Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Pharm ; 21(2): 873-882, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38229228

RESUMEN

Prostate cancer (PC), particularly its metastatic castration-resistant form (mCRPC), is a leading cause of cancer-related deaths among men in the Western world. Traditional systemic treatments, including hormonal therapy and chemotherapy, offer limited effectiveness due to tumors' inherent resistance to these therapies. Moreover, they often come with significant side effects. We have developed a delivery method using a tumor-cell-specific heptamethine carbocyanine dye (DZ) designed to transport therapeutic agents directly to tumor cells. This research evaluated simvastatin (SIM) as the antitumor payload because of its demonstrated chemopreventive effects on human cancers and its well-documented safety profile. We designed and synthesized a DZ-SIM conjugate for tumor cell targeting. PC cell lines and xenograft tumor models were used to assess tumor-cell targeting specificity and killing activity and to investigate the corresponding mechanisms. DZ-SIM treatment effectively killed PC cells regardless of their androgen receptor status or inherent therapeutic resistance. The conjugate targeted and suppressed xenograft tumor formation without harming normal cells of the host. In cancer cells, DZ-SIM was enriched in subcellular organelles, including mitochondria, where the conjugate formed adducts with multiple proteins and caused the loss of transmembrane potential, promoting cell death. The DZ-SIM specifically targets PC cells and their mitochondria, resulting in a loss of mitochondrial function and cell death. With a unique subcellular targeting strategy, the conjugate holds the potential to outperform existing chemotherapeutic drugs. It presents a novel strategy to circumvent therapeutic resistance, offering a more potent treatment for mCRPC.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Simvastatina , Masculino , Humanos , Simvastatina/farmacología , Simvastatina/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Próstata/metabolismo , Carbocianinas , Línea Celular Tumoral
2.
BMC Cancer ; 23(1): 499, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268911

RESUMEN

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer and is notorious for its resistance to both chemotherapy and small-molecule inhibitor targeted therapies. Subcellular targeted cancer therapy may thwart the resistance to produce a substantial effect. METHODS: We tested whether the resistance can be circumvented by subcellular targeted cancer therapy with DZ-CIS, which is a chemical conjugate of the tumor-cell specific heptamethine carbocyanine dye (HMCD) with cisplatin (CIS), a chemotherapeutic drug with limited use in ccRCC treatment because of frequent renal toxicity. RESULTS: DZ-CIS displayed cytocidal effects on Caki-1, 786-O, ACHN, and SN12C human ccRCC cell lines and mouse Renca cells in a dose-dependent manner and inhibited ACHN and Renca tumor formation in experimental mouse models. Noticeably, in tumor-bearing mice, repeated DZ-CIS use did not cause renal toxicity, in contrast to the CIS-treated control animals. In ccRCC tumors, DZ-CIS treatment inhibited proliferation markers but induced cell death marker levels. In addition, DZ-CIS at half maximal inhibitory concentration (IC50) sensitized Caki-1 cells to small-molecule mTOR inhibitors. Mechanistically, DZ-CIS selectively accumulated in ccRCC cells' subcellular organelles, where it damages the structure and function of mitochondria, leading to cytochrome C release, caspase activation, and apoptotic cancer cell death. CONCLUSIONS: Results from this study strongly suggest DZ-CIS be tested as a safe and effective subcellular targeted cancer therapy.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Animales , Ratones , Carcinoma de Células Renales/patología , Cisplatino/farmacología , Cisplatino/uso terapéutico , Neoplasias Renales/patología , Apoptosis , Muerte Celular , Línea Celular Tumoral , Proliferación Celular
3.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36430630

RESUMEN

Glycogen synthase kinase 3 beta (GSK-3ß) is a serine/threonine protein kinase involved in multiple normal and pathological cell functions, including cell signalling and metabolism. GSK-3ß is highly expressed in the onset and progression of multiple cancers with strong involvement in the regulation of proliferation, apoptosis, and chemoresistance. Multiple studies showed pro- and anti-cancer roles of GSK-3ß creating confusion about the benefit of targeting GSK-3ß for treating cancer. In this mini-review, we focus on the role of GSK-3ß in pancreatic cancer. We demonstrate that the proposed anti-cancer roles of GSK-3ß are not relevant to pancreatic cancer, and we argue why GSK-3ß is, indeed, a very promising therapeutic target in pancreatic cancer.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta , Neoplasias Pancreáticas , Humanos , Apoptosis/fisiología , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Transducción de Señal , Neoplasias Pancreáticas
4.
Gynecol Oncol ; 159(1): 277-284, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32698955

RESUMEN

OBJECTIVE: To investigate the anti-tumor effect of a newly-developed dual inhibitor (APCS-540) of glycogen synthase kinase 3 beta (GSK3B) and histone deacetylases (HDACs) in ovarian cancer cells. METHODS: The effects of APCS-540 on cancer cell proliferation, migration, invasion and cancer stemness were investigated in vitro in human (KURAMOCHI, OVCA420, OVSAHO) and mouse (BR-Luc, ID8, MOSE-HRas-Myc) ovarian cancer cells. Cisplatin-sensitive (A2780) and cisplatin-resistant (A2780cis) cell lines were used to evaluate APCS-540's effect on chemoresistance. The immunocompetent syngeneic mouse model BR-Luc was used to test the effect of APCS-540 on ovarian cancer progression and survival. RESULTS: APCS-540 showed significant anti-tumor effects in vitro in both human and mouse ovarian cancer cells. Importantly, APCS-540 demonstrated marked cytotoxicity against cisplatin-resistant cancer cells and reversed cisplatin-resistance when used in combination with platinum. APCS-540 significantly decreased cancer cell invasion. A significant 66% increase in survival was observed in mice treated with APCS-540 compared to control mice. CONCLUSION: Dual inhibition of GSK3B and HDACs via APCS-540 showed potent anti-tumor activity in vitro and in vivo, suggesting that APCS-540 may provide a novel treatment option for ovarian cancer, including the platinum-resistant disease.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Ratones , Neoplasias Ováricas/mortalidad , Neoplasias Ováricas/patología , Inhibidores de Proteínas Quinasas/uso terapéutico
5.
Gastroenterology ; 155(6): 1985-1998.e5, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30144430

RESUMEN

BACKGROUND & AIMS: Growth, progression, and drug resistance of pancreatic ductal adenocarcinomas (PDACs) have been associated with increased levels and activity of glycogen synthase kinase 3 beta (GSK3B) and histone deacetylases (HDACs). We designed and synthesized molecules that simultaneously inhibit the activities of both enzymes. We tested the effects of one of these molecules, Metavert, in pancreatic cancer cells and mice with pancreatic tumors. METHODS: We tested the ability of Metavert to bind GSK3B and HDACs using surface plasmon resonance. MIA PaCa-2, Bx-PC3, HPAF-II, and HPDE6 cell lines were incubated with different concentrations of Metavert, with or without paclitaxel or gemcitabine, or with other inhibitors of GSK3B and HDACs; cells were analyzed for apoptosis and migration and by immunoblotting, immunofluorescence, and real-time polymerase chain reaction. Krasþ/LSLG12D;Trp53þ/LSLR172H;Pdx-1-Cre (KPC) mice (2 months old) were given injections of Metavert (5 mg/kg, 3 times/week) or vehicle (control). B6.129J mice with tumors grown from UN-KPC961-Luc cells were given injections of Metavert or vehicle. Tumors and metastases were counted and pancreata were analyzed by immunohistochemistry. Glucose metabolism was measured using 13C-glucose tracer and mass spectroscopy and flow cytometry. Cytokine levels in blood samples were measured using multiplexing enzyme-linked immunosorbent assay. RESULTS: Metavert significantly reduced survival of PDAC cells but not nontransformed cells; the agent reduced markers of the epithelial-to-mesenchymal transition and stem cells in PDAC cell lines. Cells incubated with Metavert in combination with irradiation and paclitaxel or gemcitabine had reduced survival compared with cells incubated with either agent alone; Metavert increased killing of drug-resistant PDAC cells by paclitaxel and gemcitabine. PDAC cells incubated with Metavert acquired normalized glucose metabolism. Administration of Metavert (alone or in combination with gemcitibine) to KPC mice or mice with syngeneic tumors significantly increased their survival times, slowed tumor growth, prevented tumor metastasis, decreased tumor infiltration by tumor-associated macrophages, and decreased blood levels of cytokines. CONCLUSIONS: In studies of PDAC cells and 2 mouse models of PDAC, we found a dual inhibitor of GSK3B and HDACs (Metavert) to induce cancer cell apoptosis, reduce migration and expression of stem cell markers, and slow growth of tumors and metastases. Metavert had synergistic effects with gemcitabine.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/secundario , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Páncreas/metabolismo , Neoplasias Pancreáticas/genética , Gemcitabina
6.
Am J Pathol ; 187(1): 146-155, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27855278

RESUMEN

Chronic pancreatitis is a prominent risk factor for the development of pancreatic ductal adenocarcinoma. In both conditions, the activation of myofibroblast-like pancreatic stellate cells (PSCs) plays a predominant role in the formation of desmoplastic reaction through the synthesis of connective tissue and extracellular matrix, inducing local pancreatic fibrosis and an inflammatory response. Yet the signaling events involved in chronic pancreatitis and pancreatic cancer progression and metastasis remain poorly defined. Cadherin-11 (Cad-11, also known as OB cadherin or CDH11) is a cell-to-cell adhesion molecule implicated in many biological functions, including tissue morphogenesis and architecture, extracellular matrix-mediated tissue remodeling, cytoskeletal organization, epithelial-to-mesenchymal transition, and cellular migration. In this study, we show that, in human chronic pancreatitis and pancreatic cancer tissues, Cad-11 expression was significantly increased in PSCs and pancreatic cancer cells. In particular, an increased expression of Cad-11 can be detected on the plasma membrane of activated PSCs isolated from chronic pancreatitis tissues and in pancreatic cancer cells metastasized to the liver. Moreover, knockdown of Cad-11 in cancer cells reduced pancreatic cancer cell migration. Taken together, our data underline the potential role of Cad-11 in PSC activation and pancreatic cancer metastasis.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Cadherinas/metabolismo , Membrana Celular/metabolismo , Movimiento Celular , Neoplasias Pancreáticas/patología , Células Estrelladas Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/patología , Regulación hacia Arriba , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Páncreas/metabolismo , Páncreas/patología , Neoplasias Pancreáticas/genética
7.
Gastroenterology ; 151(6): 1206-1217, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27769811

RESUMEN

BACKGROUND & AIMS: Cigarette smoke has been identified as an independent risk factor for chronic pancreatitis (CP). Little is known about the mechanisms by which smoking promotes development of CP. We assessed the effects of aryl hydrocarbon receptor (AhR) ligands found in cigarette smoke on immune cell activation in humans and pancreatic fibrosis in animal models of CP. METHODS: We obtained serum samples from patients with CP treated at Stanford University hospital and healthy individuals (controls) and isolated CD4+ T cells. Levels of interleukin-22 (IL22) were measured by enzyme-linked immunosorbent assay and smoking histories were collected. T cells from healthy nonsmokers and smokers were stimulated and incubated with AhR agonists (2,3,7,8-tetrachlorodibenzo-p-dioxin or benzo[a]pyrene) or antagonists and analyzed by flow cytometry. Mice were given intraperitoneal injections of caerulein or saline, with or without lipopolysaccharide, to induce CP. Some mice were given intraperitoneal injections of AhR agonists at the start of caerulein injection, with or without an antibody against IL22 (anti-IL22) starting 2 weeks after the first caerulein injection, or recombinant mouse IL22 or vehicle (control) intraperitoneally 4 weeks after the first caerulein injection. Mice were exposed to normal air or cigarette smoke for 6 h/d for 7 weeks and expression of AhR gene targets was measured. Pancreata were collected from all mice and analyzed by histology and quantitative reverse transcription polymerase chain reaction. Pancreatic stellate cells and T cells were isolated and studied using immunoblot, immunofluorescence, flow cytometry, and enzyme-linked immunosorbent analyses. RESULTS: Mice given AhR agonists developed more severe pancreatic fibrosis (based on decreased pancreas size, histology, and increased expression of fibrosis-associated genes) than mice not given agonists after caerulein injection. In mice given saline instead of caerulein, AhR ligands did not induce fibrosis. Pancreatic T cells from mice given AhR agonists and caerulein were activated and expressed IL22, but not IL17 or interferon gamma. Human T cells exposed to AhR agonists up-regulated expression of IL22. In mice given anti-IL22, pancreatic fibrosis did not progress, whereas mice given recombinant IL22 had a smaller pancreas and increased fibrosis. Pancreatic stellate cells isolated from mouse and human pancreata expressed the IL22 receptor IL22RA1. Incubation of the pancreatic stellate cells with IL22 induced their expression of the extracellular matrix genes fibronectin 1 and collagen type I α1 chain, but not α2 smooth muscle actin or transforming growth factor-ß. Serum samples from smokers had significantly higher levels of IL22 than those from nonsmokers. CONCLUSIONS: AhR ligands found in cigarette smoke increase the severity of pancreatic fibrosis in mouse models of pancreatitis via up-regulation of IL22. This pathway might be targeted for treatment of CP and serve as a biomarker of disease.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Interleucinas/metabolismo , Páncreas/patología , Pancreatitis Crónica/inmunología , Pancreatitis Crónica/patología , Receptores de Hidrocarburo de Aril , Actinas/genética , Animales , Anticuerpos/farmacología , Benzo(a)pireno/farmacología , Células Cultivadas , Ceruletida , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Modelos Animales de Enfermedad , Fibronectinas/genética , Fibrosis , Expresión Génica/efectos de los fármacos , Humanos , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Interleucinas/genética , Interleucinas/inmunología , Interleucinas/farmacología , Ligandos , Activación de Linfocitos , Ratones , Células Estrelladas Pancreáticas/química , Pancreatitis Crónica/inducido químicamente , Pancreatitis Crónica/metabolismo , Dibenzodioxinas Policloradas/farmacología , Receptores de Hidrocarburo de Aril/agonistas , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Receptores de Interleucina/análisis , Humo , Fumar/inmunología , Productos de Tabaco , Factor de Crecimiento Transformador beta/genética , Interleucina-22
8.
Int J Biol Sci ; 20(1): 15-28, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164167

RESUMEN

Although recent advances in cancer treatment significantly improved the prognosis of patients, drug resistance remains a major challenge. Targeting programmed cell death is a major approach of antitumor drug development. Deregulation of programmed cell death (PCD) contributes to resistance to a variety of cancer therapeutics. Yes-associated protein (YAP) and its paralog TAZ, the main downstream effectors of the Hippo pathway, are aberrantly activated in a variety of human malignancies. The Hippo-YAP pathway, which was originally identified in Drosophila, is well conserved in humans and plays a defining role in regulation of cell fate, tissue growth and regeneration. Activation of YAP signaling has emerged as a key mechanism involved in promoting cancer cell proliferation, metastasis, and drug resistance. Understanding the role of YAP/TAZ signaling network in PCD and drug resistance could facilitate the development of effective strategies for cancer therapeutics.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neoplasias , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP , Neoplasias/metabolismo , Resistencia a Medicamentos , Apoptosis/genética
9.
Int Immunopharmacol ; 131: 111878, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38493693

RESUMEN

BACKGROUND: Kidney renal papillary cell carcinoma (KIRP) is frequently associated with an unfavorable prognosis for affected individuals. Unfortunately, there has been insufficient exploration in search for a reliable prognosis signature and predictive indicators to forecast outcomes for KIRP patients. AIM: The aim of this study is to employ a comprehensive analysis of data for the identification of prognosis genes, leading to the development of a nomogram with strong predictive capabilities. The objective is to provide a valuable statistical tool that, when implemented in a clinical setting, can offer patients an early opportunity for treatment and enhance their chances of ultimate recovery from this life-threatening disease. METHODS: Different packages in R were used to analyze RNA-seq data from the TCGA data portal. Multivariate Cox regression analysis and Kaplan-Meier analysis were also used to investigate the prognostic values of immune-related genes and construct the predictive model and nomogram. A p-value < 0.05 was considered to be significant. RESULTS: A total of 368 immune-related genes and 60 TFs were identified as differentially expressed in KIRP tissues compared with normal tissues. Of the 368, 23 were found to be related to overall survival. GO and KEGG analysis suggested that these prognostic immune-related genes mainly participated in the ERK1 and ERK2 cascades, Rap1 signaling pathway, and the PI3K-Akt signaling pathway. 9 genes were identified from Cox regression to be statistically significant prognostic-related genes. Survival analysis showed that a model based on these 9 prognostic-related genes has high predictive performance. Immunohistochemistry results show that APOH, BIRC5, CCL19, and GRN were significantly increased in kidney cancer. B cells and CD4 + T cells were positively correlated with risk score model. CONCLUSION: A prognostic model was successfully created based on 9 immune-related genes correlated with overall survival in KIRP. This work aims to provide some insight into therapeutic approaches and prognostic predictors of KIRP.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Pronóstico , Nomogramas , Fosfatidilinositol 3-Quinasas , Carcinoma de Células Renales/genética , Neoplasias Renales/genética , Riñón
10.
Free Radic Biol Med ; 212: 493-504, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38184120

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has extremely poor prognosis, with a 5-year survival rate of approximately 11 %. Yes-associated protein (YAP) is a major downstream effector of the Hippo-YAP pathway and plays a pivotal role in regulation of cell proliferation and organ regeneration and tumorigenesis. Activation of YAP signaling has been associated with PDAC progression and drug resistance. Verteporfin (VP) is a photosensitizer used for photodynamic therapy and previous work showed that it can function as a YAP inhibitor. The efficacy of VP on human cancer are being tested in several trials. In this study, we examined the effect of VP on reactive oxygen species (ROS) and lipid peroxidation in pancreatic cancer cells, by using fluorescent molecular probes and by measuring the levels of malondialdehyde, a metabolic byproduct and marker of lipid peroxidation. We found that VP causes rapid increase of both overall ROS and lipid peroxide levels, independent of light activation. These effects were not dependent on YAP, as knockdown of YAP did not cause ROS or lipid peroxidation or enhance VP-induced ROS production. Temoporfin, another photodynamic drug, did not show similar activities. In addition, VP treatment led to loss of cell membrane integrity and reduction of viability. Notably, the activity of VP to induce lipid peroxidation was neutralized by ferroptosis inhibitors ferrostatin-1 or liproxstatin-1. VP treatment also reduced the levels of glutathione peroxidase 4 (GPX4), an enzyme that protects against lipid peroxidation. These results indicate that VP can induce lipid peroxidation and ferroptosis in the absence of light activation. Our findings reveal a novel mechanism by which VP inhibits tumor growth and provide insights into development of new therapeutic strategies for the treatment of pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Ferroptosis , Neoplasias Pancreáticas , Humanos , Verteporfina/farmacología , Verteporfina/uso terapéutico , Peroxidación de Lípido , Especies Reactivas de Oxígeno , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética
11.
Cancers (Basel) ; 16(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38473313

RESUMEN

Tumor cells gain advantages in growth and survival by acquiring genotypic and phenotypic heterogeneity. Interactions with bystander cells in the tumor microenvironment contribute to the progression of heterogeneity. We have shown that fusion between tumor and bystander cells is one form of interaction, and that tumor-bystander cell fusion has contrasting effects. By trapping fusion hybrids in the heterokaryon or synkaryon state, tumor-bystander cell fusion prevents the progression of heterogeneity. However, if trapping fails, fusion hybrids will resume replication to form derivative clones with diverse genomic makeups and behavioral phenotypes. To determine the characteristics of bystander cells that influence the fate of fusion hybrids, we co-cultured prostate mesenchymal stromal cell lines and their spontaneously transformed sublines with LNCaP as well as HPE-15 prostate cancer cells. Subclones derived from cancer-stromal fusion hybrids were examined for genotypic and phenotypic diversifications. Both stromal cell lines were capable of fusing with cancer cells, but only fusion hybrids with the transformed stromal subline generated large numbers of derivative subclones. Each subclone had distinct cell morphologies and growth behaviors and was detected with complete genomic hybridization. The health conditions of the bystander cell compartment play a crucial role in the progression of tumor cell heterogeneity.

12.
Gastroenterology ; 142(2): 377-87.e1-5, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22044669

RESUMEN

BACKGROUND & AIMS: The kinase Akt mediates resistance of pancreatic cancer (PaCa) cells to death and is constitutively active (phosphorylated) in cancer cells. Whereas the kinases that activate Akt are well characterized, less is known about phosphatases that dephosporylate and thereby inactivate it. We investigated regulation of Akt activity and cell death by the phosphatases PHLPP1 and PHLPP2 in PaCa cells, mouse models of PaCa, and human pancreatic ductal adenocarcinoma (PDAC). METHODS: We measured the effects of PHLPP overexpression or knockdown with small interfering RNAs on Akt activation and cell death. We examined regulation of PHLPPs by growth factors and reactive oxygen species, as well as associations between PHLPPs and tumorigenesis. RESULTS: PHLPP overexpression inactivated Akt, whereas PHLPP knockdown increased phosphorylation of Akt in PaCa cells. Levels of PHLPPs were greatly reduced in human PDAC and in mouse genetic and xenograft models of PaCa. PHLPP activities in PaCa cells were down-regulated by growth factors and Nox4 reduced nicotinamide adenine dinucleotide phosphate oxidase. PHLPP1 selectively dephosphorylated Akt2, whereas PHLPP2 selectively dephosphorylated Akt1. Akt2, but not Akt1, was up-regulated in PDAC, and Akt2 levels correlated with mortality. Consistent with these results, high levels of PHLPP1, which dephosphorylates Akt2 (but not PHLPP2, which dephosphorylates Akt1), correlated with longer survival times of patients with PDAC. In mice, xenograft tumors derived from PaCa cells that overexpress PHLPP1 (but not PHLPP2) had inactivated Akt, greater extent of apoptosis, and smaller size. CONCLUSIONS: PHLPP1 has tumor suppressive activity and might represent a therapeutic or diagnostic tool for PDAC.


Asunto(s)
Apoptosis , Carcinoma Ductal Pancreático/enzimología , Proteínas Nucleares/metabolismo , Neoplasias Pancreáticas/enzimología , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Carcinoma Ductal Pancreático/mortalidad , Humanos , Estimación de Kaplan-Meier , Ratones , Ratones Transgénicos , Neoplasias Experimentales , Neoplasias Pancreáticas/mortalidad , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor/metabolismo
13.
Nutr Cancer ; 65(8): 1232-44, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24127740

RESUMEN

Ellagic acid is a polyphenolic phytochemical present in many fruits and nuts with anticancer properties demonstrated in experimental tumor studies. Embelin is a benzoquinone phytochemical isolated from the Japanese herb Ardisiae Japonicae and has been shown to induce apoptosis in cancer cells. We found that ellagic acid and embelin each dose-dependently increased apoptosis and inhibited proliferation in human pancreatic cancer cells, MIA PaCa-2 and HPAF-II cells, and in pancreatic stellate cells, which are progenitors of pancreatic cancer desmoplasia. In each of these cell types, combinations of ellagic acid and embelin at low micromolar concentrations (0.5-3 µM) induced synergistic increases in apoptosis and decreases in proliferation. Ellagic acid decreased NF-κB transcriptional activity, whereas embelin decreased STAT-3 phosphorylation and protein expression of its downstream target survivin in cancer cells. In vivo dietary ellagic acid alone or in combination with embelin decreased tumor size and tumor cellularity in a subcutaneous xenograft mouse model of pancreatic cancer. These results show that ellagic acid and embelin interact with divergent intracellular signaling pathways resulting in augmentation of apoptosis and inhibition of proliferation at low micromolar concentrations for the key cellular components of pancreatic adenocarcinoma.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Benzoquinonas/farmacología , Ácido Elágico/farmacología , Neoplasias Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Humanos , Masculino , Ratones , Ratones Desnudos , FN-kappa B/genética , FN-kappa B/metabolismo , Fosforilación , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Neoplasias Pancreáticas
14.
J Biomol Struct Dyn ; 41(17): 8517-8534, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36271642

RESUMEN

Pancreatic adenocarcinoma is a disease with no effective treatment. Chemo-resistance contributes to the dismal prognosis for patients diagnosed with the disease. This study aims to evaluate the toxicity and the effect of Caralluma europaea (C.E) extracts on cancer cell survival, apoptosis, chemo-resistance, and pro-cancer pathways, in pancreatic cancer. The acute and subacute toxicities of C.E extracts were evaluated. The cytotoxic effect on pancreatic cancer cell survival and apoptosis was determined by MTT assay and DNA fragmentation. The expression of cancer stemness markers was measured using Western blot. A molecular docking was used to test the possible effects of C.E compounds in inhibiting the Hedgehog and activating caspase-3. The hydroethanolic extract's DL50 was over 5000 mg/kg. During the subacute toxicity, only saponins extract showed some hepatic toxicity signs. Cells treated with C.E extracts combined with gemcitabine revealed an additive anti-survival activity. C.E extracts sensitized resistant MIA-PaCa-2 to gemcitabine treatment. Most of the C.E extracts downregulated the expression of cancer stemness-associated genes. Luteolin-7-O-glucoside presented the highest docking Gscore on human Smoothened. Isorhamnetin-3-O-rutinoside induced apoptosis via activation of caspase-3. C.E extracts can be considered safe in inhibiting pancreatic cancer cell survival, inducing apoptosis, and sensitizing cells to chemotherapy via Hedgehog inhibition and caspase-3 activation.Communicated by Ramaswamy H. Sarma.

15.
J Pers Med ; 13(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37240924

RESUMEN

Breast cancer (BC) is the most common female cancer in terms of incidence and mortality worldwide. Tamoxifen (Nolvadex) is a widely prescribed, oral anti-estrogen drug for the hormonal treatment of estrogen-receptor-positive BC, which represents 70% of all BC subtypes. This review assesses the current knowledge on the molecular pharmacology of tamoxifen in terms of its anticancer and chemo-preventive actions. Due to the importance of vitamin E compounds, which are widely taken as a supplementary dietary component, the review focuses only on the potential importance of vitamin E in BC chemo-prevention. The chemo-preventive and onco-protective effects of tamoxifen combined with the potential effects of vitamin E can alter the anticancer actions of tamoxifen. Therefore, methods involving an individually designed, nutritional intervention for patients with BC warrant further consideration. These data are of great importance for tamoxifen chemo-prevention strategies in future epidemiological studies.

16.
Res Sq ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38076821

RESUMEN

Limited efficacy of systemic therapy for pancreatic ductal adenocarcinoma (PDAC) patients contributes to high mortality. Cancer cells develop strategies to secure nutrients in nutrient-deprived conditions and chemotherapy treatment. Despite the dependency of PDAC on glutamine (Gln) for growth and survival, strategies designed to suppress Gln metabolism have limited effects. Here, we demonstrated that supraphysiological concentrations of glutamine (SPG) could produce paradoxical responses leading to tumor growth inhibition alone and in combination with chemotherapy. Integrated metabolic and transcriptomic analysis revealed that the growth inhibitory effect of SPG was the result of a decrease in intracellular amino acid and nucleotide pools. Mechanistically, disruption of the sodium gradient, plasma membrane depolarization, and competitive inhibition of amino acid transport mediated amino acid deprivation. Among standard chemotherapies given to PDAC patients, gemcitabine treatment resulted in a significant enrichment of amino acid and nucleoside pools, exposing a metabolic vulnerability to SPG-induced metabolic alterations. Further analysis highlighted a superior anticancer effect of D-glutamine, a non-metabolizable enantiomer of the L-glutamine, by suppressing both amino acid uptake and glutaminolysis, in gemcitabine-treated preclinical models with no apparent toxicity. Our study suggests supraphysiological glutamine could be a means of inhibiting amino acid uptake and nucleotide biosynthesis, potentiating gemcitabine sensitivity in PDAC.

17.
J Biol Chem ; 286(10): 7779-7787, 2011 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-21118808

RESUMEN

We recently showed that Nox4 NADPH oxidase is highly expressed in pancreatic ductal adenocarcinoma and that it is activated by growth factors and plays a pro-survival, anti-apoptotic role. Here we investigate the mechanisms through which insulin-like growth factor I and serum (FBS) activate NADPH oxidase in pancreatic cancer (PaCa) cells. We show that in PaCa cells, NADPH oxidase is composed of Nox4 and p22(phox) catalytic subunits, which are both required for NADPH oxidase activity. Insulin-like growth factor I and FBS activate NADPH oxidase through transcriptional up-regulation of p22(phox). This involves activation of the transcription factor NF-κB mediated by Akt kinase. Up-regulation of p22(phox) by the growth factors results in increased Nox4-p22(phox) complex formation and activation of NADPH oxidase. This mechanism is different from that for receptor-induced activation of phagocytic NADPH oxidase, which is mediated by phosphorylation of its regulatory subunits. Up-regulation of p22(phox) represents a novel pro-survival mechanism through which growth factors and Akt inhibit apoptosis in PaCa cells.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , NADPH Oxidasas/biosíntesis , Neoplasias Pancreáticas/enzimología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regulación hacia Arriba , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular , Activación Enzimática/efectos de los fármacos , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/farmacología , NADPH Oxidasa 4 , NADPH Oxidasas/genética , FN-kappa B/genética , FN-kappa B/metabolismo , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas c-akt/genética
18.
Biochem Biophys Res Commun ; 422(4): 596-601, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22609401

RESUMEN

A major mechanism through which cancer cells avoid apoptosis is by promoting the association of anti-apoptotic members of the pro-survival Bcl-2 protein family (like Bcl-2 and Bcl-xL) with BH(3) domain-only proteins (like Bim and Bid). Apoptosis and cell proliferation have been shown to be linked for many cancers but the molecular basis for this link is far from understood. We have identified the Bcl-xL:Bim protein-protein interface as a direct regulator of proliferation and apoptosis in pancreatic cancer cells. We were able to predict and subsequently verify experimentally the effect of various Bcl-xL single-point mutants (at the position A142) on binding to Bim by structural analysis and computational modeling of the inter-residue interactions at the Bcl-xL:Bim protein-protein interface. The mutants A142N, A142Q, and A142Y decreased binding of Bim to Bcl-xL and A142S increased this binding. The Bcl-xL mutants, with decreased affinity for Bim, caused an increase in apoptosis and a corresponding decrease in cell proliferation. However, we could prevent these effects by introducing a small interfering RNA (siRNA) targeted at Bim. These results show a novel role played by the Bcl-xL:Bim interaction in regulating proliferation of pancreatic cancer cells at the expense of apoptosis. This study presents a physiologically relevant model of the Bcl-xL:Bim interface that can be used for rational therapeutic design for the inhibition of proliferation and cancer cell resistance to apoptosis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Proliferación Celular , Proteínas de la Membrana/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas/metabolismo , Proteína bcl-X/metabolismo , Sustitución de Aminoácidos , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/genética , Proteína 11 Similar a Bcl2 , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mutación , Neoplasias Pancreáticas/metabolismo , Conformación Proteica , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/genética , Proteína bcl-X/química
19.
Pancreatology ; 12(4): 344-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22898636

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease. The prognosis is poor; less than 5% of those diagnosed are still alive five years after diagnosis, and complete remission is still rare. Tobacco smoking is a major risk factor of pancreatic cancer. However, the mechanism(s) through which it causes the disease remains unknown. Accumulating evidence indicates that carcinogenic compounds in cigarette smoke stimulate pancreatic cancer progression through induction of inflammation and fibrosis which act in concert with genetic factors leading to the inhibition of cell death and stimulation of proliferation resulting in the promotion of the PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/etiología , Neoplasias Pancreáticas/etiología , Fumar/efectos adversos , Animales , Carcinógenos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Fibrosis , Humanos , Inflamación , Masculino , Ratones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Factores de Riesgo , Humo/análisis , Nicotiana
20.
J Gastroenterol Hepatol ; 27 Suppl 2: 127-34, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22320930

RESUMEN

There are approximately 277,000 new cases of pancreatic cancer and 266,000 deaths from pancreatic cancer annually, indicating a mortality rate of 96% of the cases diagnosed. Because of the ineffectiveness of therapies, a major emphasis needs to be placed on prevention. This paper reviews the epidemiology and risk factors for pancreatic cancer, and uses this information to propose plausible research directions for determining the biological mechanisms mediating the effects of risk factors on the promotion of pancreatic cancer, with a focus on the pancreatic stellate cell.


Asunto(s)
Neoplasias Pancreáticas/epidemiología , Neoplasias Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/metabolismo , Transducción de Señal , Animales , Ambiente , Humanos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/prevención & control , Células Estrelladas Pancreáticas/patología , Medición de Riesgo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA