Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Physiol Plant ; 175(6): e14097, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148192

RESUMEN

Olive (Olea europaea L.) is a subtropical tree cultivated in arid, dry and temperate regions. Olive orchards in Al-Jouf of Saudi Arabia are the largest worldwide and currently face harmful pest infestation. The present study aimed at evaluating the efficiency of the predatory mite Agistemus exsertus Gonzalez (Acari: Stigmaeidae) and the exogenously applied melatonin (MT), glycine betaine (GB) and 5-aminolevulinic acid (ALA) as eco-friendly approaches for enhancing the biological control of four mite species (Tegolophus hassani, Oxycenus niloticus, Aceria olivi and Tetranychus urticae) infesting olive trees in Al-Jouf under laboratory and field conditions. Field experiment was conducted on 6-year-old Manzanillo olive trees grown in a private orchard farm in Al-Jouf during two seasons, 2020 and 2021. Results revealed that A. exsertus developed successfully from egg to adult. The females of T. hassani, O. niloticus, A. olivi, and T. urticae required 7.36, 8.89, 9.98 and 8.38 days, respectively, to develop from egg to adult at 28°C and 65 ± 5% relative humidity. O. niloticus was the most preferred prey of A. exsertus. The net reproductive rate (R0 ) was 42.1, 38.7, 34.6 and 36.8 females/female/generation, the intrinsic rate of increase (rm ) was 0.27, 0.26, 0.23 and 0.20 females/female/day, and the mean generation time (T) was 16.2, 17.1, 18.6 and 17.2 days when a predator consumed T. hassani, O. niloticus, A. olivi and T. urticae, respectively. The adult female consumed daily about 114 O. niloticus, 105 A. olivi, 95 T. hassani and 15.2 T. urticae individuals, respectively. A. exsertus proved to be an effective biocontrol agent against mites infesting olive trees. In addition, the exogenous application of 1 mM MT, 15 mM GB and 25 mg/L ALA, alone or in combination, caused significant mortality for the four mites. Application of these natural compounds, alone or in combination, also significantly enhanced the growth, relative water content, relative chlorophyll, content of flavonoid and nutrients, antioxidant enzymes activities, stress-related genes expression and fruit yield and quality of the infested olive trees compared to non-treated infested trees. This study is the first that demonstrates the efficiency of these eco-friendly approaches for controlling mites infesting olive trees, and could be used as a replacement for the harmful chemical acaricides.


Asunto(s)
Ácaros , Olea , Tetranychidae , Humanos , Animales , Femenino , Conducta Predatoria , Estaciones del Año , Árboles
2.
BMC Plant Biol ; 22(1): 383, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35909101

RESUMEN

BACKGROUND: Alhagi maurorum Medik. (camelthorn) is a dominant desert plant indigenous in various habitats, including the Western Desert of Egypt. The plant is especially prevalent in and around economic iron ore deposits. Nutrient and heavy metal levels in A. maurorum tissues and soil samples were assessed to identify associations between heavy metal levels in plants and soil. The objective was to evaluate this species as an indicator of heavy metal pollution. Photosynthetic pigments, protein, proline, alkaloids, flavonoids, 2,2-diphenyl-1-picrylhydrazylscavenging, reduced glutathione, malondialdehyde, antioxidant enzymes, and stress-related gene expression were assessed to determine their functional roles in metal stress adaptation in ultra- and molecular structure. Additionally, the molecular genetic variation in A. maurorum samples was assessed using co-dominant sequence-related amplified polymorphism (SRAP) and inter simple sequence repeats (ISSR). RESULTS: A substantial difference in enzymatic and non-enzymatic antioxidants of A. maurorum was observed in samples collected from three sites. A. maurorum is suited to the climate in mineralized regions. Morphologically, the stem shows spines, narrow leaves, and a reduced shoot system. Anatomically, modifications included a cuticle coating on leaves and stems, sunken stomata, a compact epidermis, and a thick cortex. Significant anatomical-physiological differences were observed with varying heavy metal soil content, antioxidative enzyme activities increased as a tolerance strategy, and glutathione levels decreased in response to heavy metal toxicity. Heavy metal accumulation also affected the expression of stress-related genes. The highest levels of expression of GST, G6PDH, 6PGD, nitrate reductase 1, and sulfate transporter genes were found in plants collected from site A1. However, auxin-induced protein exhibited its highest expression in plants collected from A2. Six SRAP combinations yielded 25 scoreable markers with a polymorphism rate of 64%, and 5 ISSR markers produced 11 bands with a polymorphism rate of 36.36% for three A. maurorum genotypes. The ME1xEM7 primer combinations provided the most polymorphic information content and resolving power, making it the most useful primer for differentiating A. maurorum genotypes. SRAP markers exhibited a higher diversity index (0.24) than ISSR markers (0.16). CONCLUSIONS: A. maurorum displayed adaptive characteristics for heavy metal sequestration from mining site soils and is proposed as a strong candidate for phytoremediation.


Asunto(s)
Fabaceae , Metales Pesados , Contaminantes del Suelo , Antioxidantes/metabolismo , Biodegradación Ambiental , Fabaceae/metabolismo , Metales Pesados/metabolismo , Biología Molecular , Plantas/genética , Suelo , Contaminantes del Suelo/metabolismo
3.
Ecotoxicol Environ Saf ; 230: 113142, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34990991

RESUMEN

Chromium (Cr) is a toxic heavy metal that contaminates soil and water resources after its discharge from different industries. It can act as carcinogen and mutagen for biological systems. Microbe-assisted phytoremediation is one of the most emergent and environment friendly technique used for detoxification of Cr from Cr-contaminated soils. In this study, wheat as a test crop was grown under varying stress levels (0, 50, 100 and 200 mg/kg) of Cr in a pot experiment under a complete randomized design. Alleviative role of Staphylococcus aureus strain K1 was assessed by applying as a treatment in different combinations of zinc oxide nanoparticles (0, 50, 100 mg/L). Growth and yield attributes data presented nurturing impact of bacterial inoculation and ZnO NPs in improvement of wheat defense system by decreasing Cr toxicity. Increase in chlorophyll and carotenoids contents, antioxidant enzymes (SOD, POD, APX, CAT) activities and nutrient uptake also confirmed the mitigative potential of bacterial inoculation when applied solely or in combination with ZnO NPs. The Cr accumulation in different parts of plant was significantly reduced with the application of NPs and S. aureus strain K1. Taken together, the results showed that combined application of Staphylococcus aureus strain K1 and ZnO NPs detoxifies the effects of Cr on wheat plants and boosts its growth, physiology and defense system.

4.
Int J Phytoremediation ; 24(9): 933-944, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34634959

RESUMEN

Heavy metals pollution represents a serious issue for cultivable lands and ultimately threatens the worldwide food security. Lead (Pb) is a menacing metal which induces toxicity in plants and humans. Lead toxicity reduces the photosynthesis in plants, resulting in the reduction of plant growth and biomass. The excessive concentration of Pb in soil accumulates in plants body and enters into food chain, resulting in health hazards in humans. The phytoremediation is eco-friendly and cost-efficient technique to clean up the polluted soils. However, to the best of our Knowledge, there are very few reports addressing the enhancement of the phytoremediation potential of castor bean plants. Therefore, the present study aimed to investigate the potential role of glutathione (GSH), as a promising plant growth regulator, in enhancing the lead stress tolerance and phytoremediation potential of castor bean plants grown under lead stress conditions. The results indicated that Pb stress reduced the growth, biomass, chlorophyll pigments and gas exchange attributes of castor bean plants, causing oxidative damage in plants. Pb stress induced the oxidative stress markers and activities of antioxidant enzymes. On the other hand, the application of GSH reduced oxidative stress markers, but enhanced the growth, biomass, photosynthetic pigments, gas exchange attributes, Pb accumulation and antioxidant enzymes activities of lead-stressed castor bean plants. Both Pb uptake and Pb accumulation were increased by increasing concentrations of Pb in a dose-additive manner. However, at high dose of exogenous GSH (25 mg L-1) further enhancements were recorded in the Pb uptake in shoot by 48% and in root by 46%; Pb accumulation was further enhanced in shoot by 98% and in root by 101% in comparison with the respective control where no GSH was applied. Taken together, the findings revealed the promising role of GSH in enhancing the lead stress tolerance and phytoremediation potential of castor bean (Ricinus communis) plants cultivated in Pb-polluted soils through regulating leaf gas exchange, antioxidants machinery, and metal uptake.


The excessive concentration of Lead (Pb) in soil accumulates in plants body and enters into food chain, resulting in health hazards in humans. Phytoremediation is eco-friendly and cost-efficient technique to clean up the polluted soils. However, to the best of our knowledge, there are very few reports addressing the enhancement of the phytoremediation potential of castor bean plants. Therefore, the novelty of this research is that this research studied the potential role of glutathione (GSH), as a promising plant growth regulator, in enhancing the lead stress tolerance and phytoremediation potential of castor bean plants grown under lead stress conditions. The results indicated that Pb stress reduced the growth, biomass, chlorophyll pigments and gas exchange attributes of castor bean plants, causing oxidative damage in plants. Pb stress induced the oxidative stress markers and activities of antioxidant enzymes. On the other hand, the application of GSH reduced oxidative stress markers, but enhanced the growth, biomass, photosynthetic pigments, gas exchange attributes, Pb accumulation and antioxidant enzymes activities of lead-stressed castor bean plants. Taken together, the findings revealed the promising role of GSH in enhancing the lead stress tolerance and phytoremediation potential of castor bean plants cultivated in lead-polluted soils.


Asunto(s)
Ricinus communis , Contaminantes del Suelo , Antioxidantes , Biodegradación Ambiental , Glutatión , Plomo/toxicidad , Plantas , Ricinus , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
5.
J Cell Physiol ; 236(7): 5325-5338, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33372280

RESUMEN

In novel coronavirus disease 2019 (COVID-19), the increased frequency and overactivation of T helper (Th) 17 cells and subsequent production of large amounts of proinflammatory cytokines result in hyperinflammation and disease progression. The current study aimed to investigate the therapeutic effects of nanocurcumin on the frequency and responses of Th17 cells in mild and severe COVID-19 patients. In this study, 40 severe COVID-19 intensive care unit-admitted patients and 40 patients in mild condition were included. The frequency of Th17 cells, the messenger RNA expression of Th17 cell-related factors (RAR-related orphan receptor γt, interleukin [IL]-17, IL-21, IL-23, and granulocyte-macrophage colony-stimulating factor), and the serum levels of cytokines were measured in both nanocurcumin and placebo-treated groups before and after treatment. A significant decrease in the number of Th17 cells, downregulation of Th17 cell-related factors, and decreased levels of Th17 cell-related cytokines were found in mild and severe COVID-19 patients treated by nanocurcumin compared to the placebo group. Moreover, the abovementioned parameters were significantly decreased in the nanocurcumin-treated group after treatment versus before treatment. Curcumin could reduce the frequency of Th17 cells and their related inflammatory factors in both mild and severe COVID-19 patients. Hence, it could be considered as a potential modulatory compound in improving the patient's inflammatory condition.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Curcumina/uso terapéutico , Inmunomodulación/efectos de los fármacos , Nanopartículas/uso terapéutico , Células Th17/efectos de los fármacos , Adulto , Citocinas/metabolismo , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Nanopartículas/administración & dosificación , SARS-CoV-2/efectos de los fármacos , Índice de Severidad de la Enfermedad , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/virología , Células Th17/metabolismo
6.
Physiol Plant ; 172(2): 587-602, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33159342

RESUMEN

Soil water and nutrient status are two of the most important factors for plant development and crop yield. Vermicompost and biochar are supposed to amend soil attributes and increase the productivity. However, little is known about their mixture application on soil quality and nutrient uptake under natural conditions. The aim of this investigation was to understand the impact of soil amendments (control, vermicompost, biochar, and vermicompost + biochar) on yield, soil quality, physiological and biochemical attributes, as well as nutrient uptake of wheat plants grown at different irrigation water treatments (50%, 75%, and 100% of field capacity [FC]) in saline sodic soil. Vermicompost improved wheat growth and yield. Biochar-treated plants had higher growth performance and yield than control plants in all traits and than vermicompost in some cases, thus confirming its potential for enhancing soil quality and increasing nutrient uptake, which stimulates soil chemical properties. When vermicompost was added in combination with biochar, further enhancement in the growth and yield was recorded, highlighting the beneficial effect of vermicompost on plant yield. Vermicompost-biochar mixture application followed by biochar as a singular application caused significant improvements in relative water content, chlorophyll content, stomatal conductance, cytotoxicity, leaf K+ content with respect to nutrient uptake (N, P, and K), while reducing oxidative stress (i.e., activities of catalase [CAT] and ascorbate peroxidase [APX], and expression levels of CAT, APX, and Mn-SOD genes), leaf Na+ content, and proline content. This resulted in increases in yield-related traits and productivity owing to the enhancement in soil chemical characteristics and soil moisture content. Grain yield and nutrient uptake attained the highest values at 75% FC in wheat plants treated by the combination of vermicompost and biochar. In summary, this investigation revealed that the synergistic effect of vermicompost and biochar can not only enhance crop production but also eliminates the detrimental effects of soil salinity and water stress.


Asunto(s)
Suelo , Triticum , Carbón Orgánico , Deshidratación , Salinidad
7.
Physiol Plant ; 172(2): 684-695, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33159351

RESUMEN

Salinity and drought are the major abiotic stresses that disturb several aspects of maize plants growth at the cellular level, one of these aspects is cell cycle machinery. In our study, we dissected the molecular alterations and downstream effectors of salinity and drought stress on cell cycle regulation and chromatin remodeling. Effects of salinity and drought stress were determined on maize seedlings using 200 mM NaCl (induced salinity stress), and 250 mM mannitol (induced drought stress) treatments, then cell cycle progression and chromatin remodeling dynamics were investigated. Seedlings displayed severe growth defects, including inhibition of root growth. Interestingly, stress treatments induced cell cycle arrest in S-phase with extensive depletion of cyclins B1 and A1. Further investigation of gene expression profiles of cell cycle regulators showed the downregulation of the CDKA, CDKB, CYCA, and CYCB. These results reveal the direct link between salinity and drought stress and cell cycle deregulation leading to a low cell proliferation rate. Moreover, abiotic stress alters chromatin remodeling dynamic in a way that directs the cell cycle arrest. We observed low DNA methylation patterns accompanied by dynamic histone modifications that favor chromatin decondensation. Also, the high expression of DNA topoisomerase 2, 6 family was detected as consequence of DNA damage. In conclusion, in response to salinity and drought stress, maize seedlings exhibit modulation of cell cycle progression, resulting in the cell cycle arrest through chromatin remodeling.


Asunto(s)
Ciclo Celular , Cromatina , Sequías , Salinidad , Zea mays/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/fisiología , Estrés Fisiológico , Zea mays/genética
8.
Physiol Plant ; 172(2): 1336-1351, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33179272

RESUMEN

Tetraena mandavillei L. is a perennial shrub native to the Middle Eastern countries of Asia, which is extensively regarded as a drought-tolerant plant. However, the plant reduces growth and biomass when grown in high concentrations of sodium chloride in the soil. We conducted a pot experiment to influence the negative impact of different levels of salinity (0, 10, and 20 dSm-1 ) and drought stress (100, 80, 60, and 40% water field capacity), to study different growth-related parameters, physiological alterations and ion uptake by T. mandavillei. Both salinity and drought stress caused a negative impact by affecting several attributes of T. mandavillei, but the plants showed some resistance against drought stress conditions in terms of growth and biomass. In addition to that, we noticed that a combinatorial and individual impact of drought and salinity stress decreased photosynthetic pigments and gas exchange parameters in T. mandavillei. Results also depicted that the combination of the abiotic stress conditions drought and salinity induced reactive oxygen species (ROS), indicating that the plants undergo oxidative damaged. However, due to the active plant defense system, the plant enhanced its performance under abiotic stress conditions, but due to the severe drought condition (40% water field capacity), a significant (P < 0.05) decrease in the activities of antioxidant compounds was caused. Furthermore, osmolytes also increased under both salinity and drought stress conditions in this study. Our results also showed that increased salinity and drought stress in the soil caused a significant increase in sodium (Na+ ) and chloride (Cl- ) ions in roots and shoots of T. mandavillei. In contrast to that, the contents of Calcium (Ca2+ ) and potassium (K+ ) were decreased in all organs of the plants with increasing levels of salinity and drought stress. Taken together, T. mandavillei can be classified as a facultative halophyte with the ability to tolerate drought stress and using salt accumulation mechanisms to tolerate salinity stress.


Asunto(s)
Sequías , Salinidad , Fotosíntesis , Cloruro de Sodio/farmacología , Estrés Fisiológico
9.
Ecotoxicol Environ Saf ; 216: 112192, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33838458

RESUMEN

Boron (B) is an indispensable micronutrient that ensures the optimal growth and productivity of the plant. However, excessive use of B fertilizers results in B toxicity which is relatively difficult to correct as compared to B deficiency. Moreover, underlying mechanisms of B toxicity induced changes in cell wall components and the association of B forms in the appearance of toxicity symptoms in rice seedlings are lacking. Therefore, the present investigation was carried out on rice seedlings by employing different concentrations of B (CK, B1; 100 µM, B2; 300 µM, and B3; 400 µM). The results showed that a high concentration of B caused inhibition of root and shoot growth with noticeable signs of stress on leaves in terms of chlorophyll contents. In addition, B toxicity caused oxidative stress and lipid oxidation of membranes. The higher concentrations of B were accumulated in the leaves than roots. In the roots and leaves, more than 80% B was adsorbed on the cell wall. In the treatment of B3, the free form of B was higher than the bound-B. Fourier Transform Infrared Spectrometer (FTIR) results showed that higher concentrations led to variation in functional groups of cell walls of leaves. The results of this investigation showed that B stress-induced inhibition of growth might be linked with higher B uptake in the upper parts, oxidative damages, and forms of B may play important role in the chlorosis. The findings of the study may help to understand the mechanisms of B stress-induced growth inhibition in rice seedlings.

10.
J Sci Food Agric ; 101(5): 2027-2041, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32949013

RESUMEN

BACKGROUND: Jasmonic acid (JA) is an important molecule that has a regulatory effect on many physiological processes in plant growth and development under abiotic stress. This study investigated the effect of 60 µmol L-1 of JA in seed priming (P) at 15 °C in darkness for 24 h, foliar application (F), and/or their combination effect (P + F) on two soybean cultivars - 'Nannong 99-6' (salt tolerant) and 'Lee 68' (salt sensitive) - under salinity stress (100 mmol L-1 sodium chloride (NaCl)). RESULTS: Salinity stress reduced seedling growth and biomass compared with that in the control condition. Priming and foliar application with JA and/or their combination significantly improved water potential, osmotic potential, water use efficiency, and relative water content of both cultivars under salinity stress. Similarly, seed priming with JA, foliar application of JA, and/or their combination significantly improved the following properties under salinity stress compared with the untreated seedlings: net photosynthetic rate by 68.03%, 59.85%, and 76.67% respectively; transpiration rate by 74.85%, 55.10%, and 80.26% respectively; stomatal conductance by 69.88%, 78.25%, and 26.24% respectively; intercellular carbon dioxide concentration by 61.64%, 40.06%, and 65.79% respectively; and total chlorophyll content by 47.41%, 41.02%, and 55.73% respectively. Soybean plants primed, sprayed with JA, or treated with their combination enhanced the chlorophyll fluorescence, which was damaged by salinity stress. JA treatments improved abscisic acid, gibberellic acid, and JA levels by 60.57%, 62.50% and 52.25% respectively under salt stress compared with those in the control condition. The transcriptional levels of the FeSOD, POD, CAT, and APX genes increased significantly in the NaCl-stressed seedlings irrespective of JA treatments. Moreover, JA treatment resulted in a reduction of sodium ion concentration and an increase of potassium ion concentrations in the leaf and root of both cultivars regardless of salinity stress. Monodehydroascorbate reductase, dehydroascorbate reductase, and proline contents decreased in the seedlings treated with JA under salinity stress, whereas the ascorbate content increased with JA treatment combined with NaCl stress. CONCLUSION: The application of 60 µmol L-1 JA improved plant growth by regulating the interaction between plant hormones and hydrogen peroxide, which may be involved in auxin signaling and stomatal closure under salt stress. These methods could efficiently protect early seedlings and alleviate salt stress damage and provide possibilities for use in improving soybean growth and inducing tolerance against excessive soil salinity. © 2020 Society of Chemical Industry.


Asunto(s)
Ciclopentanos/farmacología , Glycine max/fisiología , Oxilipinas/farmacología , Hojas de la Planta/efectos de los fármacos , Semillas/efectos de los fármacos , Clorofila/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Potasio/metabolismo , Estrés Salino/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/fisiología , Semillas/crecimiento & desarrollo , Semillas/fisiología , Glycine max/efectos de los fármacos , Glycine max/crecimiento & desarrollo , Estrés Fisiológico/efectos de los fármacos
11.
Physiol Plant ; 169(4): 625-638, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32129889

RESUMEN

Microgreens are rich functional crops with valuable nutritional elements that have health benefits when used as food supplements. Growth characterization, nutritional composition profile of 21 varieties representing five species of the Brassica genus as microgreens were assessed under light-emitting diodes (LEDs) conditions. Microgreens were grown under four different LEDs ratios (%); red:blue 80:20 and 20:80 (R80 :B20 and R20 :B80 ), or red:green:blue 70:10:20 and 20:10:70 (R70 :G10 :B20 and R20 :G10 :B70 ). Results indicated that supplemental lighting with green LEDs (R70 :G10 :B20 ) enhanced vegetative growth and morphology, while blue LEDs (R20 :B80 ) increased the mineral and vitamin contents. Interestingly, by linking the nutritional content with the growth yield to define the optimal LEDs setup, we found that the best lighting to promote the microgreen growth was the green LEDs combination (R70 :G10 :B20 ). Remarkably, under the green LEDs combination (R70 :G10 :B20 ) conditions, the microgreens of Kohlrabi purple, Cabbage red, Broccoli, Kale Tucsan, Komatsuna red, Tatsoi and Cabbage green, which can benefit human health in conditions with limited food, had the highest growth and nutritional content.


Asunto(s)
Brassica , Humanos , Luz , Iluminación , Valor Nutritivo , Hojas de la Planta
12.
Int J Mol Sci ; 19(8)2018 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-30126128

RESUMEN

Pisum sativum L. (field pea) is a crop of a high nutritional value and seed oil content. The characterization of pea germplasm is important to improve yield and quality. This study aimed at using fatty acid profiling and amplified fragment length polymorphism (AFLP) markers to evaluate the variation and relationships of 25 accessions of French pea. It also aimed to conduct a marker-trait associations analysis using the crude oil content as the target trait for this analysis, and to investigate whether 5-aminolevulinic acid (ALA) could enhance salt tolerance in the pea germplasm. The percentage of crude oil of the 25 pea genotypes varied from 2.6 to 3.5%, with a mean of 3.04%. Major fatty acids in all of the accessions were linoleic acid. Moreover, the 12 AFLP markers used were polymorphic. The cluster analysis based on fatty acids data or AFLP data divided the 25 pea germplasm into two main clusters. The gene diversity of the AFLP markers varied from 0.21 to 0.58, with a mean of 0.41. Polymorphic information content (PIC) of pea germplasm varied from 0.184 to 0.416 with a mean of 0.321, and their expected heterozygosity (He) varied from 0.212 to 0.477 with a mean of 0.362. The AFLP results revealed that the Nain Ordinaire cultivar has the highest level of genetic variability, whereas Elatius 3 has the lowest level. Three AFLP markers (E-AAC/M-CAA, E-AAC/M-CAC, and E-ACA/M-CAG) were significantly associated with the crude oil content trait. The response of the Nain Ordinaire and Elatius 3 cultivars to high salinity stress was studied. High salinity (150 mM NaCl) slightly reduced the photosynthetic pigments contents in Nain Ordinaire leaves at a non-significant level, however, the pigments contents in the Elatius 3 leaves were significantly reduced by high salinity. Antioxidant enzymes (APX-ascorbate peroxidase; CAT-catalase; and POD-peroxidase) activities were significantly induced in the Nain Ordinaire cultivar, but non-significantly induced in Elatius 3 by high salinity. Priming the salt-stressed Nain Ordinaire and Elatius 3 plants with ALA significantly enhanced the pigments biosynthesis, antioxidant enzymes activities, and stress-related genes expression, as compared to the plants stressed with salt alone. In conclusion, this study is amongst the first investigations that conducted marker-trait associations in pea, and revealed a sort of correlation between the diversity level and salt tolerance.


Asunto(s)
Variación Genética , Pisum sativum/genética , Tolerancia a la Sal , Ácido Aminolevulínico/metabolismo , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Ácidos Grasos/análisis , Ácidos Grasos/genética , Regulación de la Expresión Génica de las Plantas , Pisum sativum/fisiología , Fármacos Fotosensibilizantes/metabolismo , Polimorfismo Genético , Salinidad
13.
Int J Mol Sci ; 19(11)2018 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-30355997

RESUMEN

High salinity mitigates crop productivity and quality. Plant growth-promoting soil rhizobacteria (PGPR) improve plant growth and abiotic stress tolerance via mediating various physiological and molecular mechanisms. This study investigated the effects of the PGPR strain Serratia liquefaciens KM4 on the growth and physiological and molecular responsiveness of maize (Zea mays L.) plants under salinity stress (0, 80, and 160 mM NaCl). High salinity significantly reduced plant growth and biomass production, nutrient uptake, leaf relative water content, pigment content, leaf gas exchange attributes, and total flavonoid and phenolic contents in maize. However, osmolyte content (e.g., soluble proteins, proline, and free amino acids), oxidative stress markers, and enzymatic and non-enzymatic antioxidants levels were increased in maize under high salinity. On the other hand, Serratia liquefaciens KM4 inoculation significantly reduced oxidative stress markers, but increased the maize growth and biomass production along with better leaf gas exchange, osmoregulation, antioxidant defense systems, and nutrient uptake under salt stress. Moreover, it was found that all these improvements were accompanied with the upregulation of stress-related genes (APX, CAT, SOD, RBCS, RBCL, H⁺-PPase, HKT1, and NHX1), and downregulation of the key gene in ABA biosynthesis (NCED). Taken together, the results demonstrate the beneficial role of Serratia liquefaciens KM4 in improving plant growth and salt stress tolerance in maize by regulating ion homeostasis, redox potential, leaf gas exchange, and stress-related genes expression.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Tolerancia a la Sal , Serratia liquefaciens/patogenicidad , Zea mays/metabolismo , Homeostasis , Oxidación-Reducción , Hojas de la Planta/metabolismo , Transpiración de Plantas , Rizosfera , Zea mays/microbiología , Zea mays/fisiología
14.
Molecules ; 23(10)2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-30274189

RESUMEN

Barley (Hordeum vulgare L.) represents one of the most important cereals cultivated worldwide. Investigating genetic variability and structure of barley is important for enhancing the crop productivity. This study aimed to investigate the diversity and structure of 40 barley genotypes originated from three European countries (France, the Netherlands, Poland) using amplified fragment length polymorphisms (AFLPs). It also aimed to study 5-aminolevulinic acid (ALA) effect on salinity tolerance of six barley genotypes. The expected heterozygosity (He) diverged from 0.126 to 0.501, with a mean of 0.348. Polymorphic information content (PIC) diverged from 0.103 to 0.482 across barley genotypes, with a mean of 0.316, indicating that barley genotypes are rich in a considerable level of genetic diversity. The 40 barley genotypes were further studied based on their geographical origin (Western Europe and Eastern Europe). The Eastern European region (Poland) has a higher barley variability than the Western European region (France and the Netherlands). Nei's distance-based cluster tree divided the 40 barley accessions into two major clusters; one cluster comprised all the varieties originated from the Eastern European region, while the other major cluster included all accessions originated from the Western European region. Structure analysis results were in a complete concordance with our cluster analysis results. Slaski 2, Damseaux and Urbanowicki genotypes have the highest diversity level, whereas Carmen, Bigo and Cambrinus genotypes have the lowest level. The response of these six varieties to NaCl stress was also investigated. Salt stress (100 mM NaCl) slightly decreased levels of chlorophyll, carotenoid and osmolytes (proteins, soluble sugars, phenolics and flavonoids) in the leaves of Slaski 2, Damseaux and Urbanowicki genotypes at non-significant level, as compared to control samples. However, pigment contents and osmolytes in leaves of Carmen, Bigo and Cambrinus genotypes were significantly decreased by salt stress. Antioxidant enzyme activities were significantly increased in Slaski 2 genotype, but non-significantly increased in Carmen by salt stress. Priming Slaski 2 and Carmen cultivars with ALA under salt stress significantly induced pigment contents, antioxidants enzymes activity and stress-responsive genes expression, relative to NaCl-stressed plants. In conclusion, this study suggested a correlation between variability percentage and degree of salinity resistance. ALA improved salt tolerance in barley.


Asunto(s)
Hordeum/fisiología , Ácido Aminolevulínico/farmacología , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Europa (Continente) , Europa Oriental , Variación Genética , Genoma de Planta , Genotipo , Hordeum/efectos de los fármacos , Hordeum/genética , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Salinidad , Tolerancia a la Sal , Especificidad de la Especie
15.
Front Plant Sci ; 15: 1340304, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495372

RESUMEN

Cryptochromes are widely dispersed flavoprotein photoreceptors that regulate numerous developmental responses to light in plants, as well as to stress and entrainment of the circadian clock in animals and humans. All cryptochromes are closely related to an ancient family of light-absorbing flavoenzymes known as photolyases, which use light as an energy source for DNA repair but themselves have no light sensing role. Here we review the means by which plant cryptochromes acquired a light sensing function. This transition involved subtle changes within the flavin binding pocket which gave rise to a visual photocycle consisting of light-inducible and dark-reversible flavin redox state transitions. In this photocycle, light first triggers flavin reduction from an initial dark-adapted resting state (FADox). The reduced state is the biologically active or 'lit' state, correlating with biological activity. Subsequently, the photoreduced flavin reoxidises back to the dark adapted or 'resting' state. Because the rate of reoxidation determines the lifetime of the signaling state, it significantly modulates biological activity. As a consequence of this redox photocycle Crys respond to both the wavelength and the intensity of light, but are in addition regulated by factors such as temperature, oxygen concentration, and cellular metabolites that alter rates of flavin reoxidation even independently of light. Mechanistically, flavin reduction is correlated with conformational change in the protein, which is thought to mediate biological activity through interaction with biological signaling partners. In addition, a second, entirely independent signaling mechanism arises from the cryptochrome photocycle in the form of reactive oxygen species (ROS). These are synthesized during flavin reoxidation, are known mediators of biotic and abiotic stress responses, and have been linked to Cry biological activity in plants and animals. Additional special properties arising from the cryptochrome photocycle include responsivity to electromagnetic fields and their applications in optogenetics. Finally, innovations in methodology such as the use of Nitrogen Vacancy (NV) diamond centers to follow cryptochrome magnetic field sensitivity in vivo are discussed, as well as the potential for a whole new technology of 'magneto-genetics' for future applications in synthetic biology and medicine.

16.
Plant Physiol Biochem ; 198: 107673, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37030249

RESUMEN

Stevia rebaudiana is an important medicinal plant which represents the most important sugar substitute in many countries. Poor seed germination of this plant is a critical problem that affects the final yield and the availability of the products in the market. Continuous cropping without supplying soil nutrients is also a serious issue as it results in declining soil fertility. This review highlights the important use of beneficial bacteria for the enhancement of Stevia rebaudiana growth and its dynamic interactions in the phyllosphere, rhizosphere, and endosphere. Fertilizers can increase crop yield and preserve and improve soil fertility. There is a rising concern that prolonged usage of chemical fertilizers may have negative impacts on the ecosystem of the soil. On the other hand, soil health and fertility are improved by plant growth-promoting bacteria which could eventually increase plant growth and productivity. Accordingly, a biocompatible strategy involving beneficial microorganisms inoculation is applied to boost plant growth and reduce the negative effects of chemical fertilizers. Plants benefit extensively from endophytic bacteria, which promote growth and induce resistance to pathogens and stresses. Additionally, several plant growth-promoting bacteria are able to produce amino acids, polyamines, and hormones that can be used as alternatives to chemicals. Therefore, understanding the dynamic interactions between bacteria and Stevia can help make the favorable bacterial bio-formulations, use them more effectively, and apply them to Stevia to improve yield and quality.


Asunto(s)
Plantas Medicinales , Stevia , Stevia/metabolismo , Ecosistema , Fertilizantes , Suelo , Bacterias
17.
Plants (Basel) ; 12(14)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37514345

RESUMEN

Arsenic (As) is one of the toxic heavy metal pollutants found in the environment. An excess of As poses serious threats to plants and diminishes their growth and productivity. NAC transcription factors revealed a pivotal role in enhancing crops tolerance to different environmental stresses. The present study investigated, for the first time, the functional role of SNAC3 in boosting As stress tolerance and grain productivity in rice (Oryza sativa L.). Two SNAC3-overexpressing (SNAC3-OX) and two SNAC3-RNAi transgenic lines were created and validated. The wild-type and transgenic rice plants were exposed to different As stress levels (0, 25, and 50 µM). The results revealed that SNAC3 overexpression significantly improved rice tolerance to As stress and boosted grain yield traits. Under both levels of As stress (25 and 50 µM), SNAC3-OX rice lines exhibited significantly lower levels of oxidative stress biomarkers and OsCRY1b (cryptochrome 1b) expression, but they revealed increased levels of gas exchange characters, chlorophyll, osmolytes (soluble sugars, proteins, proline, phenols, and flavonoids), antioxidant enzymes (SOD, CAT, APX, and POD), and stress-tolerant genes expression (OsSOD-Cu/Zn, OsCATA, OsCATB, OsAPX2, OsLEA3, OsDREB2B, OsDREB2A, OsSNAC2, and OsSNAC1) in comparison to wild-type plants. By contrast, SNAC3 suppression (RNAi) reduced grain yield components and reversed the aforementioned measured physio-biochemical and molecular traits. Taken together, this study is the first to demonstrate that SNAC3 plays a vital role in boosting As stress resistance and grain productivity in rice through modulating antioxidants, photosynthesis, osmolyte accumulation, and stress-related genes expression, and may be a useful candidate for further genetic enhancement of stress resistance in many crops.

18.
Front Plant Sci ; 14: 1266357, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37860259

RESUMEN

Magnetoreception, the remarkable ability of organisms to perceive and respond to Earth's magnetic field, has captivated scientists for decades, particularly within the field of quantum biology. In the plant science, the exploration of the complicated interplay between quantum phenomena and classical biology in the context of plant magnetoreception has emerged as an attractive area of research. This comprehensive review investigates into three prominent theoretical models: the Radical Pair Mechanism (RPM), the Level Crossing Mechanism (LCM), and the Magnetite-based MagR theory in plants. While examining the advantages, limitations, and challenges associated with each model, this review places a particular weight on the RPM, highlighting its well-established role of cryptochromes and in-vivo experiments on light-independent plant magnetoreception. However, alternative mechanisms such as the LCM and the MagR theory are objectively presented as convincing perspectives that permit further investigation. To shed light on these theoretical frameworks, this review proposes experimental approaches including cutting-edge experimental techniques. By integrating these approaches, a comprehensive understanding of the complex mechanisms driving plant magnetoreception can be achieved, lending support to the fundamental principle in the RPM. In conclusion, this review provides a panoramic overview of plant magnetoreception, highlighting the exciting potential of quantum biology in unraveling the mysteries of magnetoreception. As researchers embark on this captivating scientific journey, the doors to deciphering the diverse mechanisms of magnetoreception in plants stand wide open, offering a profound exploration of nature's adaptations to environmental cues.

19.
Plants (Basel) ; 12(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37299089

RESUMEN

Heavy metal stress, including from chromium, has detrimental effects on crop growth and yields worldwide. Plant growth-promoting rhizobacteria (PGPR) have demonstrated great efficiency in mitigating these adverse effects. The present study investigated the potential of the PGPR strain Azospirillum brasilense EMCC1454 as a useful bio-inoculant for boosting the growth, performance and chromium stress tolerance of chickpea (Cicer arietinum L.) plants exposed to varying levels of chromium stress (0, 130 and 260 µM K2Cr2O7). The results revealed that A. brasilense EMCC1454 could tolerate chromium stress up to 260 µM and exhibited various plant growth-promoting (PGP) activities, including nitrogen fixation, phosphate solubilization, and generation of siderophore, trehalose, exopolysaccharide, ACC deaminase, indole acetic acid, and hydrolytic enzymes. Chromium stress doses induced the formation of PGP substances and antioxidants in A. brasilense EMCC1454. In addition, plant growth experiments showed that chromium stress significantly inhibited the growth, minerals acquisition, leaf relative water content, biosynthesis of photosynthetic pigments, gas exchange traits, and levels of phenolics and flavonoids of chickpea plants. Contrarily, it increased the concentrations of proline, glycine betaine, soluble sugars, proteins, oxidative stress markers, and enzymatic (CAT, APX, SOD, and POD) and non-enzymatic (ascorbic acid and glutathione) antioxidants in plants. On the other hand, A. brasilense EMCC1454 application alleviated oxidative stress markers and significantly boosted the growth traits, gas exchange characteristics, nutrient acquisition, osmolyte formation, and enzymatic and non-enzymatic antioxidants in chromium-stressed plants. Moreover, this bacterial inoculation upregulated the expression of genes related to stress tolerance (CAT, SOD, APX, CHS, DREB2A, CHI, and PAL). Overall, the current study demonstrated the effectiveness of A. brasilense EMCC1454 in enhancing plant growth and mitigating chromium toxicity impacts on chickpea plants grown under chromium stress circumstances by modulating the antioxidant machinery, photosynthesis, osmolyte production, and stress-related gene expression.

20.
Plant Physiol Biochem ; 190: 212-230, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36137308

RESUMEN

Remediation and mitigation processes can recover the ecosystems affected by mining operations. Zygophyllum coccineum L. is a native indigenous xerophyte that grows in Egypt's Western Desert, particularly around the iron mining ore deposits, and accumulates high rates of potentially toxic elements (PTEs) in its succulent leaves. The present study evaluated the genetic variation and molecular responses of Z. coccineum to heavy metal stressful conditions in three sites. Results revealed that Z. coccineum bioaccumulation capacity was greater than unity and varied amongst the three locations. In response to heavy metal toxicity, Z. coccineum plants boosted their antioxidative enzymes activity and glutathione levels as a tolerance strategy. Anatomically, a compact epidermis, a thick spongy mesophyll with water storage cells, and a thicker vascular system were observed. Protein electrophoretic analysis yielded 20 fragments with a polymorphism rate of 85%. The antioxidant genes (CAT: catalase, POD: peroxidase and GST: polyphenol oxidase) showed greater levels of expression. In addition, DNA-based molecular genetic diversity analyses using Start Codon Targeted (SCoT) and Inter Simple Sequence Repeat (ISSR) markers yielded 54 amplified fragments (i.e. 24 monomorphic and 30 polymorphic), with 12 unique fragments and a polymorphism rate of 55.5%. The greatest PIC values were recorded for SCoT-6 (0.36) and for both of the 14 A and 44 B ISSR primers (0.25). Diversity index (DI) of all SCoT and ISSR amplified primers was 0.23. The present findings reveal the distinct heavy metal's adaption attributes of Z. coccineum, indicating its improved survival in severely arid mining environments.


Asunto(s)
Zygophyllum , Antioxidantes , Catalasa/genética , Catecol Oxidasa , Codón Iniciador , ADN , Cartilla de ADN , Ecosistema , Ecotipo , Egipto , Variación Genética , Glutatión , Hierro , Minería , Agua , Zygophyllum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA