Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Renal Physiol ; 322(1): F89-F103, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34843656

RESUMEN

Chronic kidney disease involves disturbances in iron metabolism including anemia caused by insufficient erythropoietin (EPO) production. However, underlying mechanisms responsible for the dysregulation of cellular iron metabolism are incompletely defined. Using the unilateral ureteral obstruction (UUO) model in Irp1+/+ and Irp1-/- mice, we asked if iron regulatory proteins (IRPs), the central regulators of cellular iron metabolism and suppressors of EPO production, contribute to the etiology of anemia in kidney failure. We identified a significant reduction in IRP protein level and RNA binding activity that associates with a loss of the iron uptake protein transferrin receptor 1 (TfR1), increased expression of the iron storage protein subunits H- and L-ferritin, and a low but overall variable level of stainable iron in the obstructed kidney. This reduction in IRP RNA binding activity and ferritin RNA levels suggests the concomitant rise in ferritin expression and iron content in kidney failure is IRP dependent. In contrast, the reduction in the Epo mRNA level in the obstructed kidney was not rescued by genetic ablation of IRP1, suggesting disruption of normal hypoxia-inducible factor (HIF)-2α regulation. Furthermore, reduced expression of some HIF-α target genes in UUO occurred in the face of increased expression of HIF-α proteins and prolyl hydroxylases 2 and 1, the latter of which is not known to be HIF-α mediated. Our results suggest that the IRP system drives changes in cellular iron metabolism that are associated with kidney failure in UUO but that the impact of IRPs on EPO production is overridden by disrupted hypoxia signaling.NEW & NOTEWORTHY This study demonstrates that iron metabolism and hypoxia signaling are dysregulated in unilateral obstructive nephropathy. Expression of iron regulatory proteins (IRPs), central regulators of cellular iron metabolism, and the iron uptake (transferrin receptor 1) and storage (ferritins) proteins they target is strongly altered. This suggests a role of IRPs in previously observed changes in iron metabolism in progressive renal disease. Hypoxia signaling is disrupted and appeared to dominate the action of IRP1 in controlling erythropoietin expression.


Asunto(s)
Anemia/etiología , Hierro/metabolismo , Riñón/metabolismo , Insuficiencia Renal/etiología , Obstrucción Ureteral/complicaciones , Anemia/metabolismo , Anemia/patología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hipoxia de la Célula , Modelos Animales de Enfermedad , Eritropoyetina/genética , Eritropoyetina/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Fibrosis , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Proteína 1 Reguladora de Hierro/genética , Proteína 1 Reguladora de Hierro/metabolismo , Riñón/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Procolágeno-Prolina Dioxigenasa/genética , Procolágeno-Prolina Dioxigenasa/metabolismo , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Insuficiencia Renal/metabolismo , Insuficiencia Renal/patología , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología
2.
J Biol Chem ; 292(38): 15976-15989, 2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28768766

RESUMEN

Iron-regulatory protein 1 (IRP1) belongs to a family of RNA-binding proteins that modulate metazoan iron metabolism. Multiple mechanisms are employed to control the action of IRP1 in dictating changes in the uptake and metabolic fate of iron. Inactivation of IRP1 RNA binding by iron primarily involves insertion of a [4Fe-4S] cluster by the cytosolic iron-sulfur cluster assembly (CIA) system, converting it into cytosolic aconitase (c-acon), but can also involve iron-mediated degradation of IRP1 by the E3 ligase FBXL5 that also targets IRP2. How CIA and FBXL5 collaborate to maintain cellular iron homeostasis through IRP1 and other pathways is poorly understood. Because impaired Fe-S cluster biogenesis associates with human disease, we determined the importance of FBXL5 for regulating IRP1 when CIA is impaired. Suppression of FBXL5 expression coupled with induction of an IRP1 mutant (IRP13C>3S) that cannot insert the Fe-S cluster, or along with knockdown of the CIA factors NUBP2 or FAM96A, reduced cell viability. Iron supplementation reversed this growth defect and was associated with FBXL5-dependent polyubiquitination of IRP1. Phosphorylation of IRP1 at Ser-138 increased when CIA was inhibited and was required for iron rescue. Impaired CIA activity, as noted by reduced c-acon activity, was associated with enhanced FBXL5 expression and a concomitant reduction in IRP1 and IRP2 protein level and RNA-binding activity. Conversely, expression of either IRP induced FBXL5 protein level, demonstrating a negative feedback loop limiting excessive accumulation of iron-response element RNA-binding activity, whose disruption reduces cell growth. We conclude that a regulatory circuit involving FBXL5 and CIA acts through both IRPs to control iron metabolism and promote optimal cell growth.


Asunto(s)
Proteínas F-Box/metabolismo , Proteína 1 Reguladora de Hierro/metabolismo , Hierro/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Proteínas F-Box/genética , Ferritinas/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Proteína 1 Reguladora de Hierro/química , Proteína 2 Reguladora de Hierro/metabolismo , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , ARN/metabolismo , Serina/metabolismo , Azufre/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/deficiencia , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitinación
3.
J Nutr ; 152(4): 909-913, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35022760
4.
J Nutr ; 152(4): 909-913, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-36967177
5.
J Biol Chem ; 290(7): 4432-46, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25550162

RESUMEN

Matriptase-2 (MT2) is a type II transmembrane serine protease that is predominantly expressed in hepatocytes. It suppresses the expression of hepatic hepcidin, an iron regulatory hormone, by cleaving membrane hemojuvelin into an inactive form. Hemojuvelin is a bone morphogenetic protein (BMP) co-receptor. Here, we report that MT2 is up-regulated under iron deprivation. In HepG2 cells stably expressing the coding sequence of the MT2 gene, TMPRSS6, incubation with apo-transferrin or the membrane-impermeable iron chelator, deferoxamine mesylate salt, was able to increase MT2 levels. This increase did not result from the inhibition of MT2 shedding from the cells. Rather, studies using a membrane-permeable iron chelator, salicylaldehyde isonicotinoyl hydrazone, revealed that depletion of cellular iron was able to decrease the degradation of MT2 independently of internalization. We found that lack of the putative endocytosis motif in its cytoplasmic domain largely abolished the sensitivity of MT2 to iron depletion. Neither acute nor chronic iron deficiency was able to alter the association of Tmprss6 mRNA with polyribosomes in the liver of rats indicating a lack of translational regulation by low iron levels. Studies in mice showed that Tmprss6 mRNA was not regulated by iron nor the BMP-mediated signaling with no evident correlation with either Bmp6 mRNA or Id1 mRNA, a target of BMP signaling. These results suggest that regulation of MT2 occurs at the level of protein degradation rather than by changes in the rate of internalization and translational or transcriptional mechanisms and that the cytoplasmic domain of MT2 is necessary for its regulation.


Asunto(s)
Regulación de la Expresión Génica , Deficiencias de Hierro , Proteínas de la Membrana/química , Proteínas de la Membrana/fisiología , Serina Endopeptidasas/química , Serina Endopeptidasas/fisiología , Animales , Biotinilación , Western Blotting , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Células Cultivadas , Proteínas Ligadas a GPI , Proteína de la Hemocromatosis , Células Hep G2 , Hepatocitos/citología , Hepatocitos/metabolismo , Homeostasis , Humanos , Técnicas para Inmunoenzimas , Inmunoprecipitación , Hígado/citología , Hígado/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , ARN Mensajero/genética , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
6.
J Biol Chem ; 289(11): 7835-43, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24509859

RESUMEN

Mitochondrial iron is essential for the biosynthesis of heme and iron-sulfur ([Fe-S]) clusters in mammalian cells. In developing erythrocytes, iron is imported into the mitochondria by MFRN1 (mitoferrin-1, SLC25A37). Although loss of MFRN1 in zebrafish and mice leads to profound anemia, mutant animals showed no overt signs of porphyria, suggesting that mitochondrial iron deficiency does not result in an accumulation of protoporphyrins. Here, we developed a gene trap model to provide in vitro and in vivo evidence that iron regulatory protein-1 (IRP1) inhibits protoporphyrin accumulation. Mfrn1(+/gt);Irp1(-/-) erythroid cells exhibit a significant increase in protoporphyrin levels. IRP1 attenuates protoporphyrin biosynthesis by binding to the 5'-iron response element (IRE) of alas2 mRNA, inhibiting its translation. Ectopic expression of alas2 harboring a mutant IRE, preventing IRP1 binding, in Mfrn1(gt/gt) cells mimics Irp1 deficiency. Together, our data support a model whereby impaired mitochondrial [Fe-S] cluster biogenesis in Mfrn1(gt/gt) cells results in elevated IRP1 RNA-binding that attenuates ALAS2 mRNA translation and protoporphyrin accumulation.


Asunto(s)
5-Aminolevulinato Sintetasa/metabolismo , Regulación de la Expresión Génica , Proteína 1 Reguladora de Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Porfirias/metabolismo , Animales , Blastocisto/citología , Diferenciación Celular , Línea Celular Tumoral , Femenino , Genotipo , Células HEK293 , Hemo/química , Humanos , Hierro/química , Proteínas Hierro-Azufre/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Biosíntesis de Proteínas , Protoporfirinas/metabolismo , Pez Cebra
7.
J Biol Chem ; 288(1): 552-60, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23135277

RESUMEN

Maintenance of cellular iron homeostasis requires post-transcriptional regulation of iron metabolism genes by iron regulatory protein 2 (IRP2). The hemerythrin-like domain of F-box and leucine-rich repeat protein 5 (FBXL5), an E3 ubiquitin ligase subunit, senses iron and oxygen availability and facilitates IRP2 degradation in iron replete cells. Disruption of the ubiquitously expressed murine Fbxl5 gene results in a failure to sense increased cellular iron availability, accompanied by constitutive IRP2 accumulation and misexpression of IRP2 target genes. FBXL5-null mice die during embryogenesis, although viability is restored by simultaneous deletion of the IRP2, but not IRP1, gene. Mice containing a single functional Fbxl5 allele behave like their wild type littermates when fed an iron-sufficient diet. However, unlike wild type mice that manifest decreased hematocrit and hemoglobin levels when fed a low-iron diet, Fbxl5 heterozygotes maintain normal hematologic values due to increased iron absorption. The responsiveness of IRP2 to low iron is specifically enhanced in the duodena of the heterozygotes and is accompanied by increased expression of the divalent metal transporter-1. These results confirm the role of FBXL5 in the in vivo maintenance of cellular and systemic iron homeostasis and reveal a privileged role for the intestine in their regulation by virtue of its unique FBXL5 iron sensitivity.


Asunto(s)
Proteínas F-Box/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ubiquitina-Proteína Ligasas/química , Absorción , Alelos , Animales , Supervivencia Celular , Cruzamientos Genéticos , Heterocigoto , Homeostasis , Humanos , Hierro/química , Proteína 1 Reguladora de Hierro/metabolismo , Proteína 2 Reguladora de Hierro/metabolismo , Ratones , Modelos Genéticos , Unión Proteica , Complejos de Ubiquitina-Proteína Ligasa , Ubiquitina-Proteína Ligasas/metabolismo
8.
Biochim Biophys Acta ; 1823(9): 1468-83, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22610083

RESUMEN

Cellular iron homeostasis is maintained by iron regulatory proteins 1 and 2 (IRP1 and IRP2). IRPs bind to iron-responsive elements (IREs) located in the untranslated regions of mRNAs encoding protein involved in iron uptake, storage, utilization and export. Over the past decade, significant progress has been made in understanding how IRPs are regulated by iron-dependent and iron-independent mechanisms and the pathological consequences of IRP2 deficiency in mice. The identification of novel IREs involved in diverse cellular pathways has revealed that the IRP-IRE network extends to processes other than iron homeostasis. A mechanistic understanding of IRP regulation will likely yield important insights into the basis of disorders of iron metabolism. This article is part of a Special Issue entitled: Cell Biology of Metals.


Asunto(s)
Proteína 1 Reguladora de Hierro/metabolismo , Proteína 2 Reguladora de Hierro/deficiencia , Hierro/metabolismo , Elementos de Respuesta/genética , Animales , Ferritinas/genética , Ferritinas/metabolismo , Regulación de la Expresión Génica , Homeostasis/fisiología , Humanos , Transporte Iónico , Proteína 1 Reguladora de Hierro/genética , Proteína 2 Reguladora de Hierro/genética , Mamíferos , Ratones , Ratones Noqueados , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Regiones no Traducidas/genética
9.
Blood ; 117(5): 1687-99, 2011 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-21115976

RESUMEN

Recent studies demonstrate a pivotal role for bone morphogenic protein-6 (BMP6) and matriptase-2, a protein encoded by the TMPRSS6 gene, in the induction and suppression of hepatic hepcidin expression, respectively. We examined their expression profiles in the liver and showed a predominant localization of BMP6 mRNA in nonparenchymal cells and exclusive expression of TMPRSS6 mRNA in hepatocytes. In rats fed an iron-deficient (ID) diet for 24 hours, the rapid decrease of transferrin saturation from 71% to 24% (control vs ID diet) was associated with a 100-fold decrease in hepcidin mRNA compared with the corresponding controls. These results indicated a close correlation of low transferrin saturation with decreased hepcidin mRNA. The lower phosphorylated Smad1/5/8 detected in the ID rat livers suggests that the suppressed hepcidin expression results from the inhibition of BMP signaling. Quantitative real-time reverse transcription polymerase chain reaction analysis revealed no significant change in either BMP6 or TMPRSS6 mRNA in the liver. However, an increase in matriptase-2 protein in the liver from ID rats was detected, suggesting that suppression of hepcidin expression in response to acute iron deprivation is mediated by an increase in matriptase-2 protein levels.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Hepatocitos/metabolismo , Deficiencias de Hierro , Hígado/metabolismo , Proteínas de la Membrana/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/antagonistas & inhibidores , Proteínas Morfogenéticas Óseas/genética , Hepcidinas , Immunoblotting , Hibridación in Situ , Hierro de la Dieta/administración & dosificación , Hígado/citología , Masculino , Proteínas de la Membrana/genética , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serina Endopeptidasas/genética , Transferrina/metabolismo
10.
Metallomics ; 15(1)2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36702557

RESUMEN

Iron regulatory proteins (IRPs) control the translation of animal cell mRNAs encoding proteins with diverse roles. This includes the iron storage protein ferritin and the tricarboxylic cycle (TCA) enzyme mitochondrial aconitase (ACO2) through iron-dependent binding of IRP to the iron responsive element (IRE) in the 5' untranslated region (UTR). To further elucidate the mechanisms allowing IRPs to control translation of 5' IRE-containing mRNA differentially, we focused on Aco2 mRNA, which is weakly controlled versus the ferritins. Rat liver contains two classes of Aco2 mRNAs, with and without an IRE, due to alterations in the transcription start site. Structural analysis showed that the Aco2 IRE adopts the canonical IRE structure but lacks the dynamic internal loop/bulge five base pairs 5' of the CAGUG(U/C) terminal loop in the ferritin IREs. Unlike ferritin mRNAs, the Aco2 IRE lacks an extensive base-paired flanking region. Using a full-length Aco2 mRNA expression construct, iron controlled ACO2 expression in an IRE-dependent and IRE-independent manner, the latter of which was eliminated with the ACO23C3S mutant that cannot bind the FeS cluster. Iron regulation of ACO23C3S encoded by the full-length mRNA was completely IRE-dependent. Replacement of the Aco23C3S 5' UTR with the Fth1 IRE with base-paired flanking sequences substantially improved iron responsiveness, as did fusing of the Fth1 base-paired flanking sequences to the native IRE in the Aco3C3S construct. Our studies further define the mechanisms underlying the IRP-dependent translational regulatory hierarchy and reveal that Aco2 mRNA species lacking the IRE contribute to the expression of this TCA cycle enzyme.


Asunto(s)
Hierro , Proteínas de Unión al ARN , Animales , Ratas , Hierro/metabolismo , Proteínas de Unión al ARN/química , Biosíntesis de Proteínas , Ferritinas/metabolismo , Proteínas Reguladoras del Hierro/genética , Proteínas Reguladoras del Hierro/metabolismo , Aconitato Hidratasa/genética , Aconitato Hidratasa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Conformación de Ácido Nucleico
11.
RNA ; 16(1): 154-69, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19939970

RESUMEN

Iron regulatory proteins (IRPs) are iron-regulated RNA binding proteins that, along with iron-responsive elements (IREs), control the translation of a diverse set of mRNA with 5' IRE. Dysregulation of IRP action causes disease with etiology that may reflect differential control of IRE-containing mRNA. IREs are defined by a conserved stem-loop structure including a midstem bulge at C8 and a terminal CAGUGH sequence that forms an AGU pseudo-triloop and N19 bulge. C8 and the pseudo-triloop nucleotides make the majority of the 22 identified bonds with IRP1. We show that IRP1 binds 5' IREs in a hierarchy extending over a ninefold range of affinities that encompasses changes in IRE binding affinity observed with human L-ferritin IRE mutants. The limits of this IRE binding hierarchy are predicted to arise due to small differences in binding energy (e.g., equivalent to one H-bond). We demonstrate that multiple regions of the IRE stem not predicted to contact IRP1 help establish the binding hierarchy with the sequence and structure of the C8 region displaying a major role. In contrast, base-pairing and stacking in the upper stem region proximal to the terminal loop had a minor role. Unexpectedly, an N20 bulge compensated for the lack of an N19 bulge, suggesting the existence of novel IREs. Taken together, we suggest that a regulatory binding hierarchy is established through the impact of the IRE stem on the strength, not the number, of bonds between C8 or pseudo-triloop nucleotides and IRP1 or through their impact on an induced fit mechanism of binding.


Asunto(s)
Proteínas Reguladoras del Hierro/metabolismo , Conformación de Ácido Nucleico , Elementos de Respuesta/genética , Elementos de Respuesta/fisiología , Animales , Apoferritinas/metabolismo , Secuencia de Bases/fisiología , Humanos , Proteína 1 Reguladora de Hierro/metabolismo , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/fisiología , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Unión Proteica , Proteínas de Unión al ARN/metabolismo , Conejos , Saccharomyces cerevisiae , Especificidad por Sustrato/genética
12.
iScience ; 24(4): 102360, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33898949

RESUMEN

Transferrin receptor-1 (TfR1) has essential iron transport and proposed signal transduction functions. Proper TfR1 regulation is a requirement for hematopoiesis, neurological development, and the homeostasis of tissues including the intestine and muscle, while dysregulation is associated with cancers and immunodeficiency. TfR1 mRNA degradation is highly regulated, but the identity of the degradation activity remains uncertain. Here, we show with gene knockouts and siRNA knockdowns that two Roquin paralogs are major mediators of iron-regulated changes to the steady-state TfR1 mRNA level within four different cell types (HAP1, HUVEC, L-M, and MEF). Roquin is demonstrated to destabilize the TfR1 mRNA, and its activity is fully dependent on three hairpin loops within the TfR1 mRNA 3'-UTR that are essential for iron-regulated instability. We further show in L-M cells that TfR1 mRNA degradation does not require ongoing translation, consistent with Roquin-mediated instability. We conclude that Roquin is a major effector of TfR1 mRNA abundance.

13.
Metallomics ; 12(12): 2186-2198, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33325950

RESUMEN

Iron regulatory proteins (IRPs) are iron-responsive RNA binding proteins that dictate changes in cellular iron metabolism in animal cells by controlling the fate of mRNAs containing iron responsive elements (IREs). IRPs have broader physiological roles as some targeted mRNAs encode proteins with functions beyond iron metabolism suggesting hierarchical regulation of IRP-targeted mRNAs. We observe that the translational regulation of IRP-targeted mRNAs encoding iron storage (L- and H-ferritins) and export (ferroportin) proteins have different set-points of iron responsiveness compared to that for the TCA cycle enzyme mitochondrial aconitase. The ferritins and ferroportin mRNA were largely translationally repressed in the liver of rats fed a normal diet whereas mitochondrial aconitase mRNA is primarily polysome bound. Consequently, acute iron overload increases polysome association of H- and L-ferritin and ferroportin mRNAs while mitochondrial aconitase mRNA showed little stimulation. Conversely, mitochondrial aconitase mRNA is most responsive in iron deficiency. These differences in regulation were associated with a faster off-rate of IRP1 for the IRE of mitochondrial aconitase in comparison to that of L-ferritin. Thus, hierarchical control of mRNA translation by IRPs involves selective control of cellular functions acting at different states of cellular iron status and that are critical for adaptations to iron deficiency or prevention of iron toxicity.


Asunto(s)
Anemia Ferropénica/genética , Sobrecarga de Hierro/genética , Proteínas Reguladoras del Hierro/genética , ARN Mensajero/genética , Animales , Proteínas de Transporte de Catión/genética , Ferritinas/genética , Masculino , Ratones , Biosíntesis de Proteínas , Ratas Sprague-Dawley
14.
Nat Metab ; 1(7): 731-742, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-32259027

RESUMEN

In response to signals associated with infection or tissue damage, macrophages undergo a series of dynamic phenotypic changes. Here we show that during the response to LPS and interferon-γ stimulation, metabolic reprogramming in macrophages is also highly dynamic. Specifically, the TCA cycle undergoes a two-stage remodeling: the early stage is characterized by a transient accumulation of intermediates including succinate and itaconate, while the late stage is marked by the subsidence of these metabolites. The metabolic transition into the late stage is largely driven by the inhibition of pyruvate dehydrogenase complex (PDHC) and oxoglutarate dehydrogenase complex (OGDC), which is controlled by the dynamic changes in lipoylation state of both PDHC and OGDC E2 subunits and phosphorylation of PDHC E1 subunit. This dynamic metabolic reprogramming results in a transient metabolic state that strongly favors HIF-1α stabilization during the early stage, which subsides by the late stage; consistently, HIF-1α levels follow this trend. This study elucidates a dynamic and mechanistic picture of metabolic reprogramming in LPS and interferon-γ stimulated macrophages, and provides insights into how changing metabolism can regulate the functional transitions in macrophages over a course of immune response.


Asunto(s)
Interferón gamma/farmacología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Animales , Ciclo del Ácido Cítrico , Citocinas/biosíntesis , Macrófagos/metabolismo , Ratones , Células RAW 264.7
15.
Biochim Biophys Acta ; 1763(7): 668-89, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16872694

RESUMEN

Both deficiencies and excesses of iron represent major public health problems throughout the world. Understanding the cellular and organismal processes controlling iron homeostasis is critical for identifying iron-related diseases and in advancing the clinical treatments for such disorders of iron metabolism. Iron regulatory proteins (IRPs) 1 and 2 are key regulators of vertebrate iron metabolism. These RNA binding proteins post-transcriptionally control the stability or translation of mRNAs encoding proteins involved in iron homeostasis thereby controlling the uptake, utilization, storage or export of iron. Recent evidence provides insight into how IRPs selectively control the translation or stability of target mRNAs, how IRP RNA binding activity is controlled by iron-dependent and iron-independent effectors, and the pathological consequences of dysregulation of the IRP system.


Asunto(s)
Homeostasis , Proteínas Reguladoras del Hierro/metabolismo , Hierro/metabolismo , Vertebrados/metabolismo , Animales
16.
Oncogene ; 24(3): 367-80, 2005 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-15531919

RESUMEN

Mice deficient in CuZn superoxide dismutase (CuZnSOD) showed no overt abnormalities during development and early adulthood, but had a reduced lifespan and increased incidence of neoplastic changes in the liver. Greater than 70% of Sod1-/- mice developed liver nodules that were either nodular hyperplasia or hepatocellular carcinoma (HCC). Cross-sectional studies with livers collected from Sod1-/- and age-matched +/+ controls revealed extensive oxidative damage in the cytoplasm and, to a lesser extent, in the nucleus and mitochondria from as early as 3 months of age. A marked reduction in cytosolic aconitase, increased levels of 8-oxo dG and F2-isoprostanes, and a moderate reduction in glutathione peroxidase activities and porin levels were observed in all age groups of Sod1-/- mice examined. There were also age-related reductions in Mn superoxide dismutase activities and carbonic anhydrase III. Parallel to the biochemical changes, there were progressive increases in the DNA repair enzyme APEX1, the cell cycle control proteins cyclin D1 and D3, and the hepatocyte growth factor receptor Met. Increased cell proliferation in the presence of persistent oxidative damage to macromolecules likely contributes to hepatocarcinogenesis later in life.


Asunto(s)
Neoplasias Hepáticas/epidemiología , Hígado/patología , Estrés Oxidativo/fisiología , Superóxido Dismutasa/deficiencia , Envejecimiento , Animales , Núcleo Celular/enzimología , Núcleo Celular/patología , Neoplasias Hepáticas/patología , Ratones , Ratones Noqueados , Mitocondrias/enzimología , Mitocondrias/patología
17.
ACS Chem Biol ; 11(1): 193-9, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26535807

RESUMEN

Collagen is the most abundant protein in animals. Its overproduction is associated with fibrosis and cancer metastasis. The stability of collagen relies on post-translational modifications, the most prevalent being the hydroxylation of collagen strands by collagen prolyl 4-hydroxylases (CP4Hs). Catalysis by CP4Hs enlists an iron cofactor to convert proline residues to 4-hydroxyproline residues, which are essential for the conformational stability of mature collagen. Ethyl 3,4-dihydroxybenzoate (EDHB) is commonly used as a "P4H" inhibitor in cells, but suffers from low potency, poor selectivity, and off-target effects that cause iron deficiency. Dicarboxylates of 2,2'-bipyridine are among the most potent known CP4H inhibitors but suffer from a high affinity for free iron. A screen of biheteroaryl compounds revealed that replacing one pyridyl group with a thiazole moiety retains potency and enhances selectivity. A diester of 2-(5-carboxythiazol-2-yl)pyridine-5-carboxylic acid is bioavailable to human cells and inhibits collagen biosynthesis at concentrations that neither cause general toxicity nor disrupt iron homeostasis. These data anoint a potent and selective probe for CP4H and a potential lead for the development of a new class of antifibrotic and antimetastatic agents.


Asunto(s)
Ácidos Carboxílicos/farmacología , Procolágeno-Prolina Dioxigenasa/antagonistas & inhibidores , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/toxicidad , Ácidos Carboxílicos/química , Ácidos Carboxílicos/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Procolágeno-Prolina Dioxigenasa/química , Tiazoles/química , Tiazoles/farmacología
18.
Sci Signal ; 8(372): ra34, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25872869

RESUMEN

In multicellular organisms, the mechanisms by which diverse cell types acquire distinct amino acids and how cellular function adapts to their availability are fundamental questions in biology. We found that increased neutral essential amino acid (NEAA) uptake was a critical component of erythropoiesis. As red blood cells matured, expression of the amino acid transporter gene Lat3 increased, which increased NEAA import. Inadequate NEAA uptake by pharmacologic inhibition or RNAi-mediated knockdown of LAT3 triggered a specific reduction in hemoglobin production in zebrafish embryos and murine erythroid cells through the mTORC1 (mammalian target of rapamycin complex 1)/4E-BP (eukaryotic translation initiation factor 4E-binding protein) pathway. CRISPR-mediated deletion of members of the 4E-BP family in murine erythroid cells rendered them resistant to mTORC1 and LAT3 inhibition and restored hemoglobin production. These results identify a developmental role for LAT3 in red blood cells and demonstrate that mTORC1 serves as a homeostatic sensor that couples hemoglobin production at the translational level to sufficient uptake of NEAAs, particularly L-leucine.


Asunto(s)
Proteínas Portadoras/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Hemoglobinas/metabolismo , Leucina/metabolismo , Complejos Multiproteicos/metabolismo , Fosfoproteínas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , Línea Celular Tumoral , Células Cultivadas , Embrión de Mamíferos/irrigación sanguínea , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Células Eritroides/metabolismo , Eritropoyesis/genética , Factores Eucarióticos de Iniciación/genética , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Hemoglobinas/genética , Humanos , Immunoblotting , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Microscopía Confocal , Complejos Multiproteicos/genética , Fosfoproteínas/genética , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , Pez Cebra
19.
Cell Metab ; 17(2): 282-90, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23395174

RESUMEN

Red blood cell production is a finely tuned process that requires coordinated oxygen- and iron-dependent regulation of cell differentiation and iron metabolism. Here, we show that translational regulation of hypoxia-inducible factor 2α (HIF-2α) synthesis by iron regulatory protein 1 (IRP1) is critical for controlling erythrocyte number. IRP1-null (Irp1(-/-)) mice display a marked transient polycythemia. HIF-2α messenger RNA (mRNA) is derepressed in kidneys of Irp1(-/-) mice but not in kidneys of Irp2(-/-) mice, leading to increased renal erythropoietin (Epo) mRNA and inappropriately elevated serum Epo levels. Expression of the iron transport genes DCytb, Dmt1, and ferroportin, as well as other HIF-2α targets, is enhanced in Irp1(-/-) duodenum. Analysis of mRNA translation state in the liver revealed IRP1-dependent dysregulation of HIF-2α mRNA translation, whereas IRP2 deficiency derepressed translation of all other known 5' iron response element (IRE)-containing mRNAs expressed in the liver. These results uncover separable physiological roles of each IRP and identify IRP1 as a therapeutic target for manipulating HIF-2α action in hematologic, oncologic, and other disorders.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Eritropoyesis , Proteína 1 Reguladora de Hierro/metabolismo , Hierro/metabolismo , Oxígeno/metabolismo , Transducción de Señal , Absorción , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Duodeno/metabolismo , Duodeno/patología , Células Eritroides/metabolismo , Células Precursoras Eritroides/metabolismo , Eritropoyetina/sangre , Regulación de la Expresión Génica , Hematopoyesis Extramedular , Proteína 1 Reguladora de Hierro/deficiencia , Ratones , Policitemia/sangre , Policitemia/patología , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Bazo/metabolismo
20.
J Biol Chem ; 284(19): 12701-9, 2009 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-19269970

RESUMEN

Iron-sulfur cluster-dependent interconversion of iron regulatory protein 1 (IRP1) between its RNA binding and cytosolic aconitase (c-acon) forms controls vertebrate iron homeostasis. Cluster removal from c-acon is thought to include oxidative demetallation as a required step, but little else is understood about the process of conversion to IRP1. In comparison with c-acon(WT), Ser(138) phosphomimetic mutants of c-acon contain an unstable [4Fe-4S] cluster and were used as tools to further define the pathway(s) of iron-sulfur cluster disassembly. Under anaerobic conditions cluster insertion into purified IRP1(S138E) and cluster loss on treatment with NO regulated aconitase and RNA binding activity over a similar range as observed for IRP1(WT). However, activation of RNA binding of c-acon(S138E) was an order of magnitude more sensitive to NO than for c-acon(WT). Consistent with this, an altered set point between RNA-binding and aconitase forms was observed for IRP1(S138E) when expressed in HEK cells. Active c-acon(S138E) could only accumulate under hypoxic conditions, suggesting enhanced cluster disassembly in normoxia. Cluster disassembly mechanisms were further probed by determining the impact of iron chelation on acon activity. Unexpectedly EDTA rapidly inhibited c-acon(S138E) activity without affecting c-acon(WT). Additional chelator experiments suggested that cluster loss can be initiated in c-acon(S138E) through a spontaneous nonoxidative demetallation process. Taken together, our results support a model wherein Ser(138) phosphorylation sensitizes IRP1/c-acon to decreased iron availability by allowing the [4Fe-4S](2+) cluster to cycle with [3Fe-4S](0) in the absence of cluster perturbants, indicating that regulation can be initiated merely by changes in iron availability.


Asunto(s)
Aconitato Hidratasa/metabolismo , Proteína 1 Reguladora de Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Serina/metabolismo , Azufre/metabolismo , Citosol/enzimología , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Hipoxia , Quelantes del Hierro , Proteína 1 Reguladora de Hierro/genética , Proteínas Hierro-Azufre/genética , Riñón/citología , Riñón/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Óxido Nítrico/metabolismo , Fosforilación , ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA