Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Nat Prod ; 85(3): 614-624, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35020372

RESUMEN

Strategies for natural product dereplication are continually evolving, essentially in lock step with advances in MS and NMR techniques. MADByTE is a new platform designed to identify common structural features between samples in complex extract libraries using two-dimensional NMR spectra. This study evaluated the performance of MADByTE for compound dereplication by examining two classes of fungal metabolites, the resorcylic acid lactones (RALs) and spirobisnaphthalenes. First, a pure compound database was created using the HSQC and TOCSY data from 19 RALs and 10 spirobisnaphthalenes. Second, this database was used to assess the accuracy of compound class clustering through the generation of a spin system feature network. Seven fungal extracts were dereplicated using this approach, leading to the correct prediction of members of both families from the extract set. Finally, NMR-guided isolation led to the discovery of three new palmarumycins (20-22). Together these results demonstrate that MADByTE is effective for the detection of specific compound classes in complex mixtures and that this detection is possible for both known and new natural products.


Asunto(s)
Productos Biológicos , Productos Biológicos/química , Mezclas Complejas/química , Bases de Datos Factuales , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos
2.
J Nat Prod ; 84(4): 1044-1055, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33750122

RESUMEN

The development of new "omics" platforms is having a significant impact on the landscape of natural products discovery. However, despite the advantages that such platforms bring to the field, there remains no straightforward method for characterizing the chemical landscape of natural products libraries using two-dimensional nuclear magnetic resonance (2D-NMR) experiments. NMR analysis provides a powerful complement to mass spectrometric approaches, given the universal coverage of NMR experiments. However, the high degree of signal overlap, particularly in one-dimensional NMR spectra, has limited applications of this approach. To address this issue, we have developed a new data analysis platform for complex mixture analysis, termed MADByTE (Metabolomics and Dereplication by Two-Dimensional Experiments). This platform employs a combination of TOCSY and HSQC spectra to identify spin system features within complex mixtures and then matches spin system features between samples to create a chemical similarity network for a given sample set. In this report we describe the design and construction of the MADByTE platform and demonstrate the application of chemical similarity networks for both the dereplication of known compound scaffolds and the prioritization of bioactive metabolites from a bacterial prefractionated extract library.


Asunto(s)
Productos Biológicos/química , Mezclas Complejas/química , Espectroscopía de Resonancia Magnética/métodos , Metabolómica , Programas Informáticos , Interfaz Usuario-Computador
4.
Nat Prod Rep ; 36(1): 35-107, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30003207

RESUMEN

Covering: up to 2018With contributions from the global natural product (NP) research community, and continuing the Raw Data Initiative, this review collects a comprehensive demonstration of the immense scientific value of disseminating raw nuclear magnetic resonance (NMR) data, independently of, and in parallel with, classical publishing outlets. A comprehensive compilation of historic to present-day cases as well as contemporary and future applications show that addressing the urgent need for a repository of publicly accessible raw NMR data has the potential to transform natural products (NPs) and associated fields of chemical and biomedical research. The call for advancing open sharing mechanisms for raw data is intended to enhance the transparency of experimental protocols, augment the reproducibility of reported outcomes, including biological studies, become a regular component of responsible research, and thereby enrich the integrity of NP research and related fields.


Asunto(s)
Productos Biológicos/química , Espectroscopía de Resonancia Magnética/métodos , Conformación Molecular , Reproducibilidad de los Resultados
5.
J Nat Prod ; 79(2): 376-86, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26841051

RESUMEN

A central challenge of natural products research is assigning bioactive compounds from complex mixtures. The gold standard approach to address this challenge, bioassay-guided fractionation, is often biased toward abundant, rather than bioactive, mixture components. This study evaluated the combination of bioassay-guided fractionation with untargeted metabolite profiling to improve active component identification early in the fractionation process. Key to this methodology was statistical modeling of the integrated biological and chemical data sets (biochemometric analysis). Three data analysis approaches for biochemometric analysis were compared, namely, partial least-squares loading vectors, S-plots, and the selectivity ratio. Extracts from the endophytic fungi Alternaria sp. and Pyrenochaeta sp. with antimicrobial activity against Staphylococcus aureus served as test cases. Biochemometric analysis incorporating the selectivity ratio performed best in identifying bioactive ions from these extracts early in the fractionation process, yielding altersetin (3, MIC 0.23 µg/mL) and macrosphelide A (4, MIC 75 µg/mL) as antibacterial constituents from Alternaria sp. and Pyrenochaeta sp., respectively. This study demonstrates the potential of biochemometrics coupled with bioassay-guided fractionation to identify bioactive mixture components. A benefit of this approach is the ability to integrate multiple stages of fractionation and bioassay data into a single analysis.


Asunto(s)
Productos Biológicos/química , Alternaria/química , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Productos Biológicos/farmacología , Compuestos Heterocíclicos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Staphylococcus aureus/efectos de los fármacos
6.
J Ethnopharmacol ; 267: 113533, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33137433

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Secondary metabolites play a critical role in plant defense against disease and are of great importance to ethnomedicine. Bacterial efflux pumps are active transport proteins that bacterial cells use to protect themselves against multiple toxic compounds, including many antimicrobials. Efflux pump inhibitors from plants can block these efflux pumps, increasing the potency of antimicrobial compounds. This study demonstrates that efflux pump inhibition against the Gram-positive bacterial pathogen Staphylococcus aureus is widespread in extracts prepared from individual species throughout the land plant lineage. It therefore suggests a general mechanism by which plants used by indigenous species may be effective as a topical treatment for some bacterial infections. AIM OF THE STUDY: The goal of this research was to evaluate the distribution of efflux pump inhibitors in nine plant extracts with an ethnobotanical use suggestive of an antimicrobial function for the presence of efflux pump inhibitory activity against Staphylococcus aureus. MATERIALS AND METHODS: Plants were collected, dried, extracted, and vouchers submitted to the Herbarium of the University of North Carolina Chapel Hill (NCU). The extracts were analyzed by quantitative mass spectrometry (UPLC-MS) to determine the presence and concentration of flavonoids with known efflux pump inhibitory activity. A mass spectrometry-based assay was employed to measure efflux pump inhibition for all extracts against Staphylococcus aureus. The assay relies on UPLC-MS measurement of changes in ethidium concentration in the spent culture broth when extracts are incubated with bacteria. RESULTS: Eight of these nine plant extracts inhibited toxic compound efflux at concentrations below the MIC (minimum inhibitory concentration) value for the same extract. The most active extracts were those prepared from Osmunda claytoniana L. and Pinus strobes L., which both demonstrated IC50 values for efflux inhibition of 19 ppm. CONCLUSIONS: Our findings indicate that efflux pump inhibitors active against Staphylococcus aureus are common in land plants. By extension, this activity is likely to be important in many plant-derived antimicrobial extracts, including those used in traditional medicine, and evaluation of efflux pump inhibition may often be valuable when studying natural product efficacy.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Sistemas de Secreción Bacterianos/efectos de los fármacos , Moduladores del Transporte de Membrana/farmacología , Proteínas de Transporte de Membrana/efectos de los fármacos , Plantas Medicinales , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Moduladores del Transporte de Membrana/aislamiento & purificación , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Fitoterapia , Plantas Medicinales/química , Plantas Medicinales/clasificación , Staphylococcus aureus/metabolismo
7.
ACS Cent Sci ; 5(11): 1824-1833, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31807684

RESUMEN

Despite rapid evolution in the area of microbial natural products chemistry, there is currently no open access database containing all microbially produced natural product structures. Lack of availability of these data is preventing the implementation of new technologies in natural products science. Specifically, development of new computational strategies for compound characterization and identification are being hampered by the lack of a comprehensive database of known compounds against which to compare experimental data. The creation of an open access, community-maintained database of microbial natural product structures would enable the development of new technologies in natural products discovery and improve the interoperability of existing natural products data resources. However, these data are spread unevenly throughout the historical scientific literature, including both journal articles and international patents. These documents have no standard format, are often not digitized as machine readable text, and are not publicly available. Further, none of these documents have associated structure files (e.g., MOL, InChI, or SMILES), instead containing images of structures. This makes extraction and formatting of relevant natural products data a formidable challenge. Using a combination of manual curation and automated data mining approaches we have created a database of microbial natural products (The Natural Products Atlas, www.npatlas.org) that includes 24 594 compounds and contains referenced data for structure, compound names, source organisms, isolation references, total syntheses, and instances of structural reassignment. This database is accompanied by an interactive web portal that permits searching by structure, substructure, and physical properties. The Web site also provides mechanisms for visualizing natural products chemical space and dashboards for displaying author and discovery timeline data. These interactive tools offer a powerful knowledge base for natural products discovery with a central interface for structure and property-based searching and presents new viewpoints on structural diversity in natural products. The Natural Products Atlas has been developed under FAIR principles (Findable, Accessible, Interoperable, and Reusable) and is integrated with other emerging natural product databases, including the Minimum Information About a Biosynthetic Gene Cluster (MIBiG) repository, and the Global Natural Products Social Molecular Networking (GNPS) platform. It is designed as a community-supported resource to provide a central repository for known natural product structures from microorganisms and is the first comprehensive, open access resource of this type. It is expected that the Natural Products Atlas will enable the development of new natural products discovery modalities and accelerate the process of structural characterization for complex natural products libraries.

8.
Phytochem Lett ; 17: 219-225, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28603575

RESUMEN

The potential of fungal endophytes to alter or contribute to plant chemistry and biology has been the topic of a great deal of recent interest. For plants that are used medicinally, it has been proposed that endophytes might play an important role in biological activity. With this study, we sought to identify antimicrobial fungal endophytes from the medicinal plant goldenseal (Hydrastis canadensis L., Ranunculaceae), a plant used in traditional medicine to treat infection. A total of 23 fungal cultures were obtained from surface-sterilized samples of H. canadensis roots, leaves and seeds. Eleven secondary metabolites were isolated from these fungal endophytes, five of which had reported antimicrobial activity. Hydrastis canadensis plant material was then analyzed for the presence of fungal metabolites using liquid chromatography coupled to high resolving power mass spectrometry. The antimicrobial compound alternariol monomethyl ether was detected both as a metabolite of the fungal endophyte Alternaria spp. isolated from H. canadensis seeds, and as a component of an extract from the H. canadensis seed material. Notably, fungi of the Alternaria genus were isolated from three separate accessions of H. canadensis plant material collected in a time period spanning 5 years. The concentration of alternariol monomethyl ether (991 mg/kg in dry seed material) was in a similar range to that previously reported for metabolites of ecologically important fungal endophytes. The seed extracts themselves, however, did not possess antimicrobial activity.

9.
Phytochem Lett ; 11: 202-208, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25642298

RESUMEN

With this study, we explored the identity and chemistry of fungal endophytes from the roots of yerba mansa [Anemopsis californica (Nutt.) Hook. & Arn. (Saururaceae)], a botanical traditionally used to treat infection. We compared the diversity of fungal endophytes isolated from a wild-harvested A. californica population, and those from plants cultivated for one year in a greenhouse environment. The wild-harvested population yielded thirteen fungal strains (eleven unique genotypes). Of the extracts prepared from these fungi, four inhibited growth of Staphylococcus aureus by >25% at 20 µg/mL, and three inhibited growth of Pseudomonas aeruginosa by ≥20% at 200 µg/mL. By comparison, A. californica roots after one year of cultivation in the greenhouse produced only two unique genotypes, neither of which displayed significant antimicrobial activity. The fungus Chaetomium cupreum isolated from wild-harvested A. californica yielded a new antimicrobial spirolactone, chaetocuprum (1). An additional fourteen known compounds were identified using LC-MS dereplication of the various fungal endophytes. This study provides new insights into the identity and chemistry of A. californica fungal endophytes, and demonstrates the importance of considering growing conditions when pursuing natural product drug discovery from endophytic fungi.

10.
PLoS One ; 10(5): e0124814, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25961825

RESUMEN

Bacterial efflux pumps are active transport proteins responsible for resistance to selected biocides and antibiotics. It has been shown that production of efflux pumps is up-regulated in a number of highly pathogenic bacteria, including methicillin resistant Staphylococcus aureus. Thus, the identification of new bacterial efflux pump inhibitors is a topic of great interest. Existing assays to evaluate efflux pump inhibitory activity rely on fluorescence by an efflux pump substrate. When employing these assays to evaluate efflux pump inhibitory activity of plant extracts and some purified compounds, we observed severe optical interference that gave rise to false negative results. To circumvent this problem, a new mass spectrometry-based method was developed for the quantitative measurement of bacterial efflux pump inhibition. The assay was employed to evaluate efflux pump inhibitory activity of a crude extract of the botanical Hydrastis Canadensis, and to compare the efflux pump inhibitory activity of several pure flavonoids. The flavonoid quercetin, which appeared to be completely inactive with a fluorescence-based method, showed an IC50 value of 75 µg/mL with the new method. The other flavonoids evaluated (apigenin, kaempferol, rhamnetin, luteolin, myricetin), were also active, with IC50 values ranging from 19 µg/mL to 75 µg/mL. The assay described herein could be useful in future screening efforts to identify efflux pump inhibitors, particularly in situations where optical interference precludes the application of methods that rely on fluorescence.


Asunto(s)
Transporte Biológico/efectos de los fármacos , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/metabolismo , Espectrometría de Masas , Cromatografía Liquida , Relación Dosis-Respuesta a Droga , Etidio/metabolismo , Concentración 50 Inhibidora , Extractos Vegetales/farmacología , Espectrometría de Fluorescencia/métodos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA