Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 574(7778): 372-377, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31619789

RESUMEN

Diabetes is far more prevalent in smokers than non-smokers, but the underlying mechanisms of vulnerability are unknown. Here we show that the diabetes-associated gene Tcf7l2 is densely expressed in the medial habenula (mHb) region of the rodent brain, where it regulates the function of nicotinic acetylcholine receptors. Inhibition of TCF7L2 signalling in the mHb increases nicotine intake in mice and rats. Nicotine increases levels of blood glucose by TCF7L2-dependent stimulation of the mHb. Virus-tracing experiments identify a polysynaptic connection from the mHb to the pancreas, and wild-type rats with a history of nicotine consumption show increased circulating levels of glucagon and insulin, and diabetes-like dysregulation of blood glucose homeostasis. By contrast, mutant Tcf7l2 rats are resistant to these actions of nicotine. Our findings suggest that TCF7L2 regulates the stimulatory actions of nicotine on a habenula-pancreas axis that links the addictive properties of nicotine to its diabetes-promoting actions.


Asunto(s)
Trastornos del Metabolismo de la Glucosa/genética , Habénula/metabolismo , Transducción de Señal , Tabaquismo/complicaciones , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Animales , AMP Cíclico/metabolismo , Glucosa/metabolismo , Trastornos del Metabolismo de la Glucosa/metabolismo , Humanos , Ratones , Mutagénesis , Nicotina/metabolismo , Células PC12 , Páncreas/metabolismo , Ratas , Receptores Nicotínicos/metabolismo , Tabaquismo/genética , Tabaquismo/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/genética
2.
Proc Natl Acad Sci U S A ; 119(46): e2209870119, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36346845

RESUMEN

Hedgehog-interacting protein (HHIP) sequesters Hedgehog ligands to repress Smoothened (SMO)-mediated recruitment of the GLI family of transcription factors. Allelic variation in HHIP confers risk of chronic obstructive pulmonary disease and other smoking-related lung diseases, but underlying mechanisms are unclear. Using single-cell and cell-type-specific translational profiling, we show that HHIP expression is highly enriched in medial habenula (MHb) neurons, particularly MHb cholinergic neurons that regulate aversive behavioral responses to nicotine. HHIP deficiency dysregulated the expression of genes involved in cholinergic signaling in the MHb and disrupted the function of nicotinic acetylcholine receptors (nAChRs) through a PTCH-1/cholesterol-dependent mechanism. Further, CRISPR/Cas9-mediated genomic cleavage of the Hhip gene in MHb neurons enhanced the motivational properties of nicotine in mice. These findings suggest that HHIP influences vulnerability to smoking-related lung diseases in part by regulating the actions of nicotine on habenular aversion circuits.


Asunto(s)
Habénula , Enfermedades Pulmonares , Receptores Nicotínicos , Ratones , Animales , Nicotina/farmacología , Nicotina/metabolismo , Habénula/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Receptores Nicotínicos/metabolismo , Neuronas Colinérgicas/metabolismo , Enfermedades Pulmonares/metabolismo
3.
Pharmacol Rev ; 74(1): 271-310, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35017179

RESUMEN

Neuronal nicotinic acetylcholine receptors (nAChRs) regulate the rewarding actions of nicotine contained in tobacco that establish and maintain the smoking habit. nAChRs also regulate the aversive properties of nicotine, sensitivity to which decreases tobacco use and protects against tobacco use disorder. These opposing behavioral actions of nicotine reflect nAChR expression in brain reward and aversion circuits. nAChRs containing α4 and ß2 subunits are responsible for the high-affinity nicotine binding sites in the brain and are densely expressed by reward-relevant neurons, most notably dopaminergic, GABAergic, and glutamatergic neurons in the ventral tegmental area. High-affinity nAChRs can incorporate additional subunits, including ß3, α6, or α5 subunits, with the resulting nAChR subtypes playing discrete and dissociable roles in the stimulatory actions of nicotine on brain dopamine transmission. nAChRs in brain dopamine circuits also participate in aversive reactions to nicotine and the negative affective state experienced during nicotine withdrawal. nAChRs containing α3 and ß4 subunits are responsible for the low-affinity nicotine binding sites in the brain and are enriched in brain sites involved in aversion, including the medial habenula, interpeduncular nucleus, and nucleus of the solitary tract, brain sites in which α5 nAChR subunits are also expressed. These aversion-related brain sites regulate nicotine avoidance behaviors, and genetic variation that modifies the function of nAChRs in these sites increases vulnerability to tobacco dependence and smoking-related diseases. Here, we review the molecular, cellular, and circuit-level mechanisms through which nicotine elicits reward and aversion and the adaptations in these processes that drive the development of nicotine dependence. SIGNIFICANCE STATEMENT: Tobacco use disorder in the form of habitual cigarette smoking or regular use of other tobacco-related products is a major cause of death and disease worldwide. This article reviews the actions of nicotine in the brain that contribute to tobacco use disorder.


Asunto(s)
Receptores Nicotínicos , Tabaquismo , Encéfalo/metabolismo , Humanos , Nicotina , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Recompensa
4.
J Neurosci ; 41(8): 1779-1787, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33380469

RESUMEN

Allelic variation in CHRNA3, the gene encoding the α3 nicotinic acetylcholine receptor (nAChR) subunit, increases vulnerability to tobacco dependence and smoking-related diseases, but little is known about the role for α3-containing (α3*) nAChRs in regulating the addiction-related behavioral or physiological actions of nicotine. α3* nAChRs are densely expressed by medial habenula (mHb) neurons, which project almost exclusively to the interpeduncular nucleus (IPn) and are known to regulate nicotine avoidance behaviors. We found that Chrna3tm1.1Hwrt hypomorphic mice, which express constitutively low levels of α3* nAChRs, self-administer greater quantities of nicotine (0.4 mg kg-1 per infusion) than their wild-type littermates. Microinfusion of a lentivirus vector to express a short-hairpin RNA into the mHb or IPn to knock-down Chrna3 transcripts markedly increased nicotine self-administration behavior in rats (0.01-0.18 mg kg-1 per infusion). Using whole-cell recordings, we found that the α3ß4* nAChR-selective antagonist α-conotoxin AuIB almost completely abolished nicotine-evoked currents in mHb neurons. By contrast, the α3ß2* nAChR-selective antagonist α-conotoxin MII only partially attenuated these currents. Finally, micro-infusion of α-conotoxin AuIB (10 µm) but not α-conotoxin MII (10 µm) into the IPn in rats increased nicotine self-administration behavior. Together, these data suggest that α3ß4* nAChRs regulate the stimulatory effects of nicotine on the mHb-IPn circuit and thereby regulate nicotine avoidance behaviors. These findings provide mechanistic insights into how CHRNA3 risk alleles can increase the risk of tobacco dependence and smoking-related diseases in human smokers.SIGNIFICANCE STATEMENT Allelic variation in CHRNA3, which encodes the α3 nicotinic acetylcholine receptor (nAChR) subunit gene, increases risk of tobacco dependence but underlying mechanisms are unclear. We report that Chrna3 hypomorphic mice consume greater quantities of nicotine than wild-type mice and that knock-down of Chrna3 gene transcripts in the habenula or interpeduncular nucleus (IPn) increases nicotine intake in rats. α-Conotoxin AuIB, a potent antagonist of the α3ß4 nAChR subtype, reduced the stimulatory effects of nicotine on habenular neurons, and its infusion into the IPn increased nicotine intake in rats. These data suggest that α3ß4 nAChRs in the habenula-IPn circuit regulate the motivational properties of nicotine.


Asunto(s)
Habénula/metabolismo , Núcleo Interpeduncular/metabolismo , Receptores Nicotínicos/metabolismo , Tabaquismo/metabolismo , Animales , Femenino , Predisposición Genética a la Enfermedad/genética , Variación Genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratas , Ratas Wistar , Receptores Nicotínicos/genética , Tabaquismo/genética
5.
bioRxiv ; 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-37214805

RESUMEN

Maternal choline supplementation (MCS) improves cognition in Alzheimer's disease (AD) models. However, effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice, and many other mouse models and AD patients, are generalized EEG spikes (interictal spikes; IIS). Hyperexcitability is also reflected by elevated expression of the transcription factor ΔFosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. We also studied the hilus of the DG because hilar neurons regulate GC excitability. We found reduced expression of the neuronal marker NeuN within hilar neurons in Tg2576 mice, which other studies have shown is a sign of oxidative stress or other pathology. Tg2576 breeding pairs received a diet with a relatively low, intermediate or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ΔFosB expression was reduced, and NeuN expression was restored. Spatial memory improved using the novel object location task. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB and spatial memory in an animal model of AD.

6.
Elife ; 122024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904658

RESUMEN

Maternal choline supplementation (MCS) improves cognition in Alzheimer's disease (AD) models. However, the effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated the effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice are generalized EEG spikes (interictal spikes [IIS]). IIS also are common in other mouse models and occur in AD patients. In mouse models, hyperexcitability is also reflected by elevated expression of the transcription factor ∆FosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. Therefore, we studied ΔFosB expression in GCs. We also studied the neuronal marker NeuN within hilar neurons of the DG because reduced NeuN protein expression is a sign of oxidative stress or other pathology. This is potentially important because hilar neurons regulate GC excitability. Tg2576 breeding pairs received a diet with a relatively low, intermediate, or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ∆FosB expression was reduced, and hilar NeuN expression was restored. Using the novel object location task, spatial memory improved. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB protein expression. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB, and spatial memory in an animal model of AD.


Asunto(s)
Enfermedad de Alzheimer , Colina , Suplementos Dietéticos , Modelos Animales de Enfermedad , Animales , Enfermedad de Alzheimer/metabolismo , Colina/administración & dosificación , Colina/metabolismo , Ratones , Femenino , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Masculino , Giro Dentado/metabolismo , Giro Dentado/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA