Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Microb Cell Fact ; 22(1): 148, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37559084

RESUMEN

Colorectal cancer (CRC) is the third cause of death by cancers worldwide and is one of the most common cancer types reported in both Egypt and the United States. The use of probiotics as a dietary therapy is increasing either as a prevention or as a treatment for many diseases, particularly, in the case of CRC. The increasing acceptance of lactic acid bacterial (LAB) oligosaccharides as bioactive agents has led to an increase in the demand for the large-scale production of LAB-oligosaccharides using fermentation technology. Therefore, in the current study, we are using the Plackett- Burman design (PBD) approach, where sixteen experimental trials were applied to optimize the production of the target oligosaccharide LA-EPS-20079 from Lactobacillus acidophilus. Glucose, yeast extract and sodium acetate trihydrate were the top three significant variables influencing LA-EPS production. The maximum concentration of LA-EPS-20079 achieved by L. acidophilus was 526.79 µg/ml. Furthermore, Box-Behnken design (BBD) as response surface methodology (RSM) was used to complete the optimization procedure. The optimal levels of the chosen variables which were 30.0 g/l, glucose; 5 g/l, yeast extract and 10.0 g/l sodium acetate trihydrate with the predicted LA-EPS-20079 concentration of 794.82 µg/ml. Model validity reached 99.93% when the results were verified. Both optimized trials showed great cytotoxic effects against colon cancer line (CaCo-2) with inhibition percentages ranging from 64.6 to 81.9%. Moreover, downregulation in the expression level of BCL2 and Survivin genes was found with a fold change of 3.377 and 21.38, respectively. Finally, we concluded that the optimized LA-EPS-20079 has maintained its anticancer effect against the CaCo-2 cell line that was previously reported by our research group.


Asunto(s)
Neoplasias del Colon , Probióticos , Humanos , Lactobacillus acidophilus/metabolismo , Proyectos de Investigación , Células CACO-2 , Acetato de Sodio/metabolismo , Fermentación , Neoplasias del Colon/tratamiento farmacológico , Glucosa/metabolismo
2.
J Therm Biol ; 113: 103521, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37055126

RESUMEN

OBJECTIVES: Thermal stress negatively affects the productive performance and immunity responses of rabbits. In this study, we examined the effects of two allicin (AL) and lycopene (LP) levels on performance index, a liver tumor necrosis factor (TNF-α) gene expression, histological parameters of liver, and small intestine of V-line growing rabbits exposed to thermal stress. METHODS: In nine replications of three rabbits per pen under thermal stress, 135 male rabbits (5 weeks old, average weight 772.02 ± 6.41 g) were randomly allocated to five dietary treatments in nine replications of three rabbits per pen under thermal stress (temperature-humidity index average 31.2). The 1st group served as the control, receiving no supplements; The 2nd and 3rd groups received 100 and 200 mg AL/kg of diet supplements; and the 4th and 5th groups were supplemented with 100 and 200 mg LP/kg diet, respectively. RESULTS: show that AL and LP rabbits had the best final body weight, body gain, and feed conversion ratio compared with the control. compared with control, rabbit liver TNF- α levels significantly decreased in diets containing AL and LP In contrast, AL rabbits were slightly more effective in downregulating the expression of the TNF-α gene than LP groups. Furthermore, dietary supplementation of AL and LP significantly improved antibody titers against sheep red blood titers. Compared with other treatments, AL100 treatment significantly improved immune responses to phytohemagglutinin. In all treatments, histological analysis revealed a significant reduction in binuclear hepatocytes. The diameter of the hepatic lobules, villi height, crypt depth, and absorption surface of heat-stressed rabbits were all positively affected by both doses of LP (100-200 mg/kg diet). CONCLUSION: rabbit dietary supplementation with AL or LP could positively affect performance, TNF-α, immunity, and histological parameters of growing rabbits under thermal stress.


Asunto(s)
Suplementos Dietéticos , Factor de Necrosis Tumoral alfa , Conejos , Masculino , Ovinos , Animales , Licopeno , Factor de Necrosis Tumoral alfa/genética , Suplementos Dietéticos/análisis , Dieta/veterinaria , Duodeno , Hígado , Alimentación Animal/análisis
3.
BMC Oral Health ; 23(1): 536, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542230

RESUMEN

BACKGROUND: In recent years, treated dentin matrix (TDM) has been introduced as a bioactive hydrogel for dentin regeneration in DPC. However, no study has introduced TDM as a photocrosslinkable hydrogel with a natural photoinitiating system. Therefore, the present study aimed to explore the synthesis, characterizations and grafting optimization of injectable gelatin- glycidyl methacrylate (GMA)/TDM hydrogels as a novel photocrosslinkable pulp capping agent for dentin regeneration. METHODS: G-GMA/TDM hydrogel was photocrosslinked using a new two-component photoinitiating system composed of riboflavin as a photoinitiator under visible light and glycine as a first time coinitiator with riboflavin. The grafting reaction conditions of G-GMA/TDM e.g. GMA concentration and reaction time were optimized. The kinetic parameters e.g. grafting efficiency (GE) and grafting percentage (GP%) were calculated to optimize the grafting reaction, while yield (%) was determined to monitor the formation of the hydrogel. Moreover, G-GMA/TDM hydrogels were characterized by swelling ratio, degradation degree, and cytotoxicity. The instrumental characterizations e.g. FTIR, 1H-NMR, SEM and TGA, were investigated for verifying the grafting reaction. Statistical analysis was performed using F test (ANOVA) and Post Hoc Test (P = 0.05). RESULTS: The grafting reaction dramatically increased with an increase of both GMA concentration and reaction time. It was realized that the swelling degree and degradation rate of G-GMA/TDM hydrogels were significantly reduced by increasing the GMA concentration and prolonging the reaction time. When compared to the safe low and moderate GMA content hydrogels (0.048, 0.097 M) and shorter reaction times (6, 12, 24 h), G-GMA/TDM with high GMA contents (0.195, 0.391 M) and a prolonged reaction time (48 h) demonstrated cytotoxic effects against cells using the MTT assay. Also, the morphological surface of G-GMA/TDM freeze-dried gels was found more compacted, smooth and uniform due to the grafting process. Significant thermal stability was noticed due to the grafting reaction of G-GMA/TDM throughout the TGA results. CONCLUSIONS: G-GMA/TDM composite hydrogel formed by the riboflavin/glycine photoinitiating system is a potential bioactive and biocompatible system for in-situ crosslinking the activated-light pulp capping agent for dentin regeneration.


Asunto(s)
Gelatina , Materiales de Recubrimiento Pulpar y Pulpectomía , Humanos , Gelatina/metabolismo , Hidrogeles/química , Hidrogeles/metabolismo , Regeneración , Dentina/metabolismo
4.
J Enzyme Inhib Med Chem ; 37(1): 1903-1917, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35801403

RESUMEN

A thiazolidine-2,4-dione nucleus was molecularly hybridised with the effective antitumor moieties; 2-oxo-1,2-dihydroquinoline and 2-oxoindoline to obtain new hybrids with potential activity against VEGFR-2. The cytotoxic effects of the synthesised derivatives against Caco-2, HepG-2, and MDA-MB-231 cell lines were investigated. Compound 12a was found to be the most potent candidate against the investigated cell lines with IC50 values of 2, 10, and 40 µM, respectively. Furthermore, the synthesised derivatives were tested in vitro for their VEGFR-2 inhibitory activity showing strong inhibition. Moreover, an in vitro viability study against Vero non-cancerous cell line was investigated and the results reflected a high safety profile of all tested compounds. Compound 12a was further investigated for its apoptotic behaviour by assessing the gene expression of four genes (Bcl2, Bcl-xl, TGF, and Survivin). Molecular dynamic simulations authenticated the high affinity, accurate binding, and perfect dynamics of compound 12a against VEGFR-2.


Asunto(s)
Antineoplásicos , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Antineoplásicos/química , Células CACO-2 , Proliferación Celular , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Oxindoles , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad , Tiazolidinas/farmacología
5.
J Enzyme Inhib Med Chem ; 37(1): 2191-2205, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35975321

RESUMEN

New quinoline and isatin derivatives having the main characteristics of VEGFR-2 inhibitors was synthesised. The antiproliferative effects of these compounds were estimated against A549, Caco-2, HepG2, and MDA-MB-231. Compounds 13 and 14 showed comparable activities with doxorubicin against the Caco-2 cells. These compounds strongly inhibited VEGFR-2 kinase activity. The cytotoxic activities were evaluated against Vero cells. Compound 7 showed the highest value of safety and selectivity. Cell migration assay displayed the ability of compound 7 to prevent healing and migration abilities in the cancer cells. Furthermore, compound 7 induced apoptosis in Caco-2 through the expressive down-regulation of the apoptotic genes, Bcl2, Bcl-xl, and Survivin, and the upregulation of the TGF gene. Molecular docking against VEGFR-2 emerged the interactions of the synthesised compounds in a similar way to sorafenib. Additionally, seven molecular dynamics simulations studies were applied and confirmed the stability of compound 13 in the active pocket of VEGFR-2 over 100 ns.


Asunto(s)
Antineoplásicos , Isatina , Quinolinas , Animales , Antineoplásicos/farmacología , Células CACO-2 , Proliferación Celular , Chlorocebus aethiops , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Isatina/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Quinolinas/farmacología , Relación Estructura-Actividad , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Células Vero
6.
Pharm Dev Technol ; 26(6): 682-692, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33952085

RESUMEN

Although there are several treatments for rheumatoid arthritis (RA), outcomes are unsatisfactory and often associated with many side effects. We attempted to improve RA therapeutic outcomes by intra-articular administration of dual drug-loaded poly(lactic) acid (PLA)-coated herbal colloidal carriers (HCCs). Curcumin (CU) and resveratrol (RES) were loaded into HCCs because of their safety and significant anti-inflammatory activity. HCCs were prepared using a high-pressure, hot homogenization technique and evaluated in vitro and in vivo using a complete Freund's adjuvant-induced arthritis model. Transmission electron microscope (TEM) evaluated coating selected formulations with PLA, which increased particle sizes from 52 to 89.14 nm. The entrapment efficiency of both formulations was approximately 76%. HCCs significantly increased the amount of RES and CU released compared with the drug suspensions alone. The in vivo treated groups showed a significant improvement in joint healing. PLA-coated HCCs, followed by uncoated HCCs, yielded the highest reductions in knee diameter, myeloperoxidase (MPO) levels, and tumor necrosis factor-alpha (TNFα) levels. Histological examination of the dissected joints revealed that PLA-coated HCCs followed by uncoated HCCs exhibited the most significant joint healing effects. Our results demonstrate the superiority of intra-articularly administered HCCs to suppress RA progression compared with RES or CU suspensions alone.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Coloides/administración & dosificación , Portadores de Fármacos/administración & dosificación , Preparaciones de Plantas/administración & dosificación , Poliésteres/administración & dosificación , Animales , Artritis Reumatoide/inducido químicamente , Artritis Reumatoide/metabolismo , Coloides/metabolismo , Portadores de Fármacos/metabolismo , Adyuvante de Freund/toxicidad , Inyecciones Intraarticulares/métodos , Masculino , Preparaciones de Plantas/metabolismo , Poliésteres/metabolismo , Ratas
7.
Microb Cell Fact ; 17(1): 29, 2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29466981

RESUMEN

BACKGROUND: The direct link between inflammatory bowel diseases and colorectal cancer is well documented. Previous studies have reported that some lactic acid bacterial strains could inhibit colon cancer progression however; the exact molecules involved have not yet been identified. So, in the current study, we illustrated the tumor suppressive effects of the newly identified Lactobacillus acidophilus DSMZ 20079 cell-free pentasaccharide against colon cancer cells. The chemical structure of the purified pentasaccharide was investigated by MALDI-TOF mass spectrum, 1D and 2D Nuclear Magnetic Resonance (NMR). The anticancer potentiality of the purified pentasaccharide against both Human colon cancer (CaCo-2) and Human breast cancer (MCF7) cell lines with its safety usage pattern were evaluated using cytotoxicity, annexin V quantification and BrdU incorporation assays. Also, the immunomodulatory effects of the identified compound were quantified on both LPS-induced PBMC cell model and cancer cells with monitoring the immunophenotyping of T and dendritic cell surface marker. At molecular level, the alteration in gene expression of both inflammatory and apoptotic pathways were quantified upon pentasaccharide-cellular treatment by RTqPCR. RESULTS: The obtained data of the spectroscopic analysis, confirmed the structure of the newly extracted pentasaccharide; (LA-EPS-20079) to be: α-D-Glc (1→2)][α-L-Fuc(1→4)] α-D-GlcA(1→2) α-D-GlcA(1→2) α-D-GlcA. This pentasaccharide, recorded safe dose on normal mammalian cells ranged from 2 to 5 mg/ml with cancer cells selectivity index, ranged of 1.96-51.3. Upon CaCo-2 cell treatment with the non-toxic dose of LA-EPS-20079, the inhibition percentage in CaCo-2 cellular viability, reached 80.65 with an increase in the ratio of the apoptotic cells in sub-G0/G1 cell cycle phase. Also, this pentasaccharide showed potentialities to up-regulate the expression of IKbα, P53 and TGF genes. CONCLUSION: The anticancer potentialities of LA-EPS-20079 oligosaccharides against human colon cancer represented through its regulatory effects on both apoptotic and NF-κB inflammatory pathways.


Asunto(s)
Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Lactobacillus acidophilus/metabolismo , FN-kappa B/metabolismo , Polisacáridos Bacterianos/metabolismo , Animales , Apoptosis , Humanos
8.
BMC Microbiol ; 17(1): 76, 2017 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-28356065

RESUMEN

BACKGROUND: There is an increasing demand on cholesterol oxidase for its various industrial and clinical applications. The current research was focused on extracellular cholesterol oxidase production under submerged fermentation by a local isolate previously identified as Streptomyces aegyptia NEAE 102. The crude enzyme extract was purified by two purification steps, protein precipitation using ammonium sulfate followed by ion exchange chromatography using DEAE Sepharose CL-6B. The kinetic parameters of purified cholesterol oxidase from Streptomyces aegyptia NEAE 102 were studied. RESULTS: The best conditions for maximum cholesterol oxidase activity were found to be 105 min of incubation time, an initial pH of 7 and temperature of 37 °C. The optimum substrate concentration was found to be 0.4 mM. The higher thermal stability behavior of cholesterol oxidase was at 50 °C. Around 63.86% of the initial activity was retained by the enzyme after 20 min of incubation at 50 °C. The apparent molecular weight of the purified enzyme as sized by sodium dodecyl sulphate-polyacryalamide gel electrophoresis was approximately 46 KDa. On DEAE Sepharose CL-6B column cholesterol oxidase was purified to homogeneity with final specific activity of 16.08 U/mg protein and 3.14-fold enhancement. The amino acid analysis of the purified enzyme produced by Streptomyces aegyptia NEAE 102 illustrated that, cholesterol oxidase is composed of 361 residues with glutamic acid as the most represented amino acid with concentration of 11.49 µg/mL. CONCLUSIONS: Taking into account the extracellular production, wide pH tolerance, thermal stability and shelf life, cholesterol oxidase produced by Streptomyces aegyptia NEAE 102 suggested that the enzyme could be industrially useful.


Asunto(s)
Aminoácidos/análisis , Colesterol Oxidasa/química , Colesterol Oxidasa/aislamiento & purificación , Streptomyces/enzimología , Streptomyces/metabolismo , Proteínas Bacterianas/química , Técnicas de Cultivo de Célula/métodos , Cromatografía por Intercambio Iónico/métodos , Activación Enzimática , Pruebas de Enzimas , Estabilidad de Enzimas , Fermentación , Concentración de Iones de Hidrógeno , Microbiología Industrial , Cinética , Peso Molecular , Sefarosa/análogos & derivados , Temperatura , Factores de Tiempo
9.
AAPS PharmSciTech ; 18(5): 1605-1616, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27620196

RESUMEN

Material barrier properties to microbes are an important issue in many pharmaceutical applications like wound dressings. A wide range of biomaterials has been used to manage the chronic inflamed wounds. Eight hydrogel membranes of poly vinyl alcohol (PVA) with κ-carrageenan (KC) and Lactobacillus bulgaricus extract (LAB) have been prepared by using freeze-thawing technique. To evaluate the membranes efficiency as wound dressing agents, various tests have been done like gel fraction, swelling behavior, mechanical properties, etc. The antibacterial activities of the prepared membranes were tested against the antibiotic-resistant bacterial isolates. In addition, the safety usage of the prepared hydrogel was checked on human dermal fibroblast cells. The anti-inflammatory properties of the prepared hydrogel on LPS-PBMC cell inflammatory model were quantified using enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-qPCR). The analysis data of TGA, SEM, gel fraction, and swelling behavior showed changes in properties of prepared PVA\KC\LAB hydrogel membrane than pure PVA hydrogel membrane. The antibacterial activities of the prepared membranes augmented in LAB extract-prepared membranes. Out of the eight used hydrogel membranes, the PVAKC4 hydrogel membrane is the safest one on fibroblast cellular proliferation with a maximum proliferation percentage 97.3%. Also, all the used hydrogel membrane showed abilities to reduce the concentration of IL-2 and IL-8 compared with both negative and positive control. In addition, almost all the prepared hydrogel membrane showed variable abilities to downregulate the expression of TNF-α gene with superior effect of hydrogel membrane KC1. PVA/KC/LAB extract hydrogel membrane may be a promising material for wound dressing application and could accelerate the healing process of the chronic wound because of its antimicrobial and anti-inflammatory properties.


Asunto(s)
Vendas Hidrocoloidales , Carragenina , Lactobacillus delbrueckii/química , Alcohol Polivinílico , Antibacterianos/química , Antibacterianos/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Carragenina/química , Carragenina/farmacología , Humanos , Ensayo de Materiales/métodos , Membranas Artificiales , Permeabilidad , Alcohol Polivinílico/química , Alcohol Polivinílico/farmacología
10.
J Food Sci Technol ; 52(12): 8156-63, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26604389

RESUMEN

Helicobacter pylori is a common human pathogen infecting about 30 % of children and 60 % of adults worldwide. It is responsible for diseases such as gastritis, peptic ulcer and gastric cancer. H. pylori treatment based on antibiotics with proton pump inhibitor, but therapy failure is shown to be higher than 20 % and is essentially due to an increasing in prevalence of antibiotic-resistant bacteria, which has led to the search for alternative therapies. In this study, we discuss the usage of natural extracts mixture as alternative or complementary agents in controlling H. pylori infection so here, we focused on the plant extracts of (Cloves, Pepper, Cumin, Sage, Pomegranate peel, Ginger, Myrrh and Licorice). To that end, Phytochemical constituents detection like Tannins, Glycosides, Alkaloids, Flavonoids, Terpenoids, Saponins, Phenolic compounds, Reducing sugars, Volatile oils, Amino acids and Proteins was demonstrated. Each plant extract was examined individually or in combination for its antimicrobial activity against H. pylori. Out of the used extracts, four mixes were prepared and tested against H. pylori. The antibacterial activities of the four mixes, represented by the diameter of inhibition clear zone, recorded 21, 39, 23 and 28 mm. The most potent mix (mix2) was chosen and mixed with baby milk as a new combination for H. pylori infections treatment in babies.

11.
J Res Med Sci ; 20(10): 950-7, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26929759

RESUMEN

BACKGROUND: Probiotic delivery systems are widely used nutraceutical products for the supplementation of natural intestinal flora. These delivery systems vary greatly in the effectiveness to exert health benefits for a patient. This study focuses on providing probiotic living cells with a physical barrier against adverse environmental conditions. MATERIALS AND METHODS: Microencapsulation of the selected lactic acid bacteria (LAB) using chitosan and alginate was performed. Physical examination of the formulated LAB microcapsules was observed using phase contrast inverted microscope and scanning electron microscope (SEM). Finally, the survival of microencapsulated and noncapsulated bacteria was cheeked in the simulated human gastric tract (GT). The potential antimicrobial activity of the most potent microencapsulated LAB strain was in vivo evaluated in rabbit models. RESULTS: Microencapsulated L. plantarum, L. acidophilus, and L. bulgaricus DSMZ 20080 were loaded with 1.03 × 10(10) CFU viable bacteria/g, 1.9 × 10(10) CFU viable bacteria/g, and 5.5 × 10(9) CFU viable bacteria/g, respectively. The survival of microencapsulated cells was significantly higher than that of the free cells after exposure to simulated gastric juice (SGJ) at pH 2. Additionally, in simulated small intestine juice (SSJ), larger amounts of the selected LAB cells were found, whereas in simulated colon juice (SCJ), the released LAB reached the maximum counts. In vivo results pointed out that an 8-week supplementation with a triple therapy of a microencapsulated L. plantarum, L. acidophilus, and L. bulgaricus DSMZ 20080 might be able to reduce H. pylori. CONCLUSION: Microencapsulated probiotics could possibly compete with and downregulate H. pylori infection in humans.

12.
Nat Prod Res ; 37(23): 4038-4041, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36597612

RESUMEN

Herpes simplex virus (HSV) can infect millions of people worldwide causing mild to life-threating infections. The current study demonstrates the first comparative anti-HSV type 1 activity and phytochemical investigation of Artemisia herba-alba and Thymus capitatus collected from Egypt and Libya. Liquid chromatography/mass spectrometry (LC/MS) analysis allowed the identification of 56 and 38 compounds in the Egyptian and Libyan Artemisia herba-alba ethanolic extracts, respectively, in addition to 46 and 50 compounds in the Egyptian and Libyan Thymus capitatus ethanolic extracts, respectively. Gas chromatography/mass spectrometry (GC/MS) analysis of their corresponding essential oils revealed the presence of 15, 17, 17 and 8 compounds in Egyptian and Libyan Artemisia herba-alba and Thymus capitatus, respectively. The major chemical classes of the identified compounds were phenolic acids, flavonoids and oxygenated monoterpenes. Evaluation of the anti-HSV1 activities of the studied extracts showed that the Egyptian Thymus capitatus ethanolic extracts were the most potent extract with more than 200-fold reduction in the viral PFU.


Asunto(s)
Artemisia , Herpesvirus Humano 1 , Lamiaceae , Humanos , África del Norte , Cromatografía Liquida , Egipto , Etanol
13.
Sci Rep ; 13(1): 22791, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38123695

RESUMEN

A series of new coumarin-N-heterocyclic hybrids, coumarin-quinolines 7a-e, coumarin-acridines 10b,c and coumarin-neocryptolepines 13b,c were synthesized and evaluated for their anticancer and antimicrobial activities. The structures of all synthesized hybrids were confirmed by FT-IR, 1H-NMR, 13C-NMR, and MS spectrometry. The anti-proliferative activity of hybrids 7a-e, 10c and 13c were bio-evaluated using MTT-assay against colon (CaCo-2), lung (A549), breast (MDA-MB-231), and hepatocellular carcinoma (HepG-2) human cancer cell lines using doxorubicin as a reference drug. The results demonstrated that, all hybrids displayed moderate to good anti-proliferative activity against the cell lines. The most active hybrids were 7a-d and 10c against CaCo-2 cancer cell line with IC50: 57.1, 52.78, 57.29, 51.95 and 56.74 µM, and selectivity index 1.38, 1.76, 2.6, 1.96 and 0.77; respectively. While, 7a,d were potent against A549 cancer cell line with IC50: 51.72, 54.8 µM and selectivity index 1.5, 0.67; respectively. Moreover, 7c showed the most potency against MDA-MB-231 cancer cell line with IC50: 50.96 µM and selectivity index 2.20. Interestingly, docking results revealed that binding energy of the current compounds showed marked affinity values ranging from -6.54 to -5.56 kcal with interactions with the reported key amino acid SER 79. Furthermore, the antimicrobial activity of the synthesized hybrids 7a-e, 10b,c, 13b and 13c were evaluated against Gram-positive and Gram-negative bacterial and fungal strains. The hybrids 10b, 13b, 10c, and 13c exhibited broad-spectrum antibacterial activity against E.coli, S. mutans, and S. aureus with MIC from 3.2 to 66 µM, this hybrids also displayed antifungal activity against C. albicans with MIC values ranging from 0.0011 to 29.5 µM. In-silico investigation of the pharmacokinetic properties indicated that tested hybrids had high GI absorption, low Blood Brain Barrier (BBB) permeability in addition to cell membrane penetrability.


Asunto(s)
Antineoplásicos , Staphylococcus aureus , Humanos , Estructura Molecular , Relación Estructura-Actividad , Células CACO-2 , Espectroscopía Infrarroja por Transformada de Fourier , Antineoplásicos/química , Antibacterianos/química , Cumarinas/química , Simulación del Acoplamiento Molecular , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular
14.
Int J Pharm ; 623: 121939, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35724825

RESUMEN

Systemic rheumatoid arthritis treatment has been associated with numerous side effects. We attempted to formulate hyaluronic acid (HA)-coated teriflunomide (TER)-loaded nanostructured lipid carriers (NLCs) that can target inflamed rheumatic joints following oral administration. In vitro evaluation including colloidal characteristics, drug release and stability studies were conducted. Also, cytotoxicity studies on THP1 and peripheral blood mononuclear cells besides testing the binding of HA coated TER-NLCs to CD44 receptors were carried out. Furthermore, pharmacokinetics following oral administration, anti-arthritic effects, hepato and nephrotoxicity of NLCs were assessed. Selected NLCs formulation was approximately 284.9 ± 3.8 nm in size with 96.89 ± 0.45% entrapment efficiency and provided a sustained release for 30 days. NLCs showed good stability that was confirmed by TEM examination. Cell culture studies revealed that HA-coated TER- NLCs showed superior cytotoxicity and binding affinity to CD44 receptors compared with TER suspension. In vivo studies demonstrated the superiority of NLCs in increasing TER bioavailability, reducing TNF-α serum levels and improving joint healing that was evidenced in both histopathological and X-ray radiographic examination. This may be attributed to the ability of HA-coated TER-NLCs to target rheumatic joints passively and actively by targeting CD44 receptors that are overexpressed in rheumatic joints.


Asunto(s)
Artritis Reumatoide , Nanoestructuras , Administración Oral , Artritis Reumatoide/tratamiento farmacológico , Crotonatos , Portadores de Fármacos , Humanos , Ácido Hialurónico/uso terapéutico , Hidroxibutiratos , Leucocitos Mononucleares , Lípidos , Nitrilos , Tamaño de la Partícula , Toluidinas
15.
Sci Rep ; 12(1): 11518, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35798780

RESUMEN

Biosynthesis of gold nanoparticles (AuNPs) using algal polysaccharides is a simple, low-cost, and an eco-friendly approach. In the current study, different concentrations of Arthospira platensis exopolysaccharides (EPS) were used to synthetize AuNPs via the reduction of gold ions. The biologically synthesized AuNPs (AuNPs1, AuNPs2, AuNPs3) were prepared in 3 different forms through the utilization of three different ratios of EPS-reducing agents. AuNPs analysis confirmed the spherical shape of the EPS-coated AuNPs. Furthermore, AuNPs prepared by EPS and L-ascorbic acid (AuNPs3) showed more stability than the AuNPs colloidal solution that was prepared using only L-ascorbic acid. Analysis of the antimicrobial effects of AuNPs showed that E. coli was the most sensitive bacterial species for AuNPs3 and AuNPs1 with inhibition percentages of 88.92 and 83.13%, respectively. Also, safety assay results revealed that AuNPs3 was the safest biogenic AuNPs for the tested noncancerous cell line. The anticancer assays of the biogenic AuNPs1, AuNPs2, and AuNPs3 against MCF-7 cell line indicated that this cell line was the most sensitive cell line to all treatments and it showed inhibition percentages of 66.2%, 57.3%, and 70.2% to the three tested AuNPs, respectively. The AuNPs also showed abilities to arrest MCF-7 cells in the S phase (77.34%) and increased the cellular population in the sub G0 phase. Gene expression analysis showed that AuNPs3 down regulated Bcl2, Ikapα, and Survivn genes in MCF-7 treated-cells. Also, transmission electron microscopy (TEM) analysis of MCf-7 cells revealed that AuNPs 3 and AuNPs2 were localized in cell vacuoles, cytoplasm, and perinuclear region.


Asunto(s)
Neoplasias de la Mama , Nanopartículas del Metal , Antibacterianos/farmacología , Ácido Ascórbico/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Escherichia coli , Femenino , Oro/farmacología , Tecnología Química Verde/métodos , Humanos , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacología
16.
Appl Biochem Biotechnol ; 194(5): 2183-2203, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35048281

RESUMEN

Biogenic silver nanoparticles (bio-AgNPs) is one of the most fascinating nanomaterials used for several biomedical purposes. In the current study, we biosynthesized AgNPs (bio-AgNPs) using Arthrospira platensis (A-bio-AgNPs), Microcystis aeruginosa (M-bio-AgNPs), and Chlorella vulgaris (C-bio-AgNPs) active metabolites and evaluated their anticancer efficacy against breast cancer. The recovered bio-AgNPs were characterized using scanning and transmission electron microscopy (SEM and TEM). In addition, their safety profiles were monitored in vitro on PBMCs cells and in vivo on Albino mice. The obtained results indicated the safety usage of bio-AgNPs at concentrations of 0.1 mg/ml on PBMCs cells and 1.5 mg/ml on the Albino mice. The bio-AgNPs displayed dose-dependent cytotoxic effects against HepG-2, CaCO-2, and MCF-7 cell lines by inducing reactive oxygen species (ROS) and arresting the treated cells in G0/G1 and sub G0 phases. In addition, A-bio-AgNPs induced breast cancer cellular apoptosis by downregulating the expression of survivin, MMP7, TGF, and Bcl2 genes. Upon A-bio-AgNPs treatment, a significant reduction in tumor growth and prolonged survival rates were recorded in breast cancer BALB/c model. Furthermore, A-bio-AgNPs treatment significantly decreased the Ki-67 protein marker from 60% (in the untreated group) to 20% (in the treated group) and increased caspase-3 protein levels to 65% (in treated groups) comparing with 45% (in doxorubicin-treated groups).


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Chlorella vulgaris , Nanopartículas del Metal , Animales , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Células CACO-2 , Chlorella vulgaris/metabolismo , Femenino , Humanos , Nanopartículas del Metal/uso terapéutico , Ratones , Extractos Vegetales , Plata/farmacología , Spirulina
17.
Drug Deliv ; 29(1): 714-727, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35243951

RESUMEN

Curcumin (CU) is a natural polyphenolic phytoingredient. CU has anti-inflammatory, anti-oxidant, and anticancer activities. The poor solubility, bioavailability, and stability of CU diminish its clinical application. Hence, structural modification of CU is highly recommended. The CU analog; 3,5-bis(4-bromobenzylidene)-1-propanoylpiperidin-4-one (PIP) exhibited high stability, safety, and more potent antiproliferative activity against hepatocellular carcinoma. In the present study, nano-bilosomes (BLs) were formulated to augment PIP delivery and enhance its solubility. A 21.31 full factorial design was adopted to prepare the synthesized PIP-loaded BLs. Optimized F4 showed a biphasic release pattern extended over 24 h, with EE%, ZP, and PS of 90.21 ± 1.0%, -27.05 ± 1.08 mV, and 111.68 ± 1.4 nm. PIP-loaded BLs were tested for safety against a non-cancerous cell line (Wi-38) and for anticancer activity against the Huh-7 human hepatocellular carcinoma cells and compared to the standard anticancer drug doxorubicin (Dox). The anticancer selectivity index of PIP-loaded BLs recorded 420.55 against Huh-7 liver cancer cells, markedly higher than a CU suspension (18.959) or the Dox (20.82). The antiproliferative activity of nano-encapsulated PIP was roughly equivalent to Dox. PIP-loaded BLs, showed enhanced drug solubility, and enhanced anticancer effect, with lower toxicity and higher selectivity against Huh-7 liver cancer cells, compared to the parent CU.


Asunto(s)
Carcinoma Hepatocelular , Curcumina , Neoplasias Hepáticas , Nanopartículas , Disponibilidad Biológica , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Curcumina/química , Curcumina/farmacología , Doxorrubicina/química , Doxorrubicina/farmacología , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología
18.
Int J Biol Macromol ; 205: 385-395, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35183600

RESUMEN

The current study explores the effect of the extracted novel Mushroom polysaccharides and its formulation onto Alginate (Alg.)/kappa carrageenan microcapsules to exert immunotherapeutic effect upon activating gut resident natural killer cells (NK) against colon cancer. The extracted polysaccharides of Agaricus bisporus MH751906 was microcapsulated in Alg/κ-carrageenan microcapsules as an oral delivery system for colon cancer. The microcapsule is characterized by SEM, FTIR, Raman and TGA; and showed a superior acidic stability, controlled release, and thermal stability at high temperature with higher hydrogel swelling rate in colon-mimicking pH. Upon activation of human NK cells with microcapsules (ANK cells), a significant increase in CD16+CD56+ NK cell populations were recorded. These activated NK cells showed 74.09% cytotoxic effects against human colon cancer Caco-2 cells where majority of cancer cell populations arrested at G0/G1 phase leading to apoptosis. The apoptotic molecular mechanism induced by ANK cells on Caco-2 treated cells is through down regulations of both BCL2 and TGF surviving genes and up regulation in IkappaB-α gene expression. Therefore, this novel polysaccharides-alginate/κ-carrageenan microcapsules can be used as an oral targeted delivery system for colon cancer immunotherapy.


Asunto(s)
Agaricus , Neoplasias del Colon , Agaricus/química , Alginatos/química , Células CACO-2 , Cápsulas , Carragenina/química , Neoplasias del Colon/tratamiento farmacológico , Humanos , Inmunoterapia , Células Asesinas Naturales , Polisacáridos/química
19.
J Funct Biomater ; 13(1)2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35225980

RESUMEN

Bacterial polymeric silk is produced by Bacillus sp. strain NE and is composed of two proteins, called fibroin and sericin, with several biomedical and biotechnological applications. In the current study and for the first time, the whole bacterial silk proteins were found capable of exerting antiviral effects against herpes simplex virus type-1 (HSV-1), adenovirus type 7 (AD7), and hepatitis C virus (HCV). The direct interaction between bacterial silk-like proteins and both HSV-1 and AD7 showed potent inhibitory activity against viral entry with IC50 values determined to be 4.1 and 46.4 µg/mL of protein, respectively. The adsorption inhibitory activity of the bacterial silk proteins showed a blocking activity against HSV-1 and AD7 with IC50 values determined to be 12.5 and 222.4 ± 1.0 µg/mL, respectively. However, the bacterial silk proteins exhibited an inhibitory effect on HSV-1 and AD7 replication inside infected cells with IC50 values of 9.8 and 109.3 µg/mL, respectively. All these results were confirmed by the ability of the bacterial silk proteins to inhibit viral polymerases of HSV-1 and AD7 with IC50 values of 164.1 and 11.8 µg/mL, respectively. Similarly, the inhibitory effect on HCV replication in peripheral blood monocytes (PBMCs) was determined to be 66.2% at concentrations of 100 µg/mL of the bacterial silk proteins. This antiviral activity against HCV was confirmed by the ability of the bacterial silk proteins to reduce the ROS generation inside the infected cells to be 50.6% instead of 87.9% inside untreated cells. The unique characteristics of the bacterial silk proteins such as production in large quantities via large-scale biofermenters, low costs of production, and sustainability of bacterial source offer insight into its use as a promising agent in fighting viral infection and combating viral outbreaks.

20.
Artículo en Inglés | MEDLINE | ID: mdl-32656185

RESUMEN

New anticancer agents are continually needed because cancerous cells continue to evolve resistance to the currently available chemotherapeutic agents. The aim of the present study was to screen, purify and characterize a hepatotoxic bacteriocin from Enterococcus species. The production of bacteriocin from the Enterococcus isolates was achieved based on their antibacterial activity against indicator reference strains. Enterococcus isolates showed a broad spectrum of antibacterial activity by forming inhibition zones with diameters ranged between 12 and 29 mm. The most potent bacteriocin producing strain was molecularly identified as Enterococcus thailandicus. The crude extracted bacteriocin was purified by cation exchange and size exclusion chromatography that resulted in 83 fractions. Among them, 18 factions were considered as bacteriocins based on their positive antibacterial effects. The anticancer effects of the purified bacteriocins were tested against HepG2 cell line. The most promising enterocin (LNS18) showed the highest anticancer effects against HepG2 cells (with 75.24% cellular inhibition percentages), with IC50 value 15.643 µM and without any significant cytotoxic effects on normal fibroblast cells (BJ ATCC® CRL-2522™). The mode of anticancer action of enterocin LNS18 against HepG2 cells could be explained by its efficacy to induce cellular ROS, decrease HepG2 CD markers and arrest cells in G0 phase. Amino acid sequence of enterocin LNS18 was determined and the deduced peptide of the structural gene showed 86 amino acids that shared 94.7% identity with enterocin NKR-5-3B from E. faecium. Enterocin LNS18 consisted of 6 α-helices; 5 circular and one linear. Model-template alignment constructed between enterocin LNS18 and NKR-5-3B revealed 95.31% identity. The predicted 3D homology model of LNS18, after circularization and release of 22 amino acids, showed the formation of a bond between Leu23 and Trp86 amino acid residues at the site of circularization. Furthermore, areas of positive charges were due to the presence of 6 lysine residues resulting in a net positive charge of +4 on the bacteriocin surface. Based on the above mentioned results, our characterized bacteriocin is a promising agent to target liver cancer without any significant toxic effects on normal cell lines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA