Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Toxicol Pathol ; 47(2): 138-149, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30587097

RESUMEN

The chemically induced accumulation of α2u-globulin protein in male rats causes specific renal lesions and subsequent nephropathy. Herein, we report additional parallel findings in the kidney of male rats consistent with obstructive and retrograde nephropathy. Kidney and urinary bladder samples were evaluated from Wistar rats treated with RG7129 for 2 week and 8 week and from an 8-week mechanistic study using females, intact and castrated males. Histopathological findings were present in intact males in all studies, including hyaline droplet accumulation and granular casts consistent with α2u-globulin nephropathy. In addition, tubular degeneration and regeneration, tubular changes extending from papilla to cortex, tubular dilation, and interstitial and luminal inflammation were observed consistent with retrograde and obstructive nephropathy. Renal and urinary lesions and their severity increased in a time- and dose-dependent manner. Urinalysis findings, including increases in leukocytes, protein, and in kidney biomarkers, kidney injury molecule 1 and clusterin, were present only in intact males. No treatment-related changes were observed in female rats or in castrated males. These results indicate that RG7129 induces α2u-globulin nephropathy, associated with retrograde and obstructive nephropathy secondary to precipitation in intact male rats only, constituting a species- and sex-specific syndrome that is not expected to occur in humans or other species.


Asunto(s)
alfa-Globulinas/metabolismo , Inhibidores Enzimáticos/toxicidad , Enfermedades Renales/inducido químicamente , Enfermedades Renales/metabolismo , Animales , Femenino , Enfermedades Renales/patología , Masculino , Fármacos Neuroprotectores/toxicidad , Ratas , Ratas Wistar
2.
Immunohorizons ; 7(12): 872-885, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38147032

RESUMEN

Our bodies are home to individual-specific microbial ecosystems that have recently been found to be modified by cancer immunotherapies. The interaction between the gut microbiome and islet autoimmunity leading to type I diabetes (T1D) is well described and highlights the microbiome contribution during the onset and T1D development in animals and humans. As cancer immunotherapies induce gut microbiome perturbations and immune-mediated adverse events in susceptible patients, we hypothesized that NOD mice can be used as a predictive tool to investigate the effects of anti-PD-1 treatment on the onset and severity of T1D, and how microbiota influences immunopathology. In this longitudinal study, we showed that anti-PD-1 accelerated T1D onset, increased glutamic acid decarboxylase-reactive T cell frequency in spleen, and precipitated destruction of ß cells, triggering high glucose levels and pancreatic islet reduction. Anti-PD-1 treatment also resulted in temporal microbiota changes and lower diversity characteristic of T1D. Finally, we identified known insulin-resistance regulating bacteria that were negatively correlated with glucose levels, indicating that anti-PD-1 treatment impacts the early gut microbiota composition. Moreover, an increase of mucin-degrading Akkermansia muciniphila points to alterations of barrier function and immune system activation. These results highlight the ability of microbiota to readily respond to therapy-triggered pathophysiological changes as rescuers (Bacteroides acidifaciens and Parabacteroides goldsteinii) or potential exacerbators (A. muciniphila). Microbiome-modulating interventions may thus be promising mitigation strategies for immunotherapies with high risk of immune-mediated adverse events.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Inhibidores de Puntos de Control Inmunológico , Animales , Humanos , Ratones , Glucosa , Estudios Longitudinales , Ratones Endogámicos NOD , Neoplasias , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Puntos de Control Inmunológico/farmacología
3.
Toxicol Sci ; 163(2): 409-419, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28329870

RESUMEN

A number of drugs can cause precipitates within renal tubules leading to crystal nephropathy. Crystal nephropathy is usually an exposure-related finding and is not uncommon in preclinical studies, where high doses are tested. An understanding of the nature of precipitates is important for human risk assessment and further development. Our aim was to investigate the ability of various imaging techniques to detect the presence of drugs or metabolites in renal crystals. We applied matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR MS) imaging, Raman and infrared microspectroscopy, scanning electron microscopy coupled with energy dispersive X-ray (SEM/EDX) spectroscopy and standard histopathology to cases of drug-induced crystal nephropathy, induced in rodents and primates by 4 compounds. MALDI-FTICR MS imaging enabled the identification of the drug-related crystal content in all 4 cases of nephropathy, without reference material and with high accuracy. Crystals were composed of unchanged parent drug and/or metabolites. Similar results were obtained using Raman and infrared microspectroscopy for 2 compounds. In the absence of reference standards of metabolites, Raman and infrared microspectroscopy showed that the crystals consisted of components similar, but not identical, to the administered drug for the other compounds, a limitation for these techniques. SEM/EDX showed which counter ions were colocalized with the identified drug-related material, complementing the MALDI-FTICR MS findings. Therefore, we recommend MALDI-FTICR MS as a first-line methodology to characterize crystal nephropathies. Raman and infrared microspectroscopy may be useful when MALDI-FTICR MS imaging cannot be applied. SEM/EDX could be considered as a complementary technology.


Asunto(s)
Lesión Renal Aguda/diagnóstico por imagen , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico por imagen , Riñón/efectos de los fármacos , Preparaciones Farmacéuticas/química , Animales , Cristalización , Evaluación Preclínica de Medicamentos , Riñón/diagnóstico por imagen , Macaca fascicularis , Ratones , Estructura Molecular , Preparaciones Farmacéuticas/análisis , Ratas , Especificidad de la Especie , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrofotometría Infrarroja , Espectrometría Raman
4.
Toxicol Lett ; 190(3): 271-85, 2009 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-19442710

RESUMEN

In this subacute toxicity study, ethyl methanesulfonate (EMS) was administered daily by oral gavage to SPF-bred Wistar rats of both sexes at dose levels of 20, 60 and 180/120 mg/kg body weight (bw)/day for a period of 28 days (for 19 days in the high-dose group). A control group was treated similarly with the vehicle, bidistilled water, only. The groups comprised 10 animals per sex, which were sacrificed after 28 days, respectively 19 days in the high-dose group, of treatment. Additional five rats per sex and group were treated accordingly and then allowed a 14 days treatment-free recovery period. Additional six rats per sex and group (three rats per sex in the control group) were treated accordingly and used for hemoglobin adduct analysis after EMS exposure. All animals survived until their scheduled necropsy. Treatment with EMS had a direct dose-dependent effect on food consumption and consequently on body weight at doses > or =20mg/kgbw/day in male rats and at > or =60 mg/kgbw/day in females rats. Hence, treatment with the high dose of 180 mg/kgbw/day had to be interrupted for 9 days after which, the animals were re-dosed at 120 mg/kgbw/day. This dose was also poorly tolerated over the remaining two treatment weeks causing again a marked reduction in food consumption and body weight. A dose of 60 mg/kgbw/day was moderately tolerated over 4 weeks treatment with mean daily food consumption and body weight distinctly lower than in controls. Primary targets of systemic toxicity were the hematopoietic system, thymolymphatic system and sexual organs. Characteristic changes in hematology parameters were decreased red blood cell counts, hematocrit, and hemoglobin concentration. White blood cell counts were also decreased due to reduced lymphocyte and granulocyte populations of each fraction. The corresponding histopathology findings were fatty atrophy of bone marrow and minimal hypocellularity of the white pulp of the spleen. Similarly, treatment with EMS caused an involution of the thymolymphatic system characterized by decreased organ weight of thymus, lymph nodes, and spleen microscopically associated with atrophy of the thymus and hypocellularity of Peyer's patches, lymph nodes and the white pulp of the spleen. The effects on sexual organs included lower organ weight/reduced size for testes, epididymides, seminal vesicles, prostate, and uterus. Tubular atrophy, single cell necrosis of the germ cells and in epididymides reduced spermatozoa were recorded microscopically. The described findings occurred at doses of 60 and 180/120 mg/kgbw/day and were dose-dependent with regard to incidence and severity. Other target organs were the pancreas (acinar cell vacuolation), thyroid gland (follicular cell hypertrophy), and salivary gland (secretory depletion of convoluted ducts). The systemic exposure to EMS was monitored by hemoglobin ethylvaline adduct measurement. The concentration of hemoglobin ethylvaline adducts was linear with the dose and accumulated 11-26-fold over the treatment period. In summary, decreases in food consumption and body weight were the dose-limiting effects of treatment with EMS. Organ toxicity was characterized by depression of cell proliferation (hematopoiesis and spermatogenesis) and changes suggestive of reduced metabolism and/or physiological imbalances (e.g. thymolymphatic system and thyroid gland) without signs of inflammatory or necrotic lesions. For some findings, especially the effects on the thymolymphatic system and sexual organs, it cannot be excluded that starvation-like condition contributed to the occurrence of such changes. The low dose of 20 mg/kgbw/day was basically free of adverse effects despite of a clear evidence for hemoglobin adducts.


Asunto(s)
Contaminación de Medicamentos , Metanosulfonato de Etilo/toxicidad , Mutágenos/toxicidad , Animales , Peso Corporal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ingestión de Alimentos/efectos de los fármacos , Metanosulfonato de Etilo/química , Metanosulfonato de Etilo/metabolismo , Femenino , Genitales/efectos de los fármacos , Genitales/patología , Inhibidores de la Proteasa del VIH/química , Pruebas Hematológicas , Hemoglobinas/química , Hemoglobinas/efectos de los fármacos , Hemoglobinas/metabolismo , Masculino , Mutágenos/química , Mutágenos/metabolismo , Nelfinavir/química , Tamaño de los Órganos/efectos de los fármacos , Ratas , Ratas Wistar , Medición de Riesgo , Organismos Libres de Patógenos Específicos , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA