Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
Más filtros

Colección BVS Ecuador
País/Región como asunto
Intervalo de año de publicación
1.
Cell ; 168(1-2): 73-85.e11, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-27916274

RESUMEN

The recent discovery that genetically modified α cells can regenerate and convert into ß-like cells in vivo holds great promise for diabetes research. However, to eventually translate these findings to human, it is crucial to discover compounds with similar activities. Herein, we report the identification of GABA as an inducer of α-to-ß-like cell conversion in vivo. This conversion induces α cell replacement mechanisms through the mobilization of duct-lining precursor cells that adopt an α cell identity prior to being converted into ß-like cells, solely upon sustained GABA exposure. Importantly, these neo-generated ß-like cells are functional and can repeatedly reverse chemically induced diabetes in vivo. Similarly, the treatment of transplanted human islets with GABA results in a loss of α cells and a concomitant increase in ß-like cell counts, suggestive of α-to-ß-like cell conversion processes also in humans. This newly discovered GABA-induced α cell-mediated ß-like cell neogenesis could therefore represent an unprecedented hope toward improved therapies for diabetes.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Células Secretoras de Glucagón/citología , Células Secretoras de Insulina/citología , Ácido gamma-Aminobutírico/administración & dosificación , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Diferenciación Celular/efectos de los fármacos , Diabetes Mellitus/inducido químicamente , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Células Secretoras de Glucagón/efectos de los fármacos , Humanos , Islotes Pancreáticos/citología , Masculino , Ratones , Proteínas del Tejido Nervioso , Ratas , Ratas Wistar , Ácido gamma-Aminobutírico/farmacología
2.
Mol Ther ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822524

RESUMEN

Dysregulated T cell activation underpins the immunopathology of rheumatoid arthritis (RA), yet the machineries that orchestrate T cell effector program remain incompletely understood. Herein, we leveraged bulk and single-cell RNA sequencing data from RA patients and validated protein disulfide isomerase family A member 3 (PDIA3) as a potential therapeutic target. PDIA3 is remarkably upregulated in pathogenic CD4 T cells derived from RA patients and positively correlates with C-reactive protein level and disease activity score 28. Pharmacological inhibition or genetic ablation of PDIA3 alleviates RA-associated articular pathology and autoimmune responses. Mechanistically, T cell receptor signaling triggers intracellular calcium flux to activate NFAT1, a process that is further potentiated by Wnt5a under RA settings. Activated NFAT1 then directly binds to the Pdia3 promoter to enhance the expression of PDIA3, which complexes with STAT1 or PKM2 to facilitate their nuclear import for transcribing T helper 1 (Th1) and Th17 lineage-related genes, respectively. This non-canonical regulatory mechanism likely occurs under pathological conditions, as PDIA3 could only be highly induced following aberrant external stimuli. Together, our data support that targeting PDIA3 is a vital strategy to mitigate autoimmune diseases, such as RA, in clinical settings.

3.
Diabetologia ; 67(5): 908-927, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38409439

RESUMEN

AIMS/HYPOTHESIS: The proinflammatory cytokines IFN-α, IFN-γ, IL-1ß and TNF-α may contribute to innate and adaptive immune responses during insulitis in type 1 diabetes and therefore represent attractive therapeutic targets to protect beta cells. However, the specific role of each of these cytokines individually on pancreatic beta cells remains unknown. METHODS: We used deep RNA-seq analysis, followed by extensive confirmation experiments based on reverse transcription-quantitative PCR (RT-qPCR), western blot, histology and use of siRNAs, to characterise the response of human pancreatic beta cells to each cytokine individually and compared the signatures obtained with those present in islets of individuals affected by type 1 diabetes. RESULTS: IFN-α and IFN-γ had a greater impact on the beta cell transcriptome when compared with IL-1ß and TNF-α. The IFN-induced gene signatures have a strong correlation with those observed in beta cells from individuals with type 1 diabetes, and the level of expression of specific IFN-stimulated genes is positively correlated with proteins present in islets of these individuals, regulating beta cell responses to 'danger signals' such as viral infections. Zinc finger NFX1-type containing 1 (ZNFX1), a double-stranded RNA sensor, was identified as highly induced by IFNs and shown to play a key role in the antiviral response in beta cells. CONCLUSIONS/INTERPRETATION: These data suggest that IFN-α and IFN-γ are key cytokines at the islet level in human type 1 diabetes, contributing to the triggering and amplification of autoimmunity.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Humanos , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Interferones/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interferón gamma/metabolismo , Islotes Pancreáticos/metabolismo
4.
Cell Commun Signal ; 22(1): 141, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383396

RESUMEN

BACKGROUND: Lipids are regulators of insulitis and ß-cell death in type 1 diabetes development, but the underlying mechanisms are poorly understood. Here, we investigated how the islet lipid composition and downstream signaling regulate ß-cell death. METHODS: We performed lipidomics using three models of insulitis: human islets and EndoC-ßH1 ß cells treated with the pro-inflammatory cytokines interlukine-1ß and interferon-γ, and islets from pre-diabetic non-obese mice. We also performed mass spectrometry and fluorescence imaging to determine the localization of lipids and enzyme in islets. RNAi, apoptotic assay, and qPCR were performed to determine the role of a specific factor in lipid-mediated cytokine signaling. RESULTS: Across all three models, lipidomic analyses showed a consistent increase of lysophosphatidylcholine species and phosphatidylcholines with polyunsaturated fatty acids and a reduction of triacylglycerol species. Imaging assays showed that phosphatidylcholines with polyunsaturated fatty acids and their hydrolyzing enzyme phospholipase PLA2G6 are enriched in islets. In downstream signaling, omega-3 fatty acids reduce cytokine-induced ß-cell death by improving the expression of ADP-ribosylhydrolase ARH3. The mechanism involves omega-3 fatty acid-mediated reduction of the histone methylation polycomb complex PRC2 component Suz12, upregulating the expression of Arh3, which in turn decreases cell apoptosis. CONCLUSIONS: Our data provide insights into the change of lipidomics landscape in ß cells during insulitis and identify a protective mechanism by omega-3 fatty acids. Video Abstract.


Asunto(s)
Ácidos Grasos Omega-3 , Islotes Pancreáticos , N-Glicosil Hidrolasas , Ratones , Animales , Humanos , Islotes Pancreáticos/metabolismo , Muerte Celular , Citocinas/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Insaturados , Fosfatidilcolinas/metabolismo
5.
Diabetologia ; 66(8): 1544-1556, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36988639

RESUMEN

AIMS/HYPOTHESIS: TNF-α plays a role in pancreatic beta cell loss in type 1 diabetes mellitus. In clinical interventions, TNF-α inhibition preserves C-peptide levels in early type 1 diabetes. In this study we evaluated the crosstalk of TNF-α, as compared with type I IFNs, with the type 1 diabetes candidate gene PTPN2 (encoding protein tyrosine phosphatase non-receptor type 2 [PTPN2]) in human beta cells. METHODS: EndoC-ßH1 cells, dispersed human pancreatic islets or induced pluripotent stem cell (iPSC)-derived islet-like cells were transfected with siRNAs targeting various genes (siCTRL, siPTPN2, siJNK1, siJNK3 or siBIM). Cells were treated for 48 h with IFN-α (2000 U/ml) or TNF-α (1000 U/ml). Cell death was evaluated using Hoechst 33342 and propidium iodide staining. mRNA levels were assessed by quantitative reverse transcription PCR (qRT-PCR) and protein expression by immunoblot. RESULTS: PTPN2 silencing sensitised beta cells to cytotoxicity induced by IFN-α and/or TNF-α by 20-50%, depending on the human cell model utilised; there was no potentiation between the cytokines. We silenced c-Jun N-terminal kinase (JNK)1 or Bcl-2-like protein 2 (BIM), and this abolished the proapoptotic effects of IFN-α, TNF-α or the combination of both after PTPN2 inhibition. We further observed that PTPN2 silencing increased TNF-α-induced JNK1 and BIM phosphorylation and that JNK3 is necessary for beta cell resistance to IFN-α cytotoxicity. CONCLUSIONS/INTERPRETATION: We show that the type 1 diabetes candidate gene PTPN2 is a key regulator of the deleterious effects of TNF-α in human beta cells. It is conceivable that people with type 1 diabetes carrying risk-associated PTPN2 polymorphisms may particularly benefit from therapies inhibiting TNF-α.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 2/farmacología , Citocinas/metabolismo , Muerte Celular , Células Secretoras de Insulina/metabolismo , Interferón-alfa/farmacología
6.
Diabetologia ; 66(3): 450-460, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36401627

RESUMEN

AIMS/HYPOTHESIS: Diabetes is characterised by progressive loss of functional pancreatic beta cells. None of the therapeutic agents used to treat diabetes arrest this process; preventing beta cell loss remains a major unmet need. We have previously shown that serum from eight young healthy male participants who exercised for 8 weeks protected human islets and insulin-producing EndoC-ßH1 cells from apoptosis induced by proinflammatory cytokines or the endoplasmic reticulum (ER) stressor thapsigargin. Whether this protective effect is influenced by sex, age, training modality, ancestry or diabetes is unknown. METHODS: We enrolled 82 individuals, male or female, non-diabetic or diabetic, from different origins, in different supervised training protocols for 8-12 weeks (including training at home during the COVID-19 pandemic). EndoC-ßH1 cells were treated with 'exercised' serum or with the exerkine clusterin to ascertain cytoprotection from ER stress. RESULTS: The exercise interventions were effective and improved [Formula: see text] values in both younger and older, non-obese and obese, non-diabetic and diabetic participants. Serum obtained after training conferred significant beta cell protection (28% to 35% protection after 4 and 8 weeks of training, respectively) from severe ER stress-induced apoptosis. Cytoprotection was not affected by the type of exercise training or participant age, sex, BMI or ancestry, and persisted for up to 2 months after the end of the training programme. Serum from exercised participants with type 1 or type 2 diabetes was similarly protective. Clusterin reproduced the beneficial effects of exercised sera. CONCLUSIONS/INTERPRETATION: These data uncover the unexpected potential to preserve beta cell health by exercise training, opening a new avenue to prevent or slow diabetes progression through humoral muscle-beta cell crosstalk.


Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Masculino , Femenino , Lactante , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/metabolismo , Clusterina/metabolismo , Clusterina/farmacología , Pandemias , Apoptosis/fisiología , Estrés del Retículo Endoplásmico
7.
Diabetologia ; 66(7): 1306-1321, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36995380

RESUMEN

AIMS/HYPOTHESIS: Wolfram syndrome is a rare autosomal recessive disorder caused by pathogenic variants in the WFS1 gene. It is characterised by insulin-dependent diabetes mellitus, optic nerve atrophy, diabetes insipidus, hearing loss and neurodegeneration. Considering the unmet treatment need for this orphan disease, this study aimed to evaluate the therapeutic potential of glucagon-like peptide 1 receptor (GLP-1R) agonists under wolframin (WFS1) deficiency with a particular focus on human beta cells and neurons. METHODS: The effect of the GLP-1R agonists dulaglutide and exenatide was examined in Wfs1 knockout mice and in an array of human preclinical models of Wolfram syndrome, including WFS1-deficient human beta cells, human induced pluripotent stem cell (iPSC)-derived beta-like cells and neurons from control individuals and individuals affected by Wolfram syndrome, and humanised mice. RESULTS: Our study shows that the long-lasting GLP-1R agonist dulaglutide reverses impaired glucose tolerance in WFS1-deficient mice, and that exenatide and dulaglutide improve beta cell function and prevent apoptosis in different human WFS1-deficient models including iPSC-derived beta cells from people with Wolfram syndrome. Exenatide improved mitochondrial function, reduced oxidative stress and prevented apoptosis in Wolfram syndrome iPSC-derived neural precursors and cerebellar neurons. CONCLUSIONS/INTERPRETATION: Our study provides novel evidence for the beneficial effect of GLP-1R agonists on WFS1-deficient human pancreatic beta cells and neurons, suggesting that these drugs may be considered as a treatment for individuals with Wolfram syndrome.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Secretoras de Insulina , Atrofia Óptica , Síndrome de Wolfram , Humanos , Animales , Ratones , Síndrome de Wolfram/tratamiento farmacológico , Síndrome de Wolfram/genética , Exenatida/uso terapéutico , Atrofia Óptica/patología , Células Secretoras de Insulina/patología , Ratones Noqueados
8.
Diabetologia ; 66(7): 1273-1288, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37148359

RESUMEN

AIMS/HYPOTHESIS: The Latino population has been systematically underrepresented in large-scale genetic analyses, and previous studies have relied on the imputation of ungenotyped variants based on the 1000 Genomes (1000G) imputation panel, which results in suboptimal capture of low-frequency or Latino-enriched variants. The National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) released the largest multi-ancestry genotype reference panel representing a unique opportunity to analyse rare genetic variations in the Latino population. We hypothesise that a more comprehensive analysis of low/rare variation using the TOPMed panel would improve our knowledge of the genetics of type 2 diabetes in the Latino population. METHODS: We evaluated the TOPMed imputation performance using genotyping array and whole-exome sequence data in six Latino cohorts. To evaluate the ability of TOPMed imputation to increase the number of identified loci, we performed a Latino type 2 diabetes genome-wide association study (GWAS) meta-analysis in 8150 individuals with type 2 diabetes and 10,735 control individuals and replicated the results in six additional cohorts including whole-genome sequence data from the All of Us cohort. RESULTS: Compared with imputation with 1000G, the TOPMed panel improved the identification of rare and low-frequency variants. We identified 26 genome-wide significant signals including a novel variant (minor allele frequency 1.7%; OR 1.37, p=3.4 × 10-9). A Latino-tailored polygenic score constructed from our data and GWAS data from East Asian and European populations improved the prediction accuracy in a Latino target dataset, explaining up to 7.6% of the type 2 diabetes risk variance. CONCLUSIONS/INTERPRETATION: Our results demonstrate the utility of TOPMed imputation for identifying low-frequency variants in understudied populations, leading to the discovery of novel disease associations and the improvement of polygenic scores. DATA AVAILABILITY: Full summary statistics are available through the Common Metabolic Diseases Knowledge Portal ( https://t2d.hugeamp.org/downloads.html ) and through the GWAS catalog ( https://www.ebi.ac.uk/gwas/ , accession ID: GCST90255648). Polygenic score (PS) weights for each ancestry are available via the PGS catalog ( https://www.pgscatalog.org , publication ID: PGP000445, scores IDs: PGS003443, PGS003444 and PGS003445).


Asunto(s)
Diabetes Mellitus Tipo 2 , Salud Poblacional , Humanos , Estudio de Asociación del Genoma Completo , Diabetes Mellitus Tipo 2/genética , Medicina de Precisión , Genotipo , Hispánicos o Latinos/genética , Polimorfismo de Nucleótido Simple/genética
9.
Proc Natl Acad Sci U S A ; 117(16): 9022-9031, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32284404

RESUMEN

The vast majority of type 1 diabetes (T1D) genetic association signals lie in noncoding regions of the human genome. Many have been predicted to affect the expression and secondary structure of long noncoding RNAs (lncRNAs), but the contribution of these lncRNAs to the pathogenesis of T1D remains to be clarified. Here, we performed a complete functional characterization of a lncRNA that harbors a single nucleotide polymorphism (SNP) associated with T1D, namely, Lnc13 Human pancreatic islets harboring the T1D-associated SNP risk genotype in Lnc13 (rs917997*CC) showed higher STAT1 expression than islets harboring the heterozygous genotype (rs917997*CT). Up-regulation of Lnc13 in pancreatic ß-cells increased activation of the proinflammatory STAT1 pathway, which correlated with increased production of chemokines in an allele-specific manner. In a mirror image, Lnc13 gene disruption in ß-cells partially counteracts polyinosinic-polycytidylic acid (PIC)-induced STAT1 and proinflammatory chemokine expression. Furthermore, we observed that PIC, a viral mimetic, induces Lnc13 translocation from the nucleus to the cytoplasm promoting the interaction of STAT1 mRNA with (poly[rC] binding protein 2) (PCBP2). Interestingly, Lnc13-PCBP2 interaction regulates the stability of the STAT1 mRNA, sustaining inflammation in ß-cells in an allele-specific manner. Our results show that the T1D-associated Lnc13 may contribute to the pathogenesis of T1D by increasing pancreatic ß-cell inflammation. These findings provide information on the molecular mechanisms by which disease-associated SNPs in lncRNAs influence disease pathogenesis and open the door to the development of diagnostic and therapeutic approaches based on lncRNA targeting.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Células Secretoras de Insulina/inmunología , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Factor de Transcripción STAT1/genética , Regiones no Traducidas 3'/genética , Supervivencia Celular/genética , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/virología , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Células Secretoras de Insulina/patología , Células Secretoras de Insulina/virología , Células Jurkat , Poli I-C/inmunología , Polimorfismo de Nucleótido Simple , Cultivo Primario de Células , Estabilidad del ARN/genética , ARN Mensajero/metabolismo , ARN Viral/inmunología , Factor de Transcripción STAT1/inmunología , Factor de Transcripción STAT1/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología , Regulación hacia Arriba/inmunología
10.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36982731

RESUMEN

Diabetes is a chronic disease that affects glucose metabolism, either by autoimmune-driven ß-cell loss or by the progressive loss of ß-cell function, due to continued metabolic stresses. Although both α- and ß-cells are exposed to the same stressors, such as proinflammatory cytokines and saturated free fatty acids (e.g., palmitate), only α-cells survive. We previously reported that the abundant expression of BCL-XL, an anti-apoptotic member of the BCL-2 family of proteins, is part of the α-cell defense mechanism against palmitate-induced cell death. Here, we investigated whether BCL-XL overexpression could protect ß-cells against the apoptosis induced by proinflammatory and metabolic insults. For this purpose, BCL-XL was overexpressed in two ß-cell lines-namely, rat insulinoma-derived INS-1E and human insulin-producing EndoC-ßH1 cells-using adenoviral vectors. We observed that the BCL-XL overexpression in INS-1E cells was slightly reduced in intracellular Ca2+ responses and glucose-stimulated insulin secretion, whereas these effects were not observed in the human EndoC-ßH1 cells. In INS-1E cells, BCL-XL overexpression partially decreased cytokine- and palmitate-induced ß-cell apoptosis (around 40% protection). On the other hand, the overexpression of BCL-XL markedly protected EndoC-ßH1 cells against the apoptosis triggered by these insults (>80% protection). Analysis of the expression of endoplasmic reticulum (ER) stress markers suggests that resistance to the cytokine and palmitate conferred by BCL-XL overexpression might be, at least in part, due to the alleviation of ER stress. Altogether, our data indicate that BCL-XL plays a dual role in ß-cells, participating both in cellular processes related to ß-cell physiology and in fostering survival against pro-apoptotic insults.


Asunto(s)
Citocinas , Células Secretoras de Insulina , Animales , Humanos , Ratas , Apoptosis/genética , Línea Celular , Citocinas/metabolismo , Células Secretoras de Insulina/metabolismo , Palmitatos/farmacología , Palmitatos/metabolismo
11.
Semin Cell Dev Biol ; 103: 51-58, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32331991

RESUMEN

SUMOylation is an evolutionarily conserved post-translational modification (PTM) that regulates protein subcellular localization, stability, conformation, transcription and enzymatic activity. Recent studies indicate that SUMOylation plays a key role in insulin gene expression, glucose metabolism and insulin exocytosis under physiological conditions in the pancreatic beta cells. Furthermore, SUMOylation is implicated in beta cell survival and recovery following exposure to oxidative stress, ER stress and inflammatory mediators under pathological situations. SUMOylation is closely regulated by the cellular redox status, and it collaborates with other PTMs such as phosphorylation, ubiquitination, and NEDDylation, to maintain beta cellular homeostasis. We hereby provide an update on recent findings regarding the role of SUMOylation in the regulation of pancreatic beta cell viability and function, and discuss its potential implication in beta cell senescence and RNA processing (e.g., pre-mRNA splicing and mRNA methylation). Through which we intend to provide novel insights into this fundamental biological process regarding both maintenance of beta cell viability and functionality, and beta cell dysfunction in diabetes mellitus.


Asunto(s)
Diabetes Mellitus/metabolismo , Células Secretoras de Insulina/metabolismo , Sumoilación/fisiología , Humanos
12.
Int J Mol Sci ; 23(13)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35806437

RESUMEN

Type 2 diabetes (T2D) has been considered a relentlessly worsening disease, due to the progressive deterioration of the pancreatic beta cell functional mass. Recent evidence indicates, however, that remission of T2D may occur in variable proportions of patients after specific treatments that are associated with recovery of beta cell function. Here we review the available information on the recovery of beta cells in (a) non-diabetic individuals previously exposed to metabolic stress; (b) T2D patients following low-calorie diets, pharmacological therapies or bariatric surgery; (c) human islets isolated from non-diabetic organ donors that recover from "lipo-glucotoxic" conditions; and (d) human islets isolated from T2D organ donors and exposed to specific treatments. The improvement of insulin secretion reported by these studies and the associated molecular traits unveil the possibility to promote T2D remission by directly targeting pancreatic beta cells.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo
13.
Diabetologia ; 63(10): 1999-2006, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32894310

RESUMEN

It is increasingly appreciated that the pathogenic mechanisms of type 1 diabetes involve both the autoimmune aggressors and their beta cell targets, which engage in a conflicting dialogue within and possibly outside the pancreas. Indeed, autoimmune CD8+ T cells, which are the final mediators of beta cell destruction, circulate at similar frequencies in type 1 diabetic and healthy individuals. Hence a universal state of 'benign' islet autoimmunity exists, and we hypothesise that its progression to type 1 diabetes may at least partially rely on a higher vulnerability of beta cells, which play a key, active role in disease development and/or amplification. We posit that this autoimmune vulnerability is rooted in some features of beta cell biology: the stress imposed by the high rate of production of insulin and other granule proteins, their dense vascularisation and the secretion of their products directly into the bloodstream. Gene variants that may predispose individuals to this vulnerability have been identified, e.g. MDA5, TYK2, PTPN2. They interact with environmental cues, such as viral infections, that may drive this genetic potential towards exacerbated local inflammation and progressive beta cell loss. On top of this, beta cells set up compensatory responses, such as the unfolded protein response, that become deleterious in the long term. The relative contribution of immune and beta cell drivers may vary and phenotypic subtypes (endotypes) are likely to exist. This dual view argues for the use of circulating biomarkers of both autoimmunity and beta cell stress for disease staging, and for the implementation of both immunomodulatory and beta cell-protective therapeutic strategies. Graphical abstract.


Asunto(s)
Autoinmunidad/inmunología , Linfocitos T CD8-positivos/inmunología , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/biosíntesis , Vesículas Secretoras/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Predisposición Genética a la Enfermedad , Humanos , Inflamación , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/inmunología , Proinsulina/biosíntesis , Respuesta de Proteína Desplegada/inmunología
14.
Diabetologia ; 63(4): 825-836, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31873789

RESUMEN

AIMS/HYPOTHESIS: Type 1 diabetes is characterised by a progressive decline in beta cell mass. This is also observed following implantation of pancreatic islet allografts, but there is no reliable information regarding the time course of beta cell loss. This is due to the limited availability of non-invasive pancreatic islet imaging techniques. We have previously described that dipeptidyl peptidase 6 (DPP6) is an alpha and beta cell-specific biomarker, and developed a camelid antibody (nanobody '4hD29') against it. We demonstrated the possibility to detect DPP6-expressing cells by single-photon emission computed tomography (SPECT)/ computed tomography (CT), but the correlation between the number of cells grafted and the SPECT signal was not assessed. Here, we investigate whether the 4hD29 nanobody allows us to detect different amounts of human pancreatic islets implanted into immune-deficient mice. In addition, we also describe the adaptation of the probe for use with positron emission tomography (PET). METHODS: DPP6 expression was assessed in human samples using tissue arrays and immunohistochemistry. The effect of the 4hD29 nanobody on cell death and glucose-stimulated insulin secretion was measured in EndoC-ßH1 cells and in human islets using Hoechst/propidium iodide staining and an anti-insulin ELISA, respectively. We performed in vivo SPECT imaging on severe combined immunodeficient (SCID) mice transplanted with different amounts of EndoC-ßH1 cells (2 × 106, 5 × 106 and 10 × 106 cells), human islets (1000 and 3000) or pancreatic exocrine tissue using 99mTc-labelled 4hD29 nanobody. This DPP6 nanobody was also conjugated to N-chlorosuccinimide (NCS)-1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), radiolabelled with either 67Ga (SPECT) or 68Ga (PET) and used in a proof-of-principle experiment to detect DPP6-expressing cells (Kelly neuroblastoma) grafted in SCID mice. RESULTS: The DPP6 protein is mainly expressed in pancreatic islets. Importantly, the anti-DPP6 nanobody 4hD29 allows non-invasive detection of high amounts of EndoC-ßH1 cells or human islets grafted in immunodeficient mice. This suggests that the probe must be further improved to detect lower numbers of islet cells. The 4hD29 nanobody neither affected beta cell viability nor altered insulin secretion in EndoC-ßH1 cells and human islets. The conversion of 4hD29 nanobody into a PET probe was successful and did not alter its specificity. CONCLUSIONS/INTERPRETATION: These findings suggest that the anti-DPP6 4hD29 nanobody may become a useful tool for the quantification of human islet grafts in mice and, pending future development, islet mass in individuals with diabetes.


Asunto(s)
Rastreo Celular/métodos , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/inmunología , Células Secretoras de Insulina/metabolismo , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos/diagnóstico por imagen , Anticuerpos de Dominio Único/farmacología , Animales , Recuento de Células , Células Cultivadas , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/antagonistas & inhibidores , Femenino , Radioisótopos de Galio/análisis , Radioisótopos de Galio/farmacocinética , Xenoinjertos , Humanos , Células Secretoras de Insulina/citología , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Ratones Transgénicos , Imagen Molecular/métodos , Compuestos de Organotecnecio/química , Compuestos de Organotecnecio/farmacocinética , Trazadores Radiactivos , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/métodos , Anticuerpos de Dominio Único/análisis , Anticuerpos de Dominio Único/química
15.
Diabetologia ; 63(5): 987-1001, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32072192

RESUMEN

AIMS/HYPOTHESIS: High-mobility group box 1 (HMGB1), an evolutionarily conserved chromosomal protein, was rediscovered to be a 'danger signal' (alarmin) that alerts the immune system once released extracellularly. Therefore, it has been recognised contributing to the pathogenesis of autoimmune diabetes, but its exact impact on the initiation and progression of type 1 diabetes, as well as the related molecular mechanisms, are yet to be fully characterised. METHODS: In the current report, we employed NOD mice as a model to dissect the impact of blocking HMGB1 on the prevention, treatment and reversal of type 1 diabetes. To study the mechanism involved, we extensively examined the characteristics of regulatory T cells (Tregs) and their related signalling pathways upon HMGB1 stimulation. Furthermore, we investigated the relevance of our data to human autoimmune diabetes. RESULTS: Neutralising HMGB1 both delayed diabetes onset and, of particular relevance, reversed diabetes in 13 out of 20 new-onset diabetic NOD mice. Consistently, blockade of HMGB1 prevented islet isografts from autoimmune attack in diabetic NOD mice. Using transgenic reporter mice that carry a Foxp3 lineage reporter construct, we found that administration of HMGB1 impairs Treg stability and function. Mechanistic studies revealed that HMGB1 activates receptor for AGE (RAGE) and toll-like receptor (TLR)4 to enhance phosphatidylinositol 3-kinase (PI3K)-Akt-mechanistic target of rapamycin (mTOR) signalling, thereby impairing Treg stability and functionality. Indeed, high circulating levels of HMGB1 in human participants with type 1 diabetes contribute to Treg instability, suggesting that blockade of HMGB1 could be an effective therapy against type 1 diabetes in clinical settings. CONCLUSIONS/INTERPRETATION: The present data support the possibility that HMGB1 could be a viable therapeutic target to prevent the initiation, progression and recurrence of autoimmunity in the setting of type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/metabolismo , Proteína HMGB1/metabolismo , Linfocitos T Reguladores/metabolismo , Animales , Anticuerpos Neutralizantes/farmacología , Western Blotting , Células Cultivadas , Colitis/inmunología , Colitis/metabolismo , Colitis/patología , Diabetes Mellitus Tipo 1/patología , Femenino , Proteína HMGB1/antagonistas & inhibidores , Humanos , Trasplante de Islotes Pancreáticos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Fosfatidilinositol 3-Quinasas/metabolismo
16.
BMC Genomics ; 21(1): 590, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32847508

RESUMEN

BACKGROUND: Prolonged exposure to elevated free fatty acids induces ß-cell failure (lipotoxicity) and contributes to the pathogenesis of type 2 diabetes. In vitro exposure of ß-cells to the saturated free fatty acid palmitate is a valuable model of lipotoxicity, reproducing features of ß-cell failure observed in type 2 diabetes. In order to map the ß-cell response to lipotoxicity, we combined RNA-sequencing of palmitate-treated human islets with iTRAQ proteomics of insulin-secreting INS-1E cells following a time course exposure to palmitate. RESULTS: Crossing transcriptome and proteome of palmitate-treated ß-cells revealed 85 upregulated and 122 downregulated genes at both transcript and protein level. Pathway analysis identified lipid metabolism, oxidative stress, amino-acid metabolism and cell cycle pathways among the most enriched palmitate-modified pathways. Palmitate induced gene expression changes compatible with increased free fatty acid mitochondrial import and ß-oxidation, decreased lipogenesis and modified cholesterol transport. Palmitate modified genes regulating endoplasmic reticulum (ER) function, ER-to-Golgi transport and ER stress pathways. Furthermore, palmitate modulated cAMP/protein kinase A (PKA) signaling, inhibiting expression of PKA anchoring proteins and downregulating the GLP-1 receptor. SLC7 family amino-acid transporters were upregulated in response to palmitate but this induction did not contribute to ß-cell demise. To unravel critical mediators of lipotoxicity upstream of the palmitate-modified genes, we identified overrepresented transcription factor binding sites and performed network inference analysis. These identified LXR, PPARα, FOXO1 and BACH1 as key transcription factors orchestrating the metabolic and oxidative stress responses to palmitate. CONCLUSIONS: This is the first study to combine transcriptomic and sensitive time course proteomic profiling of palmitate-exposed ß-cells. Our results provide comprehensive insight into gene and protein expression changes, corroborating and expanding beyond previous findings. The identification of critical drivers and pathways of the ß-cell lipotoxic response points to novel therapeutic targets for type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Apoptosis , Humanos , Palmitatos/toxicidad , Proteoma , Proteómica , Transcriptoma
17.
Diabetes Obes Metab ; 22(10): 1827-1836, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32476252

RESUMEN

AIM: Type 1 diabetes (T1D) is a chronic autoimmune disease leading to progressive loss of pancreatic beta cells. Interferon (IFN)-α plays a critical role in the crosstalk between pancreatic beta cells and the immune system in early insulitis. In human beta cells IFNα signals through JAK1 and TYK2, leading to endoplasmic reticulum stress, inflammation and HLA class I overexpression. IFNα, acting synergistically with IL-1ß, induces apoptosis. Polymorphisms in TYK2 that decrease its activity are associated with protection against T1D, and we hypothesized that pharmacological inhibitors that specifically target TYK2 could protect human beta cells against the deleterious effects of IFNα. MATERIALS AND METHODS: Two TYK2 inhibitors provided by Nimbus Lakshmi were tested in human insulin-producing EndoC-ßH1 cells and human islets to evaluate their effect on IFNα signalling, beta-cell function and susceptibility to viral infection using RT-qPCR, western blot, immunofluorescence, ELISA and nuclear dyes. RESULTS: The two TYK2 inhibitors tested prevented IFNα-induced human beta-cell gene expression in a dose-dependent manner. They also protected human islets against IFNα + IL-1ß-induced apoptosis. Importantly, these inhibitors did not modify beta-cell function or their survival following infection with the potential diabetogenic coxsackieviruses CVB1 and CVB5. CONCLUSIONS: The two TYK2 inhibitors tested inhibit the IFNα signalling pathway in human beta cells, decreasing its pro-inflammatory and pro-apoptotic effects without sensitizing the cells to viral infection. The preclinical findings could pave the way for future clinical trials with TYK2 inhibitors for the prevention and treatment of type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Apoptosis , Citoprotección , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Estrés del Retículo Endoplásmico , Humanos , TYK2 Quinasa/genética
18.
Nucleic Acids Res ; 46(19): 10302-10318, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30247717

RESUMEN

Transfer RNAs (tRNAs) are non-coding RNA molecules essential for protein synthesis. Post-transcriptionally they are heavily modified to improve their function, folding and stability. Intronic polymorphisms in CDKAL1, a tRNA methylthiotransferase, are associated with increased type 2 diabetes risk. Loss-of-function mutations in TRMT10A, a tRNA methyltransferase, are a monogenic cause of early onset diabetes and microcephaly. Here we confirm the role of TRMT10A as a guanosine 9 tRNA methyltransferase, and identify tRNAGln and tRNAiMeth as two of its targets. Using RNA interference and induced pluripotent stem cell-derived pancreatic ß-like cells from healthy controls and TRMT10A-deficient patients we demonstrate that TRMT10A deficiency induces oxidative stress and triggers the intrinsic pathway of apoptosis in ß-cells. We show that tRNA guanosine 9 hypomethylation leads to tRNAGln fragmentation and that 5'-tRNAGln fragments mediate TRMT10A deficiency-induced ß-cell death. This study unmasks tRNA hypomethylation and fragmentation as a hitherto unknown mechanism of pancreatic ß-cell demise relevant to monogenic and polygenic forms of diabetes.


Asunto(s)
Metilación de ADN , Diabetes Mellitus/genética , Células Secretoras de Insulina/metabolismo , Metiltransferasas/genética , ARN de Transferencia/metabolismo , Anciano , Animales , Apoptosis/genética , Muerte Celular/genética , Diferenciación Celular/genética , Células Cultivadas , Fragmentación del ADN , Diabetes Mellitus/metabolismo , Ligamiento Genético , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Células Secretoras de Insulina/fisiología , Metiltransferasas/deficiencia , Metiltransferasas/metabolismo , Persona de Mediana Edad , Mutación , Ratas
19.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019671

RESUMEN

There are presently no reliable ways to quantify human pancreatic beta cell mass (BCM) in vivo, which prevents an accurate understanding of the progressive beta cell loss in diabetes or following islet transplantation. Furthermore, the lack of beta cell imaging hampers the evaluation of the impact of new drugs aiming to prevent beta cell loss or to restore BCM in diabetes. We presently discuss the potential value of BCM determination as a cornerstone for individualized therapies in diabetes, describe the presently available probes for human BCM evaluation, and discuss our approach for the discovery of novel beta cell biomarkers, based on the determination of specific splice variants present in human beta cells. This has already led to the identification of DPP6 and FXYD2ga as two promising targets for human BCM imaging, and is followed by a discussion of potential safety issues, the role for radiochemistry in the improvement of BCM imaging, and concludes with an overview of the different steps from pre-clinical validation to a first-in-man trial for novel tracers.


Asunto(s)
Diabetes Mellitus Tipo 1/diagnóstico por imagen , Diabetes Mellitus Tipo 2/diagnóstico por imagen , Células Secretoras de Insulina/ultraestructura , Trasplante de Islotes Pancreáticos/diagnóstico por imagen , Radiofármacos/química , Anticuerpos de Dominio Único/química , 5-Hidroxitriptófano/química , 5-Hidroxitriptófano/farmacocinética , Animales , Biomarcadores/análisis , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Exenatida/química , Exenatida/farmacocinética , Radioisótopos de Flúor/química , Radioisótopos de Flúor/farmacocinética , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/trasplante , Imagen por Resonancia Magnética/métodos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Canales de Potasio/genética , Canales de Potasio/metabolismo , Radiofármacos/farmacocinética , Anticuerpos de Dominio Único/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Tecnecio/química , Tecnecio/metabolismo , Tetrabenazina/análogos & derivados , Tetrabenazina/química , Tetrabenazina/farmacocinética , Tomografía Computarizada de Emisión de Fotón Único/métodos
20.
Diabetologia ; 62(3): 459-472, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30478640

RESUMEN

AIMS/HYPOTHESIS: The initial stages of type 1 diabetes are characterised by an aberrant islet inflammation that is in part regulated by the interaction between type 1 diabetes susceptibility genes and environmental factors. Chromosome 16p13 is associated with type 1 diabetes and CLEC16A is thought to be the aetiological gene in the region. Recent gene expression analysis has, however, indicated that SNPs in CLEC16A modulate the expression of a neighbouring gene with unknown function named DEXI, encoding dexamethasone-induced protein (DEXI). We therefore evaluated the role of DEXI in beta cell responses to 'danger signals' and determined the mechanisms involved. METHODS: Functional studies based on silencing or overexpression of DEXI were performed in rat and human pancreatic beta cells. Beta cell inflammation and apoptosis, driven by a synthetic viral double-stranded RNA, were evaluated by real-time PCR, western blotting and luciferase assays. RESULTS: DEXI-silenced beta cells exposed to a synthetic double-stranded RNA (polyinosinic:polycytidylic acid [PIC], a by-product of viral replication) showed reduced activation of signal transducer and activator of transcription (STAT) 1 and lower production of proinflammatory chemokines that was preceded by a reduction in IFNß levels. Exposure to PIC increased chromatin-bound DEXI and IFNß promoter activity. This effect on IFNß promoter was inhibited in DEXI-silenced beta cells, suggesting that DEXI is implicated in the regulation of IFNß transcription. In a mirror image of knockdown experiments, DEXI overexpression led to increased levels of STAT1 and proinflammatory chemokines. CONCLUSIONS/INTERPRETATION: These observations support DEXI as the aetiological gene in the type 1 diabetes-associated 16p13 genomic region, and provide the first indication of a link between this candidate gene and the regulation of local antiviral immune responses in beta cells. Moreover, our results provide initial information on the function of DEXI.


Asunto(s)
Proteínas de Unión al ADN/genética , Inflamación/genética , Células Secretoras de Insulina/metabolismo , Interferón Tipo I/metabolismo , Proteínas de la Membrana/genética , Factores de Transcripción STAT/metabolismo , Transducción de Señal/genética , Animales , Apoptosis/genética , Proteínas de Unión al ADN/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Humanos , Inflamación/metabolismo , Inflamación/patología , Células Secretoras de Insulina/patología , Proteínas de la Membrana/metabolismo , Polimorfismo de Nucleótido Simple , ARN Bicatenario , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA