Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Physiol ; 239(5): e31212, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38308646

RESUMEN

C-peptide, a byproduct of insulin synthesis believed to be biologically inert, is emerging as a multifunctional molecule. C-peptide serves an anti-inflammatory and anti-atherogenic role in type 1 diabetes mellitus (T1DM) and early T2DM. C-peptide protects endothelial cells by activating AMP-activated protein kinase α, thus suppressing the activity of NAD(P)H oxidase activity and reducing reactive oxygen species (ROS) generation. It also prevents apoptosis by regulating hyperglycemia-induced p53 upregulation and mitochondrial adaptor p66shc overactivation, as well as reducing caspase-3 activity and promoting expression of B-cell lymphoma-2. Additionally, C-peptide suppresses platelet-derived growth factor (PDGF)-beta receptor and p44/p42 mitogen-activated protein (MAP) kinase phosphorylation to inhibit vascular smooth muscle cells (VSMC) proliferation. It also diminishes leukocyte adhesion by virtue of its capacity to abolish nuclear factor kappa B (NF-kB) signaling, a major pro-inflammatory cascade. Consequently, it is envisaged that supplementation of C-peptide in T1DM might ameliorate or even prevent end-organ damage. In marked contrast, C-peptide increases monocyte recruitment and migration through phosphoinositide 3-kinase (PI-3 kinase)-mediated pathways, induces lipid accumulation via peroxisome proliferator-activated receptor γ upregulation, and stimulates VSMC proliferation and CD4+ lymphocyte migration through Src-kinase and PI-3K dependent pathways. Thus, it promotes atherosclerosis and microvascular damage in late T2DM. Indeed, C-peptide is now contemplated as a potential biomarker for insulin resistance in T2DM and linked to increased coronary artery disease risk. This shift in the understanding of the pathophysiology of diabetes from being a single hormone deficiency to a dual hormone disorder warrants a careful consideration of the role of C-peptide as a unique molecule with promising diagnostic, prognostic, and therapeutic applications.


Asunto(s)
Péptido C , Humanos , Péptido C/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Transducción de Señal
2.
Clin Sci (Lond) ; 138(5): 289-308, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38381744

RESUMEN

The cardiovascular and renovascular complications of metabolic deterioration are associated with localized adipose tissue dysfunction. We have previously demonstrated that metabolic impairment delineated the heightened vulnerability of both the perivascular (PVAT) and perirenal adipose tissue (PRAT) depots to hypoxia and inflammation, predisposing to cardioautonomic, vascular and renal deterioration. Interventions either addressing underlying metabolic disturbances or halting adipose tissue dysfunction rescued the observed pathological and functional manifestations. Several lines of evidence implicate adipose tissue thromboinflammation, which entails the activation of the proinflammatory properties of the blood clotting cascade, in the pathogenesis of metabolic and cardiovascular diseases. Despite offering valuable tools to interrupt the thromboinflammatory cycle, there exists a significant knowledge gap regarding the potential pleiotropic effects of anticoagulant drugs on adipose inflammation and cardiovascular function. As such, a systemic investigation of the consequences of PVAT and PRAT thromboinflammation and its interruption in the context of metabolic disease has not been attempted. Here, using an established prediabetic rat model, we demonstrate that metabolic disturbances are associated with PVAT and PRAT thromboinflammation in addition to cardioautonomic, vascular and renal functional decline. Administration of rivaroxaban, a FXa inhibitor, reduced PVAT and PRAT thromboinflammation and ameliorated the cardioautonomic, vascular and renal deterioration associated with prediabetes. Our present work outlines the involvement of PVAT and PRAT thromboinflammation during early metabolic derangement and offers novel perspectives into targeting adipose tissue thrombo-inflammatory pathways for the management its complications in future translational efforts.


Asunto(s)
Estado Prediabético , Trombosis , Enfermedades Vasculares , Ratas , Animales , Tromboinflamación , Inflamación/patología , Trombosis/metabolismo , Enfermedades Vasculares/metabolismo , Tejido Adiposo/metabolismo
3.
Mol Pharmacol ; 104(5): 187-194, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37567782

RESUMEN

Cardiovascular complications of diabetes and obesity remain a major cause for morbidity and mortality worldwide. Despite significant advances in the pharmacotherapy of metabolic disease, the available approaches do not prevent or slow the progression of complications. Moreover, a majority of patients present with significant vascular involvement at early stages of dysfunction prior to overt metabolic changes. The lack of disease-modifying therapies affects millions of patients globally, causing a massive economic burden due to these complications. Significantly, adipose tissue inflammation was implicated in the pathogenesis of metabolic syndrome, diabetes, and obesity. Specifically, perivascular adipose tissue (PVAT) and perirenal adipose tissue (PRAT) depots influence cardiovascular and renal structure and function. Accumulating evidence implicates localized PVAT/PRAT inflammation as the earliest response to metabolic impairment leading to cardiorenal dysfunction. Increased mitochondrial uncoupling protein 1 (UCP1) expression and function lead to PVAT/PRAT hypoxia and inflammation as well as vascular, cardiac, and renal dysfunction. As UCP1 function remains an undruggable target so far, modulation of the augmented UCP1-mediated PVAT/PRAT thermogenesis constitutes a lucrative target for drug development to mitigate early cardiorenal involvement. This can be achieved either by subtle targeted reduction in UCP-1 expression using innovative proteolysis activating chimeric molecules (PROTACs) or by supplementation with cyclocreatine phosphate, which augments the mitochondrial futile creatine cycling and thus decreases UCP1 activity, enhances the efficiency of oxygen use, and reduces hypoxia. Once developed, these molecules will be first-in-class therapeutic tools to directly interfere with and reverse the earliest pathology underlying cardiac, vascular, and renal dysfunction accompanying the early metabolic deterioration. SIGNIFICANCE STATEMENT: Adipose tissue dysfunction plays a major role in the pathogenesis of metabolic diseases and their complications. Although mitochondrial alterations are common in metabolic impairment, it was only recently shown that the early stages of metabolic challenge involve inflammatory changes in select adipose depots associated with increased uncoupling protein 1 thermogenesis and hypoxia. Manipulating this mode of thermogenesis can help mitigate the early inflammation and the consequent cardiorenal complications.


Asunto(s)
Tejido Adiposo Pardo , Enfermedades Renales , Humanos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/patología , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Obesidad/complicaciones , Obesidad/metabolismo , Termogénesis , Inflamación/complicaciones , Inflamación/metabolismo , Hipoxia/metabolismo , Hipoxia/patología , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Proteína Desacopladora 1/metabolismo
4.
J Cardiovasc Pharmacol ; 82(6): 470-479, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37773889

RESUMEN

ABSTRACT: Raynaud's phenomenon, which results from exaggerated cold-induced vasoconstriction, is more prevalent in females than males. We previously showed that estrogen increases the expression of alpha 2C-adrenoceptors (α 2C -AR), the sole mediator of cold-induced vasoconstriction. This effect of estrogen is reproduced by the cell-impermeable form of the hormone (E 2 :bovine serum albumin [BSA]), suggesting a role of the membrane estrogen receptor, G-protein-coupled estrogen receptor [GPER], in E 2 -induced α 2C -AR expression. We also previously reported that E 2 upregulates α 2C -AR in microvascular smooth muscle cells (VSMCs) via the cAMP/Epac/Rap/JNK/AP-1 pathway, and that E 2 :BSA elevates cAMP levels. We, therefore, hypothesized that E 2 uses GPER to upregulate α 2C -AR through the cAMP/Epac/JNK/AP-1 pathway. Our results show that G15, a selective GPER antagonist, attenuates the E 2 -induced increase in α 2C -AR transcription. G-1, a selective GPER agonist, induced α 2C -AR transcription, which was concomitant with elevated cAMP levels and JNK activation. Pretreatment with ESI09, an Epac inhibitor, abolished G-1-induced α 2C -AR upregulation and JNK activation. Moreover, pretreatment with SP600125, a JNK-specific inhibitor, but not H89, a PKA-specific inhibitor, abolished G-1-induced α 2C -AR upregulation. In addition, transient transfection of an Epac dominant negative mutant (Epac-DN) attenuated G-1-induced activation of the α 2C -AR promoter. This inhibitory effect of Epac-DN on the α 2C -AR promoter was overridden by the cotransfection of constitutively active JNK mutant. Furthermore, mutation of AP-1 site in the α 2C -AR promoter abrogated G1-induced expression. Collectively, these results indicate that GPER upregulates α 2C -AR through the cAMP/EPAC/JNK/AP-1 pathway. These findings unravel GPER as a new mediator of cold-induced vasoconstriction, and present it as a potential target for treating Raynaud's phenomenon in estrogen-replete females.


Asunto(s)
Transducción de Señal , Humanos , AMP Cíclico/metabolismo , Estrógenos/farmacología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/farmacología , Miocitos del Músculo Liso/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Adrenérgicos/metabolismo
5.
Clin Sci (Lond) ; 136(22): 1631-1651, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36383188

RESUMEN

Sodium-glucose transporter-2 inhibitors (SGLT-2i) and glucagon-like peptide 1 (GLP-1) receptor agonists are newer antidiabetic drug classes, which were recently shown to decrease cardiovascular (CV) morbidity and mortality in diabetic patients. CV benefits of these drugs could not be directly attributed to their blood glucose lowering capacity possibly implicating a pleotropic effect as a mediator of their impact on cardiovascular disease (CVD). Particularly, preclinical and clinical studies indicate that SGLT-2i(s) and GLP-1 receptor agonists are capable of differentially modulating distinct adipose pools reducing the accumulation of fat in some depots, promoting the healthy expansion of others, and/or enhancing their browning, leading to the suppression of the metabolically induced inflammatory processes. These changes are accompanied with improvements in markers of cardiac structure and injury, coronary and vascular endothelial healing and function, vascular remodeling, as well as reduction of atherogenesis. Here, through a summary of the available evidence, we bring forth our view that the observed CV benefit in response to SGLT-2i or GLP-1 agonists therapy might be driven by their ameliorative impact on adipose tissue inflammation.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Enfermedades Metabólicas , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos , Receptor del Péptido 1 Similar al Glucagón/agonistas , Hipoglucemiantes/efectos adversos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/complicaciones , Enfermedades Metabólicas/tratamiento farmacológico , Tejido Adiposo/metabolismo , Péptido 1 Similar al Glucagón
6.
Biomed Chromatogr ; 36(9): e5427, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35708053

RESUMEN

The use of complementary medicine (CMD) for liver support in Hepatitis C virus (HCV) patients sometimes coincides with the administration of oral antiviral drugs to eradicate the virus. This calls for a deep investigation of CMD effects on the pharmacokinetic parameters of these drugs to ensure their safety and efficacy. Silymarin (SLY), as a CMD, was selected to be given orally to healthy male rats with sofosbuvir (SFB) and ledipasvir (LED), a common regimen in HCV treatment. A new and sensitive LC-MS method was validated for the bioassay of SLY, LED, SFB and its inactive metabolite, GS-331007, in spiked plasma with lower limits of quantitation of 10, 1, 4 and 10 ng/ml, respectively. Moreover, the method was further applied to conduct a full pharmacokinetic profile of SFB, GS-331007 and ledipasvir with and without SLY. It was found that co-administration of SLY may expose the patient to unplanned high serum concentrations of SFB and LED. This could be accompanied by a decrease in SFB efficacy, potentially leading to therapeutic failure and the emergence of viral resistance.


Asunto(s)
Hepatitis C , Silimarina , Animales , Antivirales/farmacocinética , Bencimidazoles , Cromatografía Liquida , Quimioterapia Combinada , Fluorenos , Hepacivirus , Hepatitis C/tratamiento farmacológico , Masculino , Ratas , Silimarina/farmacología , Sofosbuvir , Espectrometría de Masas en Tándem
7.
Mol Pharmacol ; 99(1): 17-28, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33082267

RESUMEN

ACE2 has emerged as a double agent in the COVID-19 ordeal, as it is both physiologically protective and virally conducive. The identification of ACE2 in as many as 72 tissues suggests that extrapulmonary invasion and damage is likely, which indeed has already been demonstrated by cardiovascular and gastrointestinal symptoms. On the other hand, identifying ACE2 dysregulation in patients with comorbidities may offer insight as to why COVID-19 symptoms are often more severe in these individuals. This may be attributed to a pre-existing proinflammatory state that is further propelled with the cytokine storm induced by SARS-CoV-2 infection or the loss of functional ACE2 expression as a result of viral internalization. Here, we aim to characterize the distribution and role of ACE2 in various organs to highlight the scope of damage that may arise upon SARS-CoV-2 invasion. Furthermore, by examining the disruption of ACE2 in several comorbid diseases, we offer insight into potential causes of increased severity of COVID-19 symptoms in certain individuals. SIGNIFICANCE STATEMENT: Cell surface expression of ACE2 determines the tissue susceptibility for coronavirus infectious disease 2019 infection. Comorbid disease conditions altering ACE2 expression could increase the patient's vulnerability for the disease and its complications, either directly, through modulation of viral infection, or indirectly, through alteration of inflammatory status.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/patología , Animales , COVID-19/virología , Humanos , Pandemias , SARS-CoV-2/patogenicidad , Índice de Severidad de la Enfermedad
8.
J Cell Physiol ; 236(9): 6282-6296, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33634486

RESUMEN

Visfatin/nicotinamide phosphoribosyltransferase (NAMPT) is an adipokine expressed predominately in visceral fat tissues. High circulating levels of visfatin/NAMPT have been implicated in vascular remodeling, vascular inflammation, and atherosclerosis, all of which pose increased risks of cardiovascular events. In this context, increased levels of visfatin have been correlated with several upregulated pro-inflammatory mediators, such as IL-1, IL-1Ra, IL-6, IL-8, and TNF-α. Furthermore, visfatin is associated with leukocyte recruitment by endothelial cells and the production of adhesion molecules such as vascular cell adhesion molecule 1, intercellular cell adhesion molecule 1, and E-selectin, which are well known to mediate the progression of atherosclerosis. Moreover, diverse angiogenic factors have been found to mediate visfatin-induced angiogenesis. These include matrix metalloproteinases, vascular endothelial growth factor, monocyte chemoattractant protein 1, and fibroblast growth factor 2. This review aims to provide a comprehensive overview of the pro-inflammatory and angiogenic actions of visfatin, with a focus on the pertinent signaling pathways whose dysregulation contributes to the pathogenesis of atherosclerosis. Most importantly, some hypotheses regarding the integration of the aforementioned factors with the plausible atherogenic effect of visfatin are put forth for consideration in future studies. The pharmacotherapeutic potential of modulating visfatin's roles could be important in the management of cardiovascular disease, which continues to be the leading cause of death worldwide.


Asunto(s)
Adipoquinas/metabolismo , Enfermedades Cardiovasculares/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Nicotinamida Fosforribosiltransferasa/química , Transducción de Señal , Remodelación Vascular
9.
Clin Sci (Lond) ; 135(8): 1015-1051, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33881143

RESUMEN

Antithrombotic drugs are widely used for primary and secondary prevention, as well as treatment of many cardiovascular disorders. Over the past few decades, major advances in the pharmacology of these agents have been made with the introduction of new drug classes as novel therapeutic options. Accumulating evidence indicates that the beneficial outcomes of some of these antithrombotic agents are not solely related to their ability to reduce thrombosis. Here, we review the evidence supporting established and potential pleiotropic effects of four novel classes of antithrombotic drugs, adenosine diphosphate (ADP) P2Y12-receptor antagonists, Glycoprotein IIb/IIIa receptor Inhibitors, and Direct Oral Anticoagulants (DOACs), which include Direct Factor Xa (FXa) and Direct Thrombin Inhibitors. Specifically, we discuss the molecular evidence supporting such pleiotropic effects in the context of cardiovascular disease (CVD) including endothelial dysfunction (ED), atherosclerosis, cardiac injury, stroke, and arrhythmia. Importantly, we highlight the role of DOACs in mitigating metabolic dysfunction-associated cardiovascular derangements. We also postulate that DOACs modulate perivascular adipose tissue inflammation and thus, may reverse cardiovascular dysfunction early in the course of the metabolic syndrome. In this regard, we argue that some antithrombotic agents can reverse the neurovascular damage in Alzheimer's and Parkinson's brain and following traumatic brain injury (TBI). Overall, we attempt to provide an up-to-date comprehensive review of the less-recognized, beneficial molecular aspects of antithrombotic therapy beyond reduced thrombus formation. We also make a solid argument for the need of further mechanistic analysis of the pleiotropic effects of antithrombotic drugs in the future.


Asunto(s)
Anticoagulantes/uso terapéutico , Coagulación Sanguínea/efectos de los fármacos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Inhibidores de Agregación Plaquetaria/uso terapéutico , Humanos , Trombosis/tratamiento farmacológico , Trombosis/prevención & control
10.
Bioorg Chem ; 113: 105035, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34091287

RESUMEN

We managed to repurpose the old drug iodoquinol to a series of novel anticancer 7-iodo-quinoline-5,8-diones. Twelve compounds were identified as inhibitors of moderate to high potency on an inhouse MCF-7 cell line, of which 2 compounds (5 and 6) were capable of reducing NAD level in MCF-7 cells in concentrations equivalent to half of their IC50s, potentially due to NAD(P)H quinone oxidoreductase (NQO1) inhibition. The same 2 compounds (5 and 6) were capable of reducing p53 expression and increasing reactive oxygen species levels, which further supports the NQO-1 inhibitory activity. Furthermore, 4 compounds (compounds 5-7 and 10) were qualified by the Development Therapeutic Program (DTP) division of the National Cancer Institute (NCI) for full panel five-dose in vitro assay to determine their GI50 on the 60 cell lines. All five compounds showed broad spectrum sub-micromolar to single digit micromolar GI50 against a wide range of cell lines. Cell cycle analysis and dual staining assays with annexin V-FITC/propidium iodide on MCF-7 cells confirmed the capability of the most active compound (compound 5) to induce cell cycle arrest at Pre-G1 and G2/M phases as well as apoptosis. Both cell cycle arrest and apoptosis were affirmed at the molecular level by the ability of compound 5 to enhance the expression levels of caspase-3 and Bax together with suppressing that of CDK1 and Bcl-2. Additionally, an anti-angiogenic effect was evident with compound 5 as supported by the decreased expression of VEGF. Interesting binding modes within NQO-1 active site had been identified and confirmed by both molecular docking and dymanic experiments.


Asunto(s)
Antineoplásicos/química , Reposicionamiento de Medicamentos , Yodoquinol/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Sitios de Unión , Puntos de Control del Ciclo Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células MCF-7 , Simulación del Acoplamiento Molecular , NAD/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/antagonistas & inhibidores , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad
11.
J Enzyme Inhib Med Chem ; 36(1): 669-684, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33618602

RESUMEN

The work reported herein describes the synthesis of a new series of anti-inflammatory pyrazolyl thiazolones. In addition to COX-2/15-LOX inhibition, these hybrids exerted their anti-inflammatory actions through novel mechanisms. The most active compounds possessed COX-2 inhibitory activities comparable to celecoxib (IC50 values of 0.09-0.14 µM) with significant 15-LOX inhibitory activities (IC50s 1.96 to 3.52 µM). Upon investigation of their in vivo anti-inflammatory activities and ulcerogenic profiles, these compounds showed activity patterns equivalent or more superior to diclofenac and/or celecoxib. Intriguingly, the most active compounds were more effective than diclofenac in suppressing monocyte-to-macrophage differentiation and inflammatory cytokine production by activated macrophages, as well as their ability to induce macrophage apoptosis. The latter finding potentially adds a new dimension to the previously reported anti-inflammatory mechanisms of similar compounds. These compounds were effectively docked into COX-2 and 15-LOX active sites. Also, in silico predictions confirmed the appropriateness of these compounds as drug-like candidates.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antiulcerosos/farmacología , Edema/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Úlcera Gástrica/tratamiento farmacológico , Animales , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Antiulcerosos/síntesis química , Antiulcerosos/química , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocinas/antagonistas & inhibidores , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Edema/inducido químicamente , Femenino , Formaldehído , Humanos , Inflamación/inducido químicamente , Macrófagos/efectos de los fármacos , Modelos Moleculares , Pirazoles/síntesis química , Pirazoles/química , Pirazoles/farmacología , Ratas , Ratas Wistar , Úlcera Gástrica/inducido químicamente , Células THP-1 , Tiazoles/síntesis química , Tiazoles/química , Tiazoles/farmacología
12.
Am J Physiol Endocrinol Metab ; 319(5): E835-E851, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32865011

RESUMEN

Cardiac autonomic neuropathy (CAN) is an early cardiovascular manifestation of type 2 diabetes (T2D) that constitutes an independent risk factor for cardiovascular mortality and morbidity. Nevertheless, its underlying pathophysiology remains poorly understood. We recently showed that localized perivascular adipose tissue (PVAT) inflammation underlies the incidence of parasympathetic CAN in prediabetes. Here, we extend our investigation to provide a mechanistic framework for the evolution of autonomic impairment as the metabolic insult worsens. Early metabolic dysfunction was induced in rats fed a mild hypercaloric diet. Two low-dose streptozotocin injections were used to evoke a state of late decompensated T2D. Cardiac autonomic function was assessed by invasive measurement of baroreflex sensitivity using the vasoactive method. Progression into T2D was associated with aggravation of CAN to include both sympathetic and parasympathetic arms. Unlike prediabetic rats, T2D rats showed markers of brainstem neuronal injury and inflammation as well as increased serum levels of IL-1ß. Experiments on PC12 cells differentiated into sympathetic-like neurons demonstrated that brainstem injury observed in T2D rats resulted from exposure to possible proinflammatory mediators in rat serum rather than a direct effect of the altered metabolic profile. CAN and the associated cardiovascular damage in T2D only responded to combined treatment with insulin to manage hyperglycemia in addition to a nonhypoglycemic dose of metformin or pioglitazone providing an anti-inflammatory effect, coincident with the effect of these combinations on serum IL-1ß. Our present results indicate that CAN worsening upon progression to T2D involves brainstem inflammatory changes likely triggered by systemic inflammation.


Asunto(s)
Barorreflejo/fisiología , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Neuropatías Diabéticas/fisiopatología , Hipoglucemiantes/uso terapéutico , Inflamación/fisiopatología , Animales , Barorreflejo/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Neuropatías Diabéticas/sangre , Neuropatías Diabéticas/tratamiento farmacológico , Progresión de la Enfermedad , Hemodinámica/efectos de los fármacos , Hemodinámica/fisiología , Hipoglucemiantes/administración & dosificación , Inflamación/sangre , Inflamación/tratamiento farmacológico , Insulina/administración & dosificación , Insulina/uso terapéutico , Interleucina-1beta/sangre , Masculino , Pioglitazona/administración & dosificación , Pioglitazona/uso terapéutico , Ratas , Ratas Sprague-Dawley
13.
Clin Sci (Lond) ; 134(12): 1473-1474, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32579179

RESUMEN

Adipose biology research has grown rapidly offering new insights into the physiological and pathophysiological roles of different body fat depots. This Thematic Collection of Clinical Science brings a well-rounded timely view of the recent development in this field. We highlight the state of the art on adipose tissue function/dysfunction in the context of cardiovascular and metabolic pathologies.


Asunto(s)
Tejido Adiposo/patología , Enfermedades Cardiovasculares/patología , Terapia Molecular Dirigida , Adipoquinas/metabolismo , Humanos , Inflamación/patología
14.
Clin Sci (Lond) ; 134(7): 827-851, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32271386

RESUMEN

Major shifts in human lifestyle and dietary habits toward sedentary behavior and refined food intake triggered steep increase in the incidence of metabolic disorders including obesity and Type 2 diabetes. Patients with metabolic disease are at a high risk of cardiovascular complications ranging from microvascular dysfunction to cardiometabolic syndromes including heart failure. Despite significant advances in the standards of care for obese and diabetic patients, current therapeutic approaches are not always successful in averting the accompanying cardiovascular deterioration. There is a strong relationship between adipose inflammation seen in metabolic disorders and detrimental changes in cardiovascular structure and function. The particular importance of epicardial and perivascular adipose pools emerged as main modulators of the physiology or pathology of heart and blood vessels. Here, we review the peculiarities of these two fat depots in terms of their origin, function, and pathological changes during metabolic deterioration. We highlight the rationale for pharmacological targeting of the perivascular and epicardial adipose tissue or associated signaling pathways as potential disease modifying approaches in cardiometabolic syndromes.


Asunto(s)
Adipoquinas/antagonistas & inhibidores , Tejido Adiposo/efectos de los fármacos , Antiinflamatorios/uso terapéutico , Vasos Sanguíneos/efectos de los fármacos , Enfermedades Cardiovasculares/tratamiento farmacológico , Mediadores de Inflamación/antagonistas & inhibidores , Inflamación/tratamiento farmacológico , Pericardio/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Adipoquinas/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Tejido Adiposo/fisiopatología , Adiposidad/efectos de los fármacos , Animales , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Vasos Sanguíneos/fisiopatología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/fisiopatología , Metabolismo Energético/efectos de los fármacos , Humanos , Inflamación/metabolismo , Inflamación/patología , Inflamación/fisiopatología , Mediadores de Inflamación/metabolismo , Terapia Molecular Dirigida , Pericardio/metabolismo , Pericardio/patología , Pericardio/fisiopatología , Transducción de Señal
15.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233489

RESUMEN

Reactive oxygen species (ROS) are natural byproducts of oxygen metabolism in the cell. At physiological levels, they play a vital role in cell signaling. However, high ROS levels cause oxidative stress, which is implicated in cardiovascular diseases (CVD) such as atherosclerosis, hypertension, and restenosis after angioplasty. Despite the great amount of research conducted to identify the role of ROS in CVD, the image is still far from being complete. A common event in CVD pathophysiology is the switch of vascular smooth muscle cells (VSMCs) from a contractile to a synthetic phenotype. Interestingly, oxidative stress is a major contributor to this phenotypic switch. In this review, we focus on the effect of ROS on the hallmarks of VSMC phenotypic switch, particularly proliferation and migration. In addition, we speculate on the underlying molecular mechanisms of these cellular events. Along these lines, the impact of ROS on the expression of contractile markers of VSMCs is discussed in depth. We conclude by commenting on the efficiency of antioxidants as CVD therapies.


Asunto(s)
Aterosclerosis/metabolismo , Oclusión de Injerto Vascular/metabolismo , Hipertensión/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Angiotensina II/genética , Angiotensina II/metabolismo , Antioxidantes/uso terapéutico , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/patología , Biomarcadores/metabolismo , Fármacos Cardiovasculares/uso terapéutico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica , Oclusión de Injerto Vascular/tratamiento farmacológico , Oclusión de Injerto Vascular/genética , Oclusión de Injerto Vascular/patología , Humanos , Hipertensión/tratamiento farmacológico , Hipertensión/genética , Hipertensión/patología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fenotipo , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Transducción de Señal
16.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33260799

RESUMEN

Cardiac autonomic neuropathy (CAN) is one of the earliest complications of type 2 diabetes (T2D), presenting a silent cause of cardiovascular morbidity and mortality. Recent research relates the pathogenesis of cardiovascular disease in T2D to an ensuing chronic, low-grade proinflammatory and pro-oxidative environment, being the hallmark of the metabolic syndrome. Metabolic inflammation emerges as adipose tissue inflammatory changes extending systemically, on the advent of hyperglycemia, to reach central regions of the brain. In light of changes in glucose and insulin homeostasis, dysbiosis or alteration of the gut microbiome (GM) emerges, further contributing to inflammatory processes through increased gut and blood-brain barrier permeability. Interestingly, studies reveal that the determinants of oxidative stress and inflammation progression exist at the crossroad of CAN manifestations, dictating their evolution along the natural course of T2D development. Indeed, sympathetic and parasympathetic deterioration was shown to correlate with markers of adipose, vascular, and systemic inflammation. Additionally, evidence points out that dysbiosis could promote a sympatho-excitatory state through differentially affecting the secretion of hormones and neuromodulators, such as norepinephrine, serotonin, and γ-aminobutyric acid, and acting along the renin-angiotensin-aldosterone axis. Emerging neuronal inflammation and concomitant autophagic defects in brainstem nuclei were described as possible underlying mechanisms of CAN in experimental models of metabolic syndrome and T2D. Drugs with anti-inflammatory characteristics provide potential avenues for targeting pathways involved in CAN initiation and progression. The aim of this review is to delineate the etiology of CAN in the context of a metabolic disorder characterized by elevated oxidative and inflammatory load.


Asunto(s)
Sistema Nervioso Autónomo/patología , Enfermedades Cardiovasculares/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Inflamación/complicaciones , Enfermedades Metabólicas/complicaciones , Animales , Sistema Nervioso Autónomo/microbiología , Sistema Nervioso Autónomo/fisiopatología , Enfermedades Cardiovasculares/microbiología , Enfermedades Cardiovasculares/fisiopatología , Enfermedad Crónica , Diabetes Mellitus Tipo 2/microbiología , Diabetes Mellitus Tipo 2/fisiopatología , Frecuencia Cardíaca/fisiología , Humanos , Inflamación/microbiología , Inflamación/fisiopatología , Enfermedades Metabólicas/microbiología , Enfermedades Metabólicas/fisiopatología
17.
Int J Mol Sci ; 21(14)2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32674299

RESUMEN

Diabetic cardiomyopathy (DCM) is a constellation of symptoms consisting of ventricular dysfunction and cardiomyocyte disarray in the presence of diabetes. The exact cause of this type of cardiomyopathy is still unknown; however, several processes involving the mitochondria, such as lipid and glucose metabolism, reactive oxygen species (ROS) production, apoptosis, autophagy and mitochondrial biogenesis have been implicated. In addition, polyphenols have been shown to improve the progression of diabetes. In this review, we discuss some of the mechanisms by which polyphenols, particularly resveratrol, play a role in slowing the progression of DCM. The most important intermediates by which polyphenols exert their protective effect include Bcl-2, UCP2, SIRT-1, AMPK and JNK1. Bcl-2 acts to attenuate apoptosis, UCP2 decreases oxidative stress, SIRT-1 increases mitochondrial biogenesis and decreases oxidative stress, AMPK increases autophagy, and JNK1 decreases apoptosis and increases autophagy. Our dissection of these molecular players aims to provide potential therapeutic targets for the treatment of DCM.


Asunto(s)
Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/metabolismo , Mitocondrias/efectos de los fármacos , Polifenoles/farmacología , Polifenoles/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Humanos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos
18.
Int J Mol Sci ; 21(14)2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32708284

RESUMEN

Vascular smooth muscle cells (VSMCs) are major components of blood vessels. They regulate physiological functions, such as vascular tone and blood flow. Under pathological conditions, VSMCs undergo a remodeling process known as phenotypic switching. During this process, VSMCs lose their contractility and acquire a synthetic phenotype, where they over-proliferate and migrate from the tunica media to the tunica interna, contributing to the occlusion of blood vessels. Since their discovery as effector proteins of cyclic adenosine 3',5'-monophosphate (cAMP), exchange proteins activated by cAMP (EPACs) have been shown to play vital roles in a plethora of pathways in different cell systems. While extensive research to identify the role of EPAC in the vasculature has been conducted, much remains to be explored to resolve the reported discordance in EPAC's effects. In this paper, we review the role of EPAC in VSMCs, namely its regulation of the vascular tone and phenotypic switching, with the likely involvement of reactive oxygen species (ROS) in the interplay between EPAC and its targets/effectors.


Asunto(s)
Movimiento Celular/genética , Proliferación Celular/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Animales , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Contracción Muscular/genética , Contracción Muscular/fisiología , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
19.
J Pharmacol Exp Ther ; 371(3): 567-582, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31511364

RESUMEN

Endothelial dysfunction is a hallmark of diabetic vasculopathies. Although hyperglycemia is believed to be the culprit causing endothelial damage, the mechanism underlying early endothelial insult in prediabetes remains obscure. We used a nonobese high-calorie (HC)-fed rat model with hyperinsulinemia, hypercholesterolemia, and delayed development of hyperglycemia to unravel this mechanism. Compared with aortic rings from control rats, HC-fed rat rings displayed attenuated acetylcholine-mediated relaxation. While sensitive to nitric oxide synthase (NOS) inhibition, aortic relaxation in HC-rat tissues was not affected by blocking the inward-rectifier potassium (Kir) channels using BaCl2 Although Kir channel expression was reduced in HC-rat aorta, Kir expression, endothelium-dependent relaxation, and the BaCl2-sensitive component improved in HC rats treated with atorvastatin to reduce serum cholesterol. Remarkably, HC tissues demonstrated increased reactive species (ROS) in smooth muscle cells, which was reversed in rats receiving atorvastatin. In vitro ROS reduction, with superoxide dismutase, improved endothelium-dependent relaxation in HC-rat tissues. Significantly, connexin-43 expression increased in HC aortic tissues, possibly allowing ROS movement into the endothelium and reduction of eNOS activity. In this context, gap junction blockade with 18-ß-glycyrrhetinic acid reduced vascular tone in HC rat tissues but not in controls. This reduction was sensitive to NOS inhibition and SOD treatment, possibly as an outcome of reduced ROS influence, and emerged in BaCl2-treated control tissues. In conclusion, our results suggest that early metabolic challenge leads to reduced Kir-mediated endothelium-dependent hyperpolarization, increased vascular ROS potentially impairing NO synthesis and highlight these channels as a possible target for early intervention with vascular dysfunction in metabolic disease. SIGNIFICANCE STATEMENT: The present study examines early endothelial dysfunction in metabolic disease. Our results suggest that reduced inward-rectifier potassium channel function underlies a defective endothelium-mediated relaxation possibly through alteration of nitric oxide synthase activity. This study provides a possible mechanism for the augmentation of relatively small changes in one endothelium-mediated relaxation pathway to affect overall endothelial response and highlights the potential role of inward-rectifier potassium channel function as a therapeutic target to treat vascular dysfunction early in the course of metabolic disease.


Asunto(s)
Endotelio Vascular/fisiología , Hipercolesterolemia/fisiopatología , Hiperinsulinismo/fisiopatología , Óxido Nítrico/fisiología , Especies Reactivas de Oxígeno/metabolismo , Vasodilatación/fisiología , Animales , Atorvastatina/farmacología , Ingestión de Energía , Uniones Comunicantes/fisiología , Masculino , Canales de Potasio de Rectificación Interna/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Ratas , Ratas Sprague-Dawley
20.
Pharmacol Res ; 129: 251-261, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29183768

RESUMEN

Cyclosporine, the prototype calcineurin inhibitor, transformed immunosuppressant regimens and practices post-organ transplantation. Therapeutic uses of cyclosporine branched out to include management of different autoimmune disorders. However, multiple additional effects posed significant clinical challenges in face of the prolonged nature of cyclosporine use. Significantly, cyclosporine produced nephrotoxic, cardiotoxic and neurotoxic effects in addition to alteration of hemodynamic function. These adverse effects are shared with other drug groups further complicating the therapeutic situation to include potential exacerbation in case of drug interactions. The potential for detrimental outcomes increases with commonly used drugs such as non-steroidal anti-inflammatory drugs also notorious for their deleterious renal and cardiovascular effects. Herein, we review the available experimental and clinical evidence describing the mechanisms and the outcomes of interactions between the two drug classes. Special attention is given to the divergent toxic effects of co-administration of cyclosporine with selective vs. non-selective cyclooxygenase inhibiting non-steroidal drugs.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Ciclosporina/farmacología , Inmunosupresores/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Interacciones Farmacológicas , Corazón/efectos de los fármacos , Corazón/fisiología , Humanos , Riñón/efectos de los fármacos , Riñón/fisiología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA