, while the circumference was measured at the base of the palm using a soft tape measure. The appropriate cuffed tracheal tube size was determined based on specific criteria. If the tube encountered resistance during insertion or required an airway pressure >25 cmH2O to detect an audible leak, it was replaced with a tube 0.5 mm smaller. Conversely, if an audible leak occurred at an airway pressure <10 cmH2O, or peak pressure >25 cmH2O, or the cuff pressure >25 cmH2O to achieve a seal, the tube was exchanged for one with a 0.5 mm larger. Linear regression analysis was used to examine the association between middle finger circumference and length with the cuffed tracheal tube size. Subsequently, regression equations were constructed based on the results of the linear regression analysis and their predictive performance was compared to the conventional age-based formulas, including the Khine formula and Motoyama formula. The predictive performance was evaluated by mean absolute error (MAE), root mean square error (RMSE), and prediction accuracy. Results: A total of 261 patients were analyzed in our study. The mean age of the patients was 46.19±35.83 months. The linear relationship was observed between the cuffed tracheal tube size and the middle finger circumference and middle finger length with R2 values of 0.77 and 0.73, respectively. In comparison to conventional age-based formulas, both middle finger circumference and middle finger length demonstrated superior predictive performance, characterized by lower MAE and RMSE, as well as higher prediction accuracy. Notably, the regression equation based on the middle finger circumference obtained the higher predictive accuracy of 0.590, with an MAE of 0.259 and an RMSE of 0.333 as opposed to the predictive accuracy of 0.391, MAE of 0.349, and RMSE of 0.473 derived from conventional age-based formulas. Based on the regression coefficients of linear regression, simplified formulas were proposed, with the middle finger circumference-based formula emerging as the most accurate and simple option. Conclusions: The appropriate cuffed tracheal tube size could be predicted by the middle finger circumference. Our proposed formula 'cuffed tracheal tube internal diameter (mm) = middle finger circumference (cm) - 0.2' has the potential to improve the selection of the cuffed tracheal tube size in pediatric patients.

20.
Anesthesiology ; 116(6): 1245-57, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22531331

RESUMEN

BACKGROUND: Cardiac ischemia-reperfusion (I-R) injury represents a major cause of cardiac tissue injury. Adenosine signaling dampens inflammation during cardiac I-R. The authors investigated the role of the adenosine A2b-receptor (Adora2b) on inflammatory cells during cardiac I-R. METHODS: To study Adora2b signaling on inflammatory cells, the authors transplanted wild-type (WT) bone marrow (BM) into Adora2b(-/-) mice or Adora2b(-/-) BM into WT mice. To study the role of polymorphonuclear leukocytes (PMNs), neutrophil-depleted WT mice were treated with an Adora2b agonist. After treatments, mice were exposed to 60 min of myocardial ischemia and 120 min of reperfusion. Infarct sizes and troponin I concentrations were determined by triphenyltetrazolium chloride staining and enzyme-linked immunosorbent assay, respectively. RESULTS: Transplantation of WT BM into Adora2b(-/-) mice decreased infarct sizes by 19 ± 4% and troponin I by 87.5 ± 25.3 ng/ml (mean ± SD, n = 6). Transplantation of Adora2b(-/-) BM into WT mice increased infarct sizes by 20 ± 3% and troponin I concentrations by 69.7 ± 17.9 ng/ml (mean ± SD, n = 6). Studies on the reperfused myocardium revealed PMNs as the dominant cell type. PMN depletion or Adora2b agonist treatment reduced infarct sizes by 30 ± 11% or 26 ± 13% (mean ± SD, n = 4); however, the combination of both did not produce additional cardioprotection. Cytokine profiling showed significantly higher cardiac tumor necrosis factor α concentrations in Adora2b(-/-) compared with WT mice (39.3 ± 5.3 vs. 7.5 ± 1.0 pg/mg protein, mean ± SD, n = 4). Pharmacologic studies on human-activated PMNs revealed an Adora2b-dependent tumor necrosis factor α release. CONCLUSION: Adora2b signaling on BM-derived cells such as PMNs represents an endogenous cardioprotective mechanism during cardiac I-R. The authors' findings suggest that Adora2b agonist treatment during cardiac I-R reduces tumor necrosis factor α release of PMNs, thereby dampening tissue injury.


Asunto(s)
Agonistas del Receptor de Adenosina A2/farmacología , Aminopiridinas/farmacología , Células de la Médula Ósea/efectos de los fármacos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Receptor de Adenosina A2B/fisiología , Transducción de Señal/efectos de los fármacos , Xantinas/farmacología , Animales , Células de la Médula Ósea/fisiología , Trasplante de Células , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mutantes Quiméricas , Isquemia Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/enzimología , Neutrófilos/fisiología , Peroxidasa/metabolismo , Receptor de Adenosina A2B/efectos de los fármacos , Receptor de Adenosina A2B/genética , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA