Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 82: 295-322, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23350744

RESUMEN

There exists a family of currently untreatable, serious human diseases that arise from the inappropriate misfolding and aggregation of extracellular proteins. At present our understanding of mechanisms that operate to maintain proteostasis in extracellular body fluids is limited, but it has significantly advanced with the discovery of a small but growing family of constitutively secreted extracellular chaperones. The available evidence strongly suggests that these chaperones act as both sensors and disposal mediators of misfolded proteins in extracellular fluids, thereby normally protecting us from disease pathologies. It is critically important to further increase our understanding of the mechanisms that operate to effect extracellular proteostasis, as this is essential knowledge upon which to base the development of effective therapies for some of the world's most debilitating, costly, and intractable diseases.


Asunto(s)
Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Proteínas/metabolismo , Deficiencias en la Proteostasis/fisiopatología , Humanos , Proteínas/química
2.
J Cell Sci ; 134(7)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33674449

RESUMEN

Disturbances to protein homeostasis (proteostasis) can lead to protein aggregation and inclusion formation, processes associated with a variety of neurodegenerative disorders. DNAJB proteins are molecular chaperones that have been identified as potent suppressors of disease-related protein aggregation. In this work, a destabilised isoform of firefly luciferase (R188Q/R261Q Fluc; termed FlucDM) was overexpressed in cells to assess the capacity of DNAJBs to inhibit inclusion formation. Co-expression of all DNAJB proteins tested significantly inhibited the intracellular aggregation of FlucDM. Moreover, we show that DNAJB proteins suppress aggregation by supporting the Hsp70 (HSPA)-dependent degradation of FlucDM via the proteasome. The serine-rich stretch in DNAJB6 and DNAJB8, essential for preventing fibrillar aggregation, is not involved in the suppression of FlucDM inclusion formation. Conversely, deletion of the C-terminal TTK-LKS motif in DNAJB6 and DNAJB8, a region not required to suppress polyglutamine aggregation, abolished the ability to inhibit inclusion formation by FlucDM. Thus, our data suggest that DNAJB6 and DNAJB8 possess two distinct regions for binding substrates, one that is responsible for binding ß-hairpins that form during amyloid formation and another that interacts with exposed hydrophobic patches in aggregation-prone clients. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas del Choque Térmico HSP40 , Agregado de Proteínas , Amiloide/metabolismo , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteostasis
3.
J Biol Chem ; 296: 100161, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33288678

RESUMEN

Small heat shock proteins (sHsps) are a family of ubiquitous intracellular molecular chaperones; some sHsp family members are upregulated under stress conditions and play a vital role in protein homeostasis (proteostasis). It is commonly accepted that these chaperones work by trapping misfolded proteins to prevent their aggregation; however, fundamental questions regarding the molecular mechanism by which sHsps interact with misfolded proteins remain unanswered. The dynamic and polydisperse nature of sHsp oligomers has made studying them challenging using traditional biochemical approaches. Therefore, we have utilized a single-molecule fluorescence-based approach to observe the chaperone action of human alphaB-crystallin (αBc, HSPB5). Using this approach we have, for the first time, determined the stoichiometries of complexes formed between αBc and a model client protein, chloride intracellular channel 1. By examining the dispersity and stoichiometries of these complexes over time, and in response to different concentrations of αBc, we have uncovered unique and important insights into a two-step mechanism by which αBc interacts with misfolded client proteins to prevent their aggregation.


Asunto(s)
Canales de Cloruro/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Imagen Individual de Molécula/métodos , Cadena B de alfa-Cristalina/química , Sitios de Unión , Carbocianinas/química , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Colorantes Fluorescentes/química , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Unión Proteica , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rodaminas/química , Soluciones , Coloración y Etiquetado/métodos , Ácidos Sulfónicos/química , Cadena B de alfa-Cristalina/genética , Cadena B de alfa-Cristalina/metabolismo
4.
J Neurochem ; 161(3): 281-292, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35170035

RESUMEN

The aggregation of proteins into inclusions or plaques is a prominent hallmark of a diverse range of pathologies including neurodegenerative diseases. The quantification of such inclusions in Caenorhabditis elegans models of aggregation is usually achieved by fluorescence microscopy or other techniques involving biochemical fractionation of worm lysates. Here, we describe a simple and rapid flow cytometry-based approach that allows fluorescently tagged inclusions to be enumerated in whole worm lysate in a quantitative and unbiased fashion. We demonstrate that this technique is applicable to multiple C. elegans models of aggregation and importantly, can be used to monitor the dynamics of inclusion formation in response to heat shock and during ageing. This includes the characterisation of physicochemical properties of inclusions, such as their apparent size, which may reveal how aggregate formation is distinct in different tissues or at different stages of pathology or ageing. This new method can be used as a powerful technique for the medium- to high-throughput quantification of inclusions in future studies of genetic or chemical modulators of aggregation in C. elegans.


Asunto(s)
Caenorhabditis elegans , Cuerpos de Inclusión , Envejecimiento , Animales , Citometría de Flujo , Microscopía Fluorescente
5.
J Cell Sci ; 133(15)2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32661089

RESUMEN

Protein aggregates that result in inclusion formation are a pathological hallmark common to many neurodegenerative diseases, including amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease. Under conditions of cellular stress, activation of the heat shock response (HSR) results in an increase in the levels of molecular chaperones and is a first line of cellular defence against inclusion formation. It remains to be established whether neurodegenerative disease-associated proteins and inclusions are themselves capable of inducing an HSR in neuronal cells. To address this, we generated a neuroblastoma cell line that expresses a fluorescent reporter protein under conditions of heat shock transcription factor 1 (HSF1)-mediated HSR induction. We show that the HSR is not induced by exogenous treatment with aggregated forms of recombinant α-synuclein or the G93A mutant of superoxide dismutase-1 (SOD1G93A) nor intracellular expression of SOD1G93A or a pathogenic form of polyglutamine-expanded huntingtin (Htt72Q). These results suggest that pathogenic proteins evade detection or impair induction of the HSR in neuronal cells. A failure of protein aggregation to induce an HSR might contribute to the development of inclusion pathology in neurodegenerative diseases.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Enfermedades Neurodegenerativas , Factores de Transcripción del Choque Térmico/genética , Respuesta al Choque Térmico/genética , Humanos , Enfermedades Neurodegenerativas/genética , Agregado de Proteínas , Superóxido Dismutasa-1
6.
J Biol Chem ; 295(29): 9838-9854, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32417755

RESUMEN

Small heat-shock proteins (sHSPs) are ubiquitously expressed molecular chaperones that inhibit amyloid fibril formation; however, their mechanisms of action remain poorly understood. sHSPs comprise a conserved α-crystallin domain flanked by variable N- and C-terminal regions. To investigate the functional contributions of these three regions, we compared the chaperone activities of various constructs of human αB-crystallin (HSPB5) and heat-shock 27-kDa protein (Hsp27, HSPB1) during amyloid formation by α-synuclein and apolipoprotein C-II. Using an array of approaches, including thioflavin T fluorescence assays and sedimentation analysis, we found that the N-terminal region of Hsp27 and the terminal regions of αB-crystallin are important for delaying amyloid fibril nucleation and for disaggregating mature apolipoprotein C-II fibrils. We further show that the terminal regions are required for stable fibril binding by both sHSPs and for mediating lateral fibril-fibril association, which sequesters preformed fibrils into large aggregates and is believed to have a cytoprotective function. We conclude that although the isolated α-crystallin domain retains some chaperone activity against amyloid formation, the flanking domains contribute additional and important chaperone activities, both in delaying amyloid formation and in mediating interactions of sHSPs with amyloid aggregates. Both these chaperone activities have significant implications for the pathogenesis and progression of diseases associated with amyloid deposition, such as Parkinson's and Alzheimer's diseases.


Asunto(s)
Amiloide/química , Proteínas de Choque Térmico/química , Chaperonas Moleculares/química , Cadena B de alfa-Cristalina/química , Amiloide/metabolismo , Apolipoproteína C-II/química , Apolipoproteína C-II/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Dominios Proteicos , Cadena B de alfa-Cristalina/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
7.
J Biol Chem ; 293(12): 4486-4497, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29382725

RESUMEN

Proteostasis, or protein homeostasis, encompasses the maintenance of the conformational and functional integrity of the proteome and involves an integrated network of cellular pathways. Molecular chaperones, such as the small heat shock proteins (sHsps), are key elements of the proteostasis network that have crucial roles in inhibiting the aggregation of misfolded proteins. Failure of the proteostasis network can lead to the accumulation of misfolded proteins into intracellular and extracellular deposits. Deposits containing fibrillar forms of α-synuclein (α-syn) are characteristic of neurodegenerative disorders including Parkinson's disease and dementia with Lewy bodies. Here we show that the sHsp Hsp27 (HSPB1) binds to α-syn fibrils, inhibiting fibril growth by preventing elongation. Using total internal reflection fluorescence (TIRF)-based imaging methods, we show that Hsp27 binds along the surface of α-syn fibrils, decreasing their hydrophobicity. Binding of Hsp27 also inhibits cytotoxicity of α-syn fibrils. Our results demonstrate that the ability of sHsps, such as Hsp27, to bind fibrils represents an important mechanism through which they may mitigate cellular toxicity associated with aberrant protein aggregation. Fibril binding may represent a generic mechanism by which chaperone-active sHsps interact with aggregation-prone proteins, highlighting the potential to target sHsp activity to prevent or disrupt the onset and progression of α-syn aggregation associated with α-synucleinopathies.


Asunto(s)
Proteínas de Choque Térmico HSP27/metabolismo , Neuroblastoma/patología , Agregado de Proteínas , alfa-Sinucleína/metabolismo , Animales , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico , Humanos , Ratones , Chaperonas Moleculares , Neuroblastoma/metabolismo , Células Tumorales Cultivadas , alfa-Sinucleína/genética
8.
Acc Chem Res ; 51(3): 745-752, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29442498

RESUMEN

Molecular chaperone proteins perform a diversity of roles inside and outside the cell. One of the most important is the stabilization of misfolding proteins to prevent their aggregation, a process that is potentially detrimental to cell viability. Diseases such as Alzheimer's, Parkinson's, and cataract are characterized by the accumulation of protein aggregates. In vivo, many proteins are metastable and therefore under mild destabilizing conditions have an inherent tendency to misfold, aggregate, and hence lose functionality. As a result, protein levels are tightly regulated inside and outside the cell. Protein homeostasis, or proteostasis, describes the network of biological pathways that ensures the proteome remains folded and functional. Proteostasis is a major factor in maintaining cell, tissue, and organismal viability. We have extensively investigated the structure and function of intra- and extracellular molecular chaperones that operate in an ATP-independent manner to stabilize proteins and prevent their misfolding and subsequent aggregation into amorphous particles or highly ordered amyloid fibrils. These types of chaperones are therefore crucial in maintaining proteostasis under normal and stress (e.g., elevated temperature) conditions. Despite their lack of sequence similarity, they exhibit many common features, i.e., extensive structural disorder, dynamism, malleability, heterogeneity, oligomerization, and similar mechanisms of chaperone action. In this Account, we concentrate on the chaperone roles of α-crystallins and caseins, the predominant proteins in the eye lens and milk, respectively. Intracellularly, the principal ATP-independent chaperones are the small heat-shock proteins (sHsps). In vivo, sHsps are the first line of defense in preventing intracellular protein aggregation. The lens proteins αA- and αB-crystallin are sHsps. They play a crucial role in maintaining solubility of the crystallins (including themselves) with age and hence in lens proteostasis and, ultimately, lens transparency. As there is little metabolic activity and no protein turnover in the lens, crystallins are very long lived proteins. Lens proteostasis is therefore very different to that in normal, metabolically active cells. Crystallins undergo extensive post-translational modification (PTM), including deamidation, racemization, phosphorylation, and truncation, which can alter their stability. Despite this, the lens remains transparent for tens of years, implying that lens proteostasis is intimately integrated with crystallin PTMs. Many PTMs do not significantly alter crystallin stability, solubility, and functionality, which thereby facilitates lens transparency. In the long term, however, extensive accumulation of crystallin PTMs leads to large-scale crystallin aggregation, lens opacification, and cataract formation. Extracellularly, various ATP-independent molecular chaperones exist that exhibit sHsp-like structural and functional features. For example, caseins, the major milk proteins, exhibit chaperone ability by inhibiting the amorphous and amyloid fibrillar aggregation of a diversity of destabilized proteins. Caseins maintain proteostasis within milk by preventing deleterious casein amyloid fibril formation via incorporation of thousands of individual caseins into an amorphous structure known as the casein micelle. Hundreds of nanoclusters of calcium phosphate are sequestered within each casein micelle through interactions with short, highly phosphorylated casein sequences. This results in a stable biofluid that contains a high concentration of potentially amyloidogenic caseins and concentrations of calcium and phosphate that can be far in excess of the solubility of calcium phosphate. Casein micelle formation therefore performs vital roles in neonatal nutrition and calcium homeostasis in the mammary gland.


Asunto(s)
Adenosina Trifosfato/metabolismo , Caseínas/metabolismo , Chaperonas Moleculares/metabolismo , Proteostasis , alfa-Cristalinas/metabolismo , Adenosina Trifosfato/química , Animales , Caseínas/química , Humanos , Cristalino/química , Leche/química , Chaperonas Moleculares/química , Agregado de Proteínas , alfa-Cristalinas/química
9.
Mol Cell Neurosci ; 88: 319-329, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29524628

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is among the most common of the motor neuron diseases, and arguably the most devastating. During the course of this fatal neurodegenerative disorder, motor neurons undergo progressive degeneration. The currently best-understood animal models of ALS are based on the over-expression of mutant isoforms of Cu/Zn superoxide dismutase 1 (SOD1); these indicate that there is a perturbation in metal homeostasis with disease progression. Copper metabolism in particular is affected in the central nervous system (CNS) and muscle tissue. METHODS: This present study assessed previously published and newly gathered concentrations of transition metals (Cu, Zn, Fe and Se) in CNS (brain and spinal cord) and non-CNS (liver, intestine, heart and muscle) tissues from transgenic mice over-expressing the G93A mutant SOD1 isoform (SOD1G93A), transgenic mice over-expressing wildtype SOD1 (SOD1WT) and non-transgenic controls. RESULTS: Cu accumulates in non-CNS tissues at pre-symptomatic stages in SOD1G93A tissues. This accumulation represents a potentially pathological feature that cannot solely be explained by the over-expression of mSOD1. As a result of the lack of Cu uptake into the CNS there may be a deficiency of Cu for the over-expressed mutant SOD1 in these tissues. Elevated Cu concentrations in muscle tissue also preceded the onset of symptoms and were found to be pathological and not be the result of SOD1 over-expression. CONCLUSIONS: It is hypothesized that the observed Cu accumulations may represent a pathologic feature of ALS, which may actively contribute to axonal retraction leading to muscular denervation, and possibly significantly contributing to disease pathology. Therefore, it is proposed that the toxic-gain-of-function and dying-back hypotheses to explain the molecular drivers of ALS may not be separate, individual processes; rather our data suggests that they are parallel processes.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Metales/metabolismo , Músculo Esquelético/metabolismo , Superóxido Dismutasa/metabolismo , Elementos de Transición/metabolismo , Animales , Axones/metabolismo , Desnervación , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo
10.
J Biol Chem ; 291(43): 22618-22629, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27587396

RESUMEN

The aggregation of α-synuclein (α-syn) into amyloid fibrils is associated with neurodegenerative diseases, collectively referred to as the α-synucleinopathies. In vivo, molecular chaperones, such as the small heat-shock proteins (sHsps), normally act to prevent protein aggregation; however, it remains to be determined how aggregation-prone α-syn evades sHsp chaperone action leading to its disease-associated deposition. This work examines the molecular mechanism by which two canonical sHsps, αB-crystallin (αB-c) and Hsp27, interact with aggregation-prone α-syn to prevent its aggregation in vitro Both sHsps are very effective inhibitors of α-syn aggregation, but no stable complex between the sHsps and α-syn was detected, indicating that the sHsps inhibit α-syn aggregation via transient interactions. Moreover, the ability of these sHsps to prevent α-syn aggregation was dependent on the kinetics of aggregation; the faster the rate of aggregation (shorter the lag phase), the less effective the sHsps were at inhibiting fibril formation of α-syn. Thus, these findings indicate that the rate at which α-syn aggregates in cells may be a significant factor in how it evades sHsp chaperone action in the α-synucleinopathies.


Asunto(s)
Proteínas de Choque Térmico HSP27/química , Agregado de Proteínas , Cadena B de alfa-Cristalina/química , alfa-Sinucleína/química , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico , Humanos , Chaperonas Moleculares , Cadena B de alfa-Cristalina/metabolismo , alfa-Sinucleína/metabolismo
11.
Anal Chem ; 89(17): 9322-9329, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28795815

RESUMEN

Highly ordered protein aggregates, termed amyloid fibrils, are associated with a broad range of diseases, many of which are neurodegenerative, for example, Alzheimer's and Parkinson's. The transition from soluble, functional protein into insoluble amyloid fibril occurs via a complex process involving the initial generation of highly dynamic early stage aggregates or prefibrillar species. Amyloid probes, for example, thioflavin T and Congo red, have been used for decades as the gold standard for detecting amyloid fibrils in solution and tissue sections. However, these well-established dyes do not detect the presence of prefibrillar species formed during the early stages of protein aggregation. Prefibillar species have been proposed to play a key role in the cytotoxicity of amyloid fibrils and the pathogenesis of neurodegenerative diseases. Herein, we report a novel fluorescent dye (bis(triphenylphosphonium) tetraphenylethene (TPE-TPP)) with aggregation-induced emission characteristics for monitoring the aggregation process of amyloid fibrils. An increase in TPE-TPP fluorescence intensity is observed only with ordered protein aggregation, such as amyloid fibril formation, and not with stable molten globules states or amorphously aggregating species. Importantly, TPE-TPP can detect the presence of prefibrillar species formed early during fibril formation. TPE-TPP exhibits a distinctive spectral shift in the presence of prefibrillar species, indicating a unique structural feature of these intermediates. Using fluorescence polarization, which reflects the mobility of the emitting entity, the specific oligomeric pathways undertaken by various proteins during fibrillation could be discerned. Furthermore, we demonstrate the broad applicability of TPE-TPP to monitor amyloid fibril aggregation, including under diverse conditions such as at acidic pH and elevated temperature, or in the presence of amyloid inhibitors.


Asunto(s)
Colorantes Fluorescentes/química , Fenoles/química , Agregado de Proteínas , Fluorescencia , Polarización de Fluorescencia , Humanos
12.
Anal Chem ; 89(24): 13275-13282, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29135234

RESUMEN

The quaternary structure and dynamics of the human small heat-shock protein Hsp27 are linked to its molecular chaperone function and influenced by post-translational modifications, including phosphorylation. Phosphorylation of Hsp27 promotes oligomer dissociation and can enhance chaperone activity. This study explored the impact of phosphorylation on the quaternary structure and dynamics of Hsp27. Using mutations that mimic phosphorylation, and ion mobility mass spectrometry, we show that successive substitutions result in an increase in the conformational heterogeneity of Hsp27 dimers. In contrast, we did not detect any changes in the structure of an Hsp27 12-mer, representative of larger Hsp27 oligomers. Our data suggest that oligomer dissociation and increased flexibility of the dimer contribute to the enhanced chaperone activity of phosphorylated Hsp27. Thus, post-translational modifications such as phosphorylation play a crucial role in modulating both the tertiary and quaternary structure of Hsp27, which is pivotal to its function as a key component of the proteostasis network in cells. Our data demonstrate the utility of ion mobility mass spectrometry for probing the structure and dynamics of heterogeneous proteins.


Asunto(s)
Proteínas de Choque Térmico HSP27/química , Espectrometría de Movilidad Iónica , Simulación de Dinámica Molecular , Transferencia Resonante de Energía de Fluorescencia , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico , Humanos , Chaperonas Moleculares , Fosforilación , Conformación Proteica
13.
Proc Natl Acad Sci U S A ; 111(16): E1562-70, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24711386

RESUMEN

Mammalian small heat-shock proteins (sHSPs) are molecular chaperones that form polydisperse and dynamic complexes with target proteins, serving as a first line of defense in preventing their aggregation into either amorphous deposits or amyloid fibrils. Their apparently broad target specificity makes sHSPs attractive for investigating ways to tackle disorders of protein aggregation. The two most abundant sHSPs in human tissue are αB-crystallin (ABC) and HSP27; here we present high-resolution structures of their core domains (cABC, cHSP27), each in complex with a segment of their respective C-terminal regions. We find that both truncated proteins dimerize, and although this interface is labile in the case of cABC, in cHSP27 the dimer can be cross-linked by an intermonomer disulfide linkage. Using cHSP27 as a template, we have designed an equivalently locked cABC to enable us to investigate the functional role played by oligomerization, disordered N and C termini, subunit exchange, and variable dimer interfaces in ABC. We have assayed the ability of the different forms of ABC to prevent protein aggregation in vitro. Remarkably, we find that cABC has chaperone activity comparable to that of the full-length protein, even when monomer dissociation is restricted through disulfide linkage. Furthermore, cABC is a potent inhibitor of amyloid fibril formation and, by slowing the rate of its aggregation, effectively reduces the toxicity of amyloid-ß peptide to cells. Overall we present a small chaperone unit together with its atomic coordinates that potentially enables the rational design of more effective chaperones and amyloid inhibitors.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Cadena B de alfa-Cristalina/química , Cadena B de alfa-Cristalina/metabolismo , Secuencia de Aminoácidos , Animales , Cristalización , Cisteína/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP27/química , Proteínas de Choque Térmico HSP27/metabolismo , Células HeLa , Humanos , Espectroscopía de Resonancia Magnética , Mamíferos , Datos de Secuencia Molecular , Células PC12 , Multimerización de Proteína/efectos de los fármacos , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Ratas , Relación Estructura-Actividad
14.
J Cell Physiol ; 231(10): 2286-302, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27187154

RESUMEN

We have recently demonstrated that AR-12 (OSU-03012) reduces the function and ATPase activities of multiple HSP90 and HSP70 family chaperones. Combined knock down of chaperones or AR-12 treatment acted to reduce the expression of virus receptors and essential glucosidase proteins. Combined knock down of chaperones or AR-12 treatment inactivated mTOR and elevated ATG13 S318 phosphorylation concomitant with inducing an endoplasmic reticulum stress response that in an eIF2α-dependent fashion increased Beclin1 and LC3 expression and autophagosome formation. Over-expression of chaperones prevented the reduction in receptor/glucosidase expression, mTOR inactivation, the ER stress response, and autophagosome formation. AR-12 reduced the reproduction of viruses including Mumps, Influenza, Measles, Junín, Rubella, HIV (wild type and protease resistant), and Ebola, an effect replicated by knock down of multiple chaperone proteins. AR-12-stimulated the co-localization of Influenza, EBV and HIV virus proteins with LC3 in autophagosomes and reduced viral protein association with the chaperones HSP90, HSP70, and GRP78. Knock down of Beclin1 suppressed drug-induced autophagosome formation and reduced the anti-viral protection afforded by AR-12. In an animal model of hemorrhagic fever virus, a transient exposure of animals to low doses of AR-12 doubled animal survival from ∼30% to ∼60% and suppressed liver damage as measured by ATL, GGT and LDH release. Thus through inhibition of chaperone protein functions; reducing the production, stability and processing of viral proteins; and stimulating autophagosome formation/viral protein degradation, AR-12 acts as a broad-specificity anti-viral drug in vitro and in vivo. We argue future patient studies with AR-12 are warranted. J. Cell. Physiol. 231: 2286-2302, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Autofagosomas/efectos de los fármacos , Autofagia/efectos de los fármacos , Chaperonas Moleculares/metabolismo , Pirazoles/farmacología , Sulfonamidas/farmacología , Replicación Viral/efectos de los fármacos , Línea Celular , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/fisiología , Humanos , Replicación Viral/fisiología
15.
J Neurochem ; 137(4): 489-505, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26872075

RESUMEN

A characteristic of many neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), is the aggregation of specific proteins into protein inclusions and/or plaques in degenerating brains. While much of the aggregated protein consists of disease specific proteins, such as amyloid-ß, α-synuclein, or superoxide dismutase1 (SOD1), many other proteins are known to aggregate in these disorders. Although the role of protein aggregates in the pathogenesis of neurodegenerative diseases remains unknown, the ubiquitous association of misfolded and aggregated proteins indicates that significant dysfunction in protein homeostasis (proteostasis) occurs in these diseases. Proteostasis is the concept that the integrity of the proteome is in fine balance and requires proteins in a specific conformation, concentration, and location to be functional. In this review, we discuss the role of specific mechanisms, both inside and outside cells, which maintain proteostasis, including molecular chaperones, protein degradation pathways, and the active formation of inclusions, in neurodegenerative diseases associated with protein aggregation. A characteristic of many neurodegenerative diseases is the aggregation of specific proteins, which alone provides strong evidence that protein homeostasis is disrupted in these disease states. Proteostasis is the maintenance of the proteome in the correct conformation, concentration, and location by functional pathways such as molecular chaperones and protein degradation machinery. Here, we discuss the potential roles of quality control pathways, both inside and outside cells, in the loss of proteostasis during aging and disease.


Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , Proteolisis , Deficiencias en la Proteostasis/metabolismo , Animales , Humanos , Enfermedades Neurodegenerativas/patología , Pliegue de Proteína , Mapas de Interacción de Proteínas/fisiología , Deficiencias en la Proteostasis/patología , Ubiquitina/metabolismo
16.
Biol Chem ; 397(5): 401-15, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26812789

RESUMEN

Living systems protect themselves from aberrant proteins by a network of chaperones. We have tested in vitro the effects of different concentrations, ranging from 0 to 16 µm, of two molecular chaperones, namely αB-crystallin and clusterin, and an engineered monomeric variant of transthyretin (M-TTR), on the morphology and cytotoxicity of preformed toxic oligomers of HypF-N, which represent a useful model of misfolded protein aggregates. Using atomic force microscopy imaging and static light scattering analysis, all were found to bind HypF-N oligomers and increase the size of the aggregates, to an extent that correlates with chaperone concentration. SDS-PAGE profiles have shown that the large aggregates were predominantly composed of the HypF-N protein. ANS fluorescence measurements show that the chaperone-induced clustering of HypF-N oligomers does not change the overall solvent exposure of hydrophobic residues on the surface of the oligomers. αB-crystallin, clusterin and M-TTR can diminish the cytotoxic effects of the HypF-N oligomers at all chaperone concentration, as demonstrated by MTT reduction and Ca2+ influx measurements. The observation that the protective effect is primarily at all concentrations of chaperones, both when the increase in HypF-N aggregate size is minimal and large, emphasizes the efficiency and versatility of these protein molecules.


Asunto(s)
Transferasas de Carboxilo y Carbamoilo/química , Clusterina/química , Proteínas de Escherichia coli/química , Cadena B de alfa-Cristalina/química , Animales , Transferasas de Carboxilo y Carbamoilo/metabolismo , Línea Celular Tumoral , Clusterina/genética , Clusterina/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Ratones , Prealbúmina/química , Prealbúmina/genética , Prealbúmina/metabolismo , Agregado de Proteínas , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Cadena B de alfa-Cristalina/genética , Cadena B de alfa-Cristalina/metabolismo
17.
Biol Reprod ; 95(4): 91, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27557648

RESUMEN

Because monotremes are the earliest offshoot of the mammalian lineage, the platypus and short-beaked echidna were studied as model animals to assess the origin and biological significance of adaptations considered unique to therian mammals: epididymal sperm maturation and subsequent capacitation. We show that spermatozoa from both species assemble into bundles of approximately 100 cells during passage through the epididymis and that an epididymal protein-secreted protein, acidic, cysteine-rich (osteonectin; SPARC)-is involved in bundle formation. The bundles persisted during incubation in vitro for at least 1 h under conditions that capacitate therian spermatozoa, and then underwent a time-dependent dissociation to release spermatozoa capable of fertilization. Only after this dissociation could the spermatozoa bind to the perivitelline membrane of a hen's egg, display an altered form of motility reminiscent of hyperactivation, and be induced to undergo an acrosome reaction. It is concluded that the development of sperm bundles in the monotreme epididymis mandates that they require a time-dependent process to be capable of fertilizing an ovum. However, because this functional end point was achieved without overt changes in protein tyrosine phosphorylation (a hallmark of capacitation in therians), it is concluded that the process in monotremes is distinctly different from capacitation in therian mammals.


Asunto(s)
Ornitorrinco/fisiología , Espermatozoides/citología , Espermatozoides/fisiología , Tachyglossidae/fisiología , Reacción Acrosómica/fisiología , Animales , Adhesión Celular/fisiología , Pollos , Epidídimo/anatomía & histología , Epidídimo/fisiología , Femenino , Fertilización/fisiología , Masculino , Osteonectina/fisiología , Ornitorrinco/anatomía & histología , Proteoma/aislamiento & purificación , Proteoma/metabolismo , Especificidad de la Especie , Capacitación Espermática/fisiología , Maduración del Esperma/fisiología , Motilidad Espermática/fisiología , Interacciones Espermatozoide-Óvulo/fisiología , Tachyglossidae/anatomía & histología
18.
Cell Mol Life Sci ; 72(3): 429-451, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25352169

RESUMEN

Small heat-shock proteins (sHsps) are a diverse family of intra-cellular molecular chaperone proteins that play a critical role in mitigating and preventing protein aggregation under stress conditions such as elevated temperature, oxidation and infection. In doing so, they assist in the maintenance of protein homeostasis (proteostasis) thereby avoiding the deleterious effects that result from loss of protein function and/or protein aggregation. The chaperone properties of sHsps are therefore employed extensively in many tissues to prevent the development of diseases associated with protein aggregation. Significant progress has been made of late in understanding the structure and chaperone mechanism of sHsps. In this review, we discuss some of these advances, with a focus on mammalian sHsp hetero-oligomerisation, the mechanism by which sHsps act as molecular chaperones to prevent both amorphous and fibrillar protein aggregation, and the role of post-translational modifications in sHsp chaperone function, particularly in the context of disease.


Asunto(s)
Proteínas de Choque Térmico/fisiología , Homeostasis/fisiología , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/fisiología , Agregación Patológica de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Homeostasis/genética , Humanos , Chaperonas Moleculares/genética , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Fosforilación , Polimerizacion , Procesamiento Proteico-Postraduccional/genética , alfa-Cristalinas/metabolismo
19.
Biochim Biophys Acta ; 1842(9): 1830-43, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24973551

RESUMEN

Protein homeostasis, or proteostasis, is the process of maintaining the conformational and functional integrity of the proteome. The failure of proteostasis can result in the accumulation of non-native proteins leading to their aggregation and deposition in cells and in tissues. The amyloid fibrillar aggregation of the protein α-synuclein into Lewy bodies and Lewy neuritis is associated with neurodegenerative diseases classified as α-synucleinopathies, which include Parkinson's disease and dementia with Lewy bodies. The small heat-shock proteins (sHsps) are molecular chaperones that are one of the cell's first lines of defence against protein aggregation. They act to stabilise partially folded protein intermediates, in an ATP-independent manner, to maintain cellular proteostasis under stress conditions. Thus, the sHsps appear ideally suited to protect against α-synuclein aggregation, yet these fail to do so in the context of the α-synucleinopathies. This review discusses how sHsps interact with α-synuclein to prevent its aggregation and, in doing so, highlights the multi-faceted nature of the mechanisms used by sHsps to prevent the fibrillar aggregation of proteins. It also examines what factors may contribute to α-synuclein escaping the sHsp chaperones in the context of the α-synucleinopathies.


Asunto(s)
Proteínas de Choque Térmico Pequeñas/metabolismo , Chaperonas Moleculares/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , alfa-Sinucleína/metabolismo , Animales , Humanos
20.
J Biol Chem ; 288(19): 13602-9, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23532854

RESUMEN

BACKGROUND: αB-crystallin and HSP27 are mammalian intracellular small heat shock proteins. RESULTS: These proteins exchange subunits in a rapid and temperature-dependent manner. CONCLUSION: This facile subunit exchange suggests that differential expression could be used by the cell to regulate the response to stress. SIGNIFICANCE: A robust technique defines parameters for the dynamic interaction between the major mammalian small heat shock proteins. Small heat shock proteins (sHSPs) exist as large polydisperse species in which there is constant dynamic subunit exchange between oligomeric and dissociated forms. Their primary role in vivo is to bind destabilized proteins and prevent their misfolding and aggregation. αB-Crystallin (αB) and HSP27 are the two most widely distributed and most studied sHSPs in the human body. They are coexpressed in different tissues, where they are known to associate with each other to form hetero-oligomeric complexes. In this study, we aimed to determine how these two sHSPs interact to form hetero-oligomers in vitro and whether, by doing so, there is an increase in their chaperone activity and stability compared with their homo-oligomeric forms. Our results demonstrate that HSP27 and αB formed polydisperse hetero-oligomers in vitro, which had an average molecular mass that was intermediate of each of the homo-oligomers and which were more thermostable than αB, but less so than HSP27. The hetero-oligomer chaperone function was found to be equivalent to that of αB, with each being significantly better in preventing the amorphous aggregation of α-lactalbumin and the amyloid fibril formation of α-synuclein in comparison with HSP27. Using mass spectrometry to monitor subunit exchange over time, we found that HSP27 and αB exchanged subunits 23% faster than the reported rate for HSP27 and αA and almost twice that for αA and αB. This represents the first quantitative evaluation of αB/HSP27 subunit exchange, and the results are discussed in the broader context of regulation of function and cellular proteostasis.


Asunto(s)
Proteínas de Choque Térmico HSP27/química , Cadena B de alfa-Cristalina/química , Amiloide/química , Animales , Bovinos , Proteínas de Choque Térmico , Humanos , Lactalbúmina/química , Chaperonas Moleculares , Multimerización de Proteína , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Subunidades de Proteína , alfa-Sinucleína/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA