Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 63, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38262953

RESUMEN

Salinity stress adversely affects agricultural productivity by disrupting water uptake, causing nutrient imbalances, and leading to ion toxicity. Excessive salts in the soil hinder crops root growth and damage cellular functions, reducing photosynthetic capacity and inducing oxidative stress. Stomatal closure further limits carbon dioxide uptake that negatively impact plant growth. To ensure sustainable agriculture in salt-affected regions, it is essential to implement strategies like using biofertilizers (e.g. arbuscular mycorrhizae fungi = AMF) and activated carbon biochar. Both amendments can potentially mitigate the salinity stress by regulating antioxidants, gas exchange attributes and chlorophyll contents. The current study aims to explore the effect of EDTA-chelated biochar (ECB) with and without AMF on maize growth under salinity stress. Five levels of ECB (0, 0.2, 0.4, 0.6 and 0.8%) were applied, with and without AMF. Results showed that 0.8ECB + AMF caused significant enhancement in shoot length (~ 22%), shoot fresh weight (~ 15%), shoot dry weight (~ 51%), root length (~ 46%), root fresh weight (~ 26%), root dry weight (~ 27%) over the control (NoAMF + 0ECB). A significant enhancement in chlorophyll a, chlorophyll b and total chlorophyll content, photosynthetic rate, transpiration rate and stomatal conductance was also observed in the condition 0.8ECB + AMF relative to control (NoAMF + 0ECB), further supporting the efficacy of such a combined treatment. Our results suggest that adding 0.8% ECB in soil with AMF inoculation on maize seeds can enhance maize production in saline soils, possibly via improvement in antioxidant activity, chlorophyll contents, gas exchange and morphological attributes.


Asunto(s)
Micorrizas , Antioxidantes , Zea mays , Carbón Orgánico , Ácido Edético , Clorofila A , Estrés Salino , Clorofila , Suelo
2.
Environ Res ; 257: 119328, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38851369

RESUMEN

The growing effects of climate change on Malaysia's coastal ecology heighten worries about air pollution, specifically caused by urbanization and industrial activity in the maritime sector. Trucks and vessels are particularly noteworthy for their substantial contribution to gas emissions, including nitrogen dioxide (NO2), which is the primary gas released in port areas. The application of advanced analysis techniques was spurred by the air pollution resulting from the combustion of fossil fuels such as fuel oil, natural gas and gasoline in vessels. The study utilized satellite photos captured by the Tropospheric Monitoring Instrument (TROPOMI) on the Sentinel-5P satellite to evaluate the levels of NO2 gas pollution in Malaysia's port areas and exclusive economic zone. Before the COVID-19 pandemic, unrestricted gas emissions led to persistently high levels of NO2 in the analyzed areas. The temporary cessation of marine industry operations caused by the pandemic, along with the halting of vessels to prevent the spread of COVID-19, resulted in a noticeable decrease in NO2 gas pollution. In light of these favourable advancements, it is imperative to emphasize the need for continuous investigation and collaborative endeavours to further alleviate air contamination in Malaysian port regions, while simultaneously acknowledging the wider consequences of climate change on the coastal ecology. The study underscores the interdependence of air pollution, maritime activities and climate change. It emphasizes the need for comprehensive strategies that tackle both immediate environmental issues and the long-term sustainability and resilience of coastal ecosystems in the context of global climate challenges.

3.
Environ Res ; 252(Pt 3): 118858, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38609066

RESUMEN

Crucial to the Earth's oceans, ocean currents dynamically react to various factors, including rotation, wind patterns, temperature fluctuations, alterations in salinity and the gravitational pull of the moon. Climate change impacts coastal ecosystems, emphasizing the need for understanding these currents. This study explores multibeam echosounder (MBES), specifically R2-Sonic 2020 instrument, offering detailed seabed information. Investigating coral reefs, rocky reefs and artificial reefs aimed to map seafloor currents movement and their climate change responses. MBES data viz. Bathymetry and backscatter were classified and acoustic doppler current profiler (ADCP) ground data were validated using random forest regression. Results indicated high precision in currents speed measurement i.e. coral reefs with 0.96, artificial reefs with 0.94 and rocky reefs with 0.97. Currents direction accuracy was notable in coral reefs with 0.85, slightly lower in rocky reefs with 0.72 and artificial reefs with 0.60. Random forest identified sediment and backscatter as key for speed prediction while direction relies on bathymetry, slope and aspect. The study emphasizes integrating sediment size, backscatter, bathymetry and ADCP data for seafloor current analysis. This multibeam data on sediments and currents support better marine spatial planning and determine biodiversity patterns planning in the reef area.


Asunto(s)
Cambio Climático , Arrecifes de Coral , Movimientos del Agua , Monitoreo del Ambiente/métodos , Acústica , Efecto Doppler
4.
J Chem Phys ; 160(24)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38912625

RESUMEN

In this work, pure and S-N/WO3 (1%-7%) nanoparticles (NPs) have been developed for the degradation of MB dye. Optical properties, vibrational analysis, morphology, structural analysis, and photocatalytic activity of the samples have been evaluated using a variety of characterization techniques, including UV-vis, PL, FTIR, SEM, and x-ray diffraction (XRD). The XRD patterns showed that the stability of the orthorhombic phase of WO3 was affected by the concentrations of S and N. In SEM, nanospheres with an average size of 80 nm of NPs have been observed. The PL results showed that the e-, h+ recombination rate for the S-N7%/WO3 sample was the lowest. The degradation of MB dye has also been investigated in order to investigate the photocatalytic performance. Remarkably, S-N7%/WO3 shows the best results, with a maximum degradation of 90% in 120 min. The stability of the improved catalyst was tested using recycling and trapping studies. S-N7%/WO3 catalyst's exceptional photocatalytic activity highlights its potential use in wastewater treatment. This study will be helpful for manufacturing innovation.

5.
Arch Pharm (Weinheim) ; 357(3): e2300604, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38148299

RESUMEN

In the past, efforts have been made to find a cure for diabetes, mainly evaluating new classes of compounds to explore their potency. In this study, we present the synthesis and evaluation of carbonylbis(hydrazine-1-carbothioamide) derivatives as potential α-glucosidase inhibitors, employing both in vivo and in silico investigations. The in vitro experiments revealed that all tested compounds were significantly potent for α-glucosidase inhibition, with the lead compound 3a displaying approximately 80 times higher activity than acarbose. To delve deeper, in silico induced fit docking, pharmacokinetics, and molecular dynamics studies were conducted. Significantly, compound 3a exhibited a docking score of -7.87 kcal/mol, surpassing acarbose, which had a docking score of -6.59 kcal/mol. The in silico ADMET indicated that most of the synthesized compounds have properties conducive to drug development. Molecular dynamics analysis demonstrated that, when the ligand 3a was coupled with the target 3TOP, Cα-RMSD backbone RMSD values below 2.4 Å and "Lig_fit_Prot" values below 2.7 Å were observed. QSAR analysis demonstrates that the "fOC8A" descriptor positively correlates with α-glucosidase inhibition activity, while "lipoplus_AbSA" positively contributes and "notringC_notringO_8B" negatively contributes to this activity.


Asunto(s)
Acarbosa , Inhibidores de Glicósido Hidrolasas , Inhibidores de Glicósido Hidrolasas/farmacología , Simulación del Acoplamiento Molecular , alfa-Glucosidasas/metabolismo , Relación Estructura-Actividad
6.
Saudi Pharm J ; 32(5): 102062, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38601975

RESUMEN

This research describes the synthesis by an environmentally-friendly method, microwave irradiation, development and analysis of three novel and one previously identified Schiff base derivative as a potential inhibitor of bovine xanthine oxidase (BXO), a key enzyme implicated in the progression of gout. Meticulous experimentation revealed that these compounds (10, 9, 4, and 7) have noteworthy inhibitory effects on BXO, with IC50 values ranging from 149.56 µM to 263.60 µM, indicating their good efficacy compared to that of the standard control. The validation of these results was further enhanced through comprehensive in silico studies, which revealed the pivotal interactions between the inhibitors and the catalytic sites of BXO, with a particular emphasis on the imine group (-C = N-) functionalities. Intriguingly, the compounds exhibiting the highest inhibition rates also showcase advantageous ADMET profiles, alongside encouraging initial assessments via PASS, hinting at their broad-spectrum potential. The implications of these findings are profound, suggesting that these Schiff base derivatives not only offer a new vantage point for the inhibition of BXO but also hold considerable promise as innovative therapeutic agents in the management and treatment of gout, marking a significant leap forward in the quest for more effective gout interventions.

7.
Environ Res ; 216(Pt 3): 114741, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36347394

RESUMEN

Nowadays, fast-growing industrialization has resulted in the release of enormous amounts of contaminants such as toxic dyes into water bodies and leading to cause health and environmental risks. In this regard, we prepared inorganic nanocomposites for the treatment of toxic dyes. Hence, we synthesized TiO2/PAni/GO nanocomposites and examined them by using XRD, SEM, TEM, UV-Vis spectroscopy, BET analysis, and a photoluminescence investigation. In addition, band gap energies of the nanocomposites were determined, and Total Organic Carbon (TOC) testing was used to determine dye degradation levels. The photocatalytic degradations of Thymol Blue and Rose Bengal dyes were investigated at different dye concentrations, illumination periods, solution pH values, and photocatalyst dosages. By using TiO2/PAni/GO, TiO2/PAni, and TiO2 at neutral pH, a photocatalyst dose of 1600 mg/L, and exposure to visible light, Thymol Blue and Rose Bengal were photodegraded 85-99%, 60-97%, and 10-20%, respectively, at a concentration of 25 ppm (180 min). Reductions in the TOCs confirmed their photodegradation, and a kinetic study revealed photodegradation followed first-order kinetics. This study shows the coating of polyaniline (PAni) and graphene oxide (GO) on TiO2 improved its ability to photodegrade Thymol Blue and Rose Bengal dye.


Asunto(s)
Nanocompuestos , Contaminantes Químicos del Agua , Fotólisis , Colorantes , Rosa Bengala , Contaminantes Químicos del Agua/análisis , Nanocompuestos/química , Luz
8.
Molecules ; 27(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35209226

RESUMEN

Researchers are interested in Schiff bases and their metal complexes because they offer a wide range of applications. The chemistry of Schiff bases of heterocompounds has got a lot of attention because of the metal's ability to coordinate with Schiff base ligands. In the current study, a new bidentate Schiff base ligand, N-((1H-pyrrol-2-yl)methylene)-6-methoxypyridin-3-amine (MPM) has been synthesized by condensing 6-methoxypyridine-3-amine with pyrrole-2-carbaldehyde. Further, MPM is used to prepare Cu(II) and Co(II) metal complexes. Analytical and spectroscopic techniques are used for the structural elucidation of the synthesized compounds. Both MPM and its metal complexes were screened against Escherichia coli, Bacillus subtilis, Staphylococcus aureus and Klebsiella pneumoniae species for antimicrobial studies. Furthermore, these compounds were subjected to in silico studies against bacterial proteins to comprehend their best non-bonded interactions. The results confirmed that the Schiff base ligand show considerably higher binding affinity with good hydrogen bonding and hydrophobic interactions against various tested microbial species. These results were complemented with a report of the Conceptual DFT global reactivity descriptors of the studied compounds together with their biological scores and their ADMET computed parameters.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Cobalto/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Cobre/química , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/síntesis química , Técnicas de Química Sintética , Complejos de Coordinación/síntesis química , Teoría Funcional de la Densidad , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Modelos Químicos , Modelos Moleculares , Estructura Molecular , Bases de Schiff/química , Análisis Espectral
9.
Bioorg Chem ; 107: 104626, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33450545

RESUMEN

Vincamine, a well-known plant alkaloid, has been used as a dietary supplement and as a peripheral vasodilator to combat aging in humans. In this study, for the very first time, we demonstrated that vincamine can function as an anticancer agent in a human alveolar basal epithelial cell line A549 (IC50 = 309.7 µM). The anticancer potential of vincamine in A549 cells was assessed by molecular assays to determine cell viability, generation of intracellular ROS, nuclear condensation, caspase-3 activity and inhibition, and change in mitochondrial membrane potential (ΔΨm). In silico studies predicted that the anti-proliferative potential of vincamine is enhanced by its interaction with the apoptotic protein caspase-3, and that this interaction is driven by two hydrogen bonds and has a high free energy of binding (-5.64 kcal/mol) with an estimated association constant (Ka) of 73.67 µM. We found that vincamine stimulated caspase-3-dependent apoptosis and lowered mitochondrial membrane potential, which ultimately led to cytochrome C release. Vincamine was also found to quench hydroxyl free radicals and deplete iron ions in cancer cells. As a dietary supplement, vincamine is almost non-toxic in BEAS-2B and 3T3-L1 cells. Therefore, we propose that vincamine represents a safe anticancer agent in lung cancer cells. Its role in other cancers has yet to be explored.


Asunto(s)
Antineoplásicos/química , Células A549 , Alcaloides/química , Alcaloides/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Sitios de Unión , Caspasa 3/química , Caspasa 3/metabolismo , Inhibidores de Caspasas/farmacología , Dominio Catalítico , Supervivencia Celular/efectos de los fármacos , Humanos , Cinética , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Simulación del Acoplamiento Molecular , Especies Reactivas de Oxígeno/metabolismo , Termodinámica , Vincamina/química , Vincamina/farmacología
10.
Plant Dis ; 105(12): 4121-4131, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34213966

RESUMEN

Welsh onion (Allium fistulosum L.) is one of the main and oldest vegetable crops grown in Taiwan. A severe epidemic of leaf blight in Welsh onion caused by a Stemphylium-like pathogen was found in Sanxing, Taiwan, from 2018 to 2020. However, correct species identification, biology, and control of Stemphylium leaf blight (SLB) of Welsh onion are not well-established. Therefore, the main objective of this study was to investigate the causal agent of SLB in Sanxing and evaluate the in vitro sensitivity of Stemphylium-like pathogen to commonly used fungicides. A phylogenetic analysis based on combining the internal transcribed spacer (ITS) region and glyceraldedyhe-3-phosphate dehydrogenase (gapdh) and calmodulin (cmdA) gene sequences together with morphological features identified that S. vesicarium is associated with SLB in Sanxing. When inoculated onto Welsh onion leaves, the isolates caused symptoms identical to those observed in the field; therefore, S. vesicarium was reisolated and Koch's postulates were confirmed. We observed a higher incidence of SLB symptoms on the oldest leaves compared with younger leaves. The maximum and minimum temperatures for in vitro mycelial growth and conidial germination (%) of S. vesicarium were 20 to 30°C and 5°C, respectively. Sixteen fungicides were tested for their effectiveness to reduce the mycelial growth and conidial germination of S. vesicarium in vitro. Boscalid plus pyraclostrobin, fluopyram, fluxapyroxad, and fluxapyroxad plus pyraclostrobin were highly effective at reducing mycelial growth and conidial germination in S. vesicarium. However, strobilurin fungicides (azoxystrobin and kresoxim-methyl) commonly used in Welsh onion production in Sanxing were ineffective. This study discusses the emergence of SLB caused by S. vesicarium in the foliar disease complex affecting Welsh onion and the management of the disease using fungicides with different modes of action in Taiwan. The research will support the sustainable management of SLB in Sanxing, Taiwan; however, further field assessments of the fungicides are warranted.


Asunto(s)
Allium , Ascomicetos , Ascomicetos/genética , Cebollas , Filogenia , Taiwán
11.
Molecules ; 26(19)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34641393

RESUMEN

This study reported the volatile profile, the antimicrobial activity and the synergistic potential of essential oil (EO) from the Moroccan endemic Thymus atlanticus (Ball) Roussine, in combination with the antibiotics ciprofloxacin and fluconazole for the first time, to the best of our knowledge. The EO chemical composition was determined by gas chromatography coupled to mass spectrometry (GC-MS) analysis and the antimicrobial activity assessed by the disc diffusion method against three Gram positive (Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus) and three Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli and one clinical isolate, Klebsiella pneumonia). The antifungal activity was evaluated in four pathogenic yeasts (Candida albicans, C. glabrata, C. krusei and C. parapsilosis). The minimum inhibition concentration (MIC) and the synergistic effect with ciprofloxacin and fluconazole were determined by the two-fold dilution technique and checkerboard test, respectively. Twenty-one constituents were identified by GC-MS in the EO, including carvacrol (21.62%) and borneol (21.13%) as the major components. The EO exhibited a significant antimicrobial activity with inhibition zones ranging from 0.7 mm to 22 mm for P. aeruginosa and B. subtilis, respectively, and MIC values varying from 0.56 mg/mL to 4.47 mg/mL. The fractional inhibitory concentration index (FICI) values ranged from 0.25 to 0.50 for bacteria and from 0.25 to 0.28 for yeasts. The maximum synergistic effect was observed for K. pneumonia with a 256-fold gain of antibiotic MIC. Our results have suggested that EO from T. atlanticus may be used alone or in association with antibiotics as a new potential alternative to prevent and control the emergence of resistant microbial strains both in the medical field and in the food industry.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Bacterias/efectos de los fármacos , Candida albicans/efectos de los fármacos , Sinergismo Farmacológico , Aceites Volátiles/farmacología , Thymus (Planta)/química , Marruecos
12.
Molecules ; 26(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34361745

RESUMEN

The edible parts of the plants Camellia sinensis, Vitis vinifera and Withania somnifera were extensively used in ancient practices such as Ayurveda, owing to their potent biomedical significance. They are very rich in secondary metabolites such as polyphenols, which are very good antioxidants and exhibit anti-carcinogenic properties. This study aims to evaluate the anti-cancerous properties of these plant crude extracts on human liver cancer HepG2 cells. The leaves of Camellia sinensis, Withania somnifera and the seeds of Vitis vinifera were collected and methanolic extracts were prepared. Then, these extracts were subjected to DPPH, α- amylase assays to determine the antioxidant properties. A MTT assay was performed to investigate the viability of the extracts of HepG2 cells, and the mode of cell death was detected by Ao/EtBr staining and flow cytometry with PI Annexin- V FITC dual staining. Then, the protein expression of BAX and BCl2 was studied using fluorescent dye to determine the regulation of the BAX and BCl2 genes. We observed that all the three extracts showed the presence of bioactive compounds such as polyphenols or phytochemicals. The W. somnifera bioactive compounds were found to have the highest anti-proliferative activity on human liver cancer cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Antioxidantes/farmacología , Camellia sinensis/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Vitis/química , Withania/química , Alcaloides/química , Alcaloides/aislamiento & purificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Compuestos de Bifenilo/antagonistas & inhibidores , Compuestos de Bifenilo/química , Muerte Celular/efectos de los fármacos , Flavonoides/química , Flavonoides/aislamiento & purificación , Células Hep G2 , Humanos , Picratos/antagonistas & inhibidores , Picratos/química , Extractos Vegetales/química , Hojas de la Planta/química , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Semillas/química , Transducción de Señal , Taninos/química , Taninos/aislamiento & purificación , Terpenos/química , Terpenos/aislamiento & purificación , alfa-Amilasas/genética , alfa-Amilasas/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
13.
Molecules ; 26(22)2021 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34833955

RESUMEN

NAD(P)H:quinone acceptor oxidoreductase-1 (NQO1) is a ubiquitous flavin adenine dinucleotide-dependent flavoprotein that promotes obligatory two-electron reductions of quinones, quinonimines, nitroaromatics, and azo dyes. NQO1 is a multifunctional antioxidant enzyme whose expression and deletion are linked to reduced and increased oxidative stress susceptibilities. NQO1 acts as both a tumor suppressor and tumor promoter; thus, the inhibition of NQO1 results in less tumor burden. In addition, the high expression of NQO1 is associated with a shorter survival time of cancer patients. Inhibiting NQO1 also enables certain anticancer agents to evade the detoxification process. In this study, a series of phytobioactives were screened based on their chemical classes such as coumarins, flavonoids, and triterpenoids for their action on NQO1. The in silico evaluations were conducted using PyRx virtual screening tools, where the flavone compound, Orientin showed a better binding affinity score of -8.18 when compared with standard inhibitor Dicumarol with favorable ADME properties. An MD simulation study found that the Orientin binding to NQO1 away from the substrate-binding site induces a potential conformational change in the substrate-binding site, thereby inhibiting substrate accessibility towards the FAD-binding domain. Furthermore, with this computational approach we are offering a scope for validation of the new therapeutic components for their in vitro and in vivo efficacy against NQO1.


Asunto(s)
Antineoplásicos/farmacología , NAD(P)H Deshidrogenasa (Quinona)/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Fitoquímicos/farmacología , Antioxidantes/farmacología , Sitios de Unión/efectos de los fármacos , Cumarinas/farmacología , Flavonas/farmacología , Flavonoides/farmacología , Humanos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Triterpenos/farmacología
14.
Molecules ; 26(9)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922292

RESUMEN

Nanoworld is an attractive sphere with the potential to explore novel nanomaterials with valuable applications in medicinal science. Herein, we report an efficient and ecofriendly approach for the synthesis of Nickel oxide nanoparticles (NiO NPs) via a solution combustion method using Areca catechu leaf extract. As-prepared NiO NPs were characterized using various analytical tools such as powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-Visible spectroscopy (UV-Vis). XRD analysis illustrates that synthesized NiO NPs are hexagonal structured crystallites with an average size of 5.46 nm and a hexagonal-shaped morphology with slight agglomeration. The morphology, size, and shape of the obtained material was further confirmed using SEM and TEM analysis. In addition, as-prepared NiO NPs have shown potential antidiabetic and anticancer properties. Our results suggest that the inhibition of α-amylase enzyme with IC 50 value 268.13 µg/mL may be one of the feasible ways through which the NiO NPs exert their hypoglycemic effect. Furthermore, cytotoxic activity performed using NiO NPs exhibited against human lung cancer cell line (A549) proved that the prepared NiO NPs have significant anticancer activity with 93.349 µg/mL at 50% inhibition concentration. The biological assay results revealed that NiO NPs exhibited significant cytotoxicity against human lung cancer cell line (A549) in a dose-dependent manner from 0-100 µg/mL, showing considerable cell viability. Further, the systematic approach deliberates the NiO NPs as a function of phenolic extracts of A. catechu with vast potential for many biological and biomedical applications.


Asunto(s)
Antineoplásicos/farmacología , Areca/química , Hipoglucemiantes/farmacología , Nanopartículas del Metal/química , Níquel/química , Extractos Vegetales/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Técnicas de Química Sintética , Humanos , Hipoglucemiantes/química , Nanopartículas del Metal/ultraestructura , Extractos Vegetales/química , Análisis Espectral , Difracción de Rayos X
15.
Molecules ; 26(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066433

RESUMEN

Candida albicans, an opportunistic fungal pathogen, frequently colonizes immune-compromised patients and causes mild to severe systemic reactions. Only few antifungal drugs are currently in use for therapeutic treatment. However, evolution of a drug-resistant C. albicans fungal pathogen is of major concern in the treatment of patients, hence the clinical need for novel drug design and development. In this study, in vitro screening of novel putative pyrrolo[1,2-a]quinoline derivatives as the lead drug targets and in silico prediction of the binding potential of these lead molecules against C. albicans pathogenic proteins, such as secreted aspartic protease 3 (SAP3; 2H6T), surface protein ß-glucanase (3N9K) and sterol 14-alpha demethylase (5TZ1), were carried out by molecular docking analyses. Further, biological activity-based QSAR and theoretical pharmacokinetic analysis were analyzed. Here, in vitro screening of novel analogue derivatives as drug targets against C. albicans showed inhibitory potential in the concentration of 0.4 µg for BQ-06, 07 and 08, 0.8 µg for BQ-01, 03, and 05, 1.6 µg for BQ-04 and 12.5 µg for BQ-02 in comparison to the standard antifungal drug fluconazole in the concentration of 30 µg. Further, in silico analysis of BQ-01, 03, 05 and 07 analogues docked on chimeric 2H6T, 3N9K and 5TZ1 revealed that these analogues show potential binding affinity, which is different from the therapeutic antifungal drug fluconazole. In addition, these molecules possess good drug-like properties based on the determination of conceptual Density Functional Theory (DFT)-based descriptors, QSAR and pharmacokinetics. Thus, the study offers significant insight into employing pyrrolo[1,2-a]quinoline analogues as novel antifungal agents against C. albicans that warrants further investigation.


Asunto(s)
Antifúngicos/síntesis química , Ácidos Carboxílicos/síntesis química , Teoría Funcional de la Densidad , Simulación del Acoplamiento Molecular , Antifúngicos/farmacocinética , Candida albicans , Ácidos Carboxílicos/farmacocinética , Química Farmacéutica/métodos , Diseño de Fármacos , Fluconazol/farmacología , Enlace de Hidrógeno , Indolizinas/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Conformación Proteica , Relación Estructura-Actividad Cuantitativa , Quinolinas/síntesis química , Quinolinas/farmacocinética , Termodinámica
16.
Environ Monit Assess ; 193(12): 824, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34792658

RESUMEN

Globally, the production of zinc oxide nanoparticles (ZnO NPs) increased due to its wide applications including cosmetics, paints etc., and gets accumulated in the environment during their production, use or end-of-life. The toxic effects of the NPs vary with the presence of various surface modification agents. In the current report, toxic effect of bare and capped ZnO NPs with polymeric surface modifying agent including polyvinyl alcohol (PVA), polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP) is studied against adult as well as embryonic zebra fish. The surface capped NPs showed great variation in toxicity levels. It was observed that ZnO-PVA showed highly reduced toxic effects relative to ZnO-PEG and ZnO-PVP. Further, various environmental agents including humic acid can also have an impact on NPs toxicity. ZnO particles showed increased toxic effect in humic acid presence. The uptake of ZnO particles by D. rerio was high in the order of PVP-, PEG- and PVA- followed by bare-ZnO. The current investigation found that ZnO NPs dissolution and uptake are the major factors which cause the toxicity against adult as well as embryonic zebra fishes respectively.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Animales , Monitoreo del Ambiente , Nanopartículas del Metal/toxicidad , Nanopartículas/toxicidad , Polietilenglicoles/toxicidad , Alcohol Polivinílico/toxicidad , Povidona/toxicidad , Pez Cebra , Óxido de Zinc/toxicidad
17.
Arch Microbiol ; 202(10): 2855-2864, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32691101

RESUMEN

The main objective of this study was to identify the antifungal metabolites from Achromobacter kerstersii JKP9, a rhizosphere bacterium isolated from tomato cultivations, inhibiting the melanin biosynthetic pathways in vascular wilt pathogen Fusarium oxysporum f. sp. lycopersici (Fol). To achieve this objective, all the rhizobacterial morphotypes were screened for plant-growth-promoting and antagonistic activities. Ethyl acetate extract of Achromobacter kerstersii JKP9 was purified in HPLC and predicted for antifungals in GC-MS equipped with Wiley library. After identification, molecular docking of useful ligands with modeled Short-chain Dehydrogenase/ Reductase (SDR) of Fol (Locus: FOXG_00472). Results were indicated that the potential strain Achromobacter kerstersii JKP9 exclusively secreted five pyrrole analogs notable for their antifungal role with no extracellular antifungal enzyme production as seen in other rhizobacterial isolates. In silico docking studies identified, Pyrrolo[1, 2-a]pyrazine-1,4-dione, hexahydro- as effective for SDR in Fol. From these results, we conclude that bacterial pyrroles can be used as an effective fungicide to control Fusarium wilt in tomatoes. In the future, these pyrrole derivatives can directly be employed as eco-friendly fungicides or may be used as antifungal supplements in agrochemical products for the sustainable production of tomatoes.


Asunto(s)
Achromobacter/metabolismo , Antifúngicos/farmacología , Fungicidas Industriales/farmacología , Fusarium/efectos de los fármacos , Pirroles/farmacología , Achromobacter/genética , Antifúngicos/metabolismo , Solanum lycopersicum/microbiología , Simulación del Acoplamiento Molecular , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Pirroles/metabolismo
18.
Exp Appl Acarol ; 82(2): 281-294, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32886258

RESUMEN

The efficacy of Allium sativum and Cannabis sativa against Rhipicephalus microplus ticks was evaluated using the adult immersion and the larval packet test. In addition, an in silico approach was utilized by performing a docking study in order to identify the active ingredients from both plants. Results showed a comparatively high lethal effect of A. sativum and C. sativa on egg laying (index of egg laying = 0.26 and 0.24, respectively), egg hatching (33.5 and 37.1, respectively), and total larval mortality (100%, both), at 40 mg/mL. When applied to cattle which had been inoculated with larvae ticks, it was observed that a 45% solution of both herbal extracts significantly reduced the number of ticks by 96 h post treatment. We analyzed in silico 27 known active molecules from both plants and identified in the PubChem database to explore the hypothesis that the effect found on ticks was based on inhibition of acetylcholinesterase (AChE). Vitamin E and cannabidiol are the most potent AChE inhibitors with docking scores of -15.85 and -14.38, respectively. Based on these findings, we conclude that A. sativum and C. sativa may potentially be used for the control of R. microplus, and should be further investigated as a potential supplement to or replacement of synthetic acaricides.


Asunto(s)
Acaricidas , Cannabis/química , Enfermedades de los Bovinos/prevención & control , Ajo/química , Extractos Vegetales/farmacología , Rhipicephalus , Infestaciones por Garrapatas/veterinaria , Animales , Bovinos , Enfermedades de los Bovinos/parasitología , Larva , Infestaciones por Garrapatas/prevención & control
19.
Molecules ; 25(6)2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32204366

RESUMEN

Nitroaromatic and nitroamine compounds such as 2,4,6-trinitrotoluene (TNT) are teratogenic, cytotoxic, and may cause cellular mutations in humans, animals, plants, and microorganisms. Microbial-based bioremediation technologies have been shown to offer several advantages against the cellular toxicity of nitro-organic compounds. Thus, the current study was designed to evaluate the ability of Trichoderma viride to degrade nitrogenous explosives, such as TNT, by microbiological assay and Gas chromatography-mass spectrometry (GC-MS) analysis. In this study, T. viride fungus was shown to have the ability to decompose, and TNT explosives were used at doses of 50 and 100 ppm on the respective growth media as a nitrogenous source needed for normal growth. The GC/MS analysis confirmed the biodegradable efficiency of TNT, whereas the initial retention peak of the TNT compounds disappeared, and another two peaks appeared at the retention times of 9.31 and 13.14 min. Mass spectrum analysis identified 5-(hydroxymethyl)-2-furancarboxaldehyde with the molecular formula C6H6O3 and a molecular weight of 126 g·mol-1 as the major compound, and 4-propyl benzaldehyde with a formula of C10H12O and a molecular weight of 148 g mol-1 as the minor compound, both resulting from the biodegradation of TNT by T. viride. In conclusion, T. viride could be used in microbial-based bioremediation technologies as a biological agent to eradicate the toxicity of the TNT explosive. In addition, future molecular-based studies should be conducted to clearly identify the enzymes and the corresponding genes that give T. viride the ability to degrade and remediate TNT explosives. This could help in the eradication of soils contaminated with explosives or other toxic biohazards.


Asunto(s)
Sustancias Explosivas/química , Trichoderma/crecimiento & desarrollo , Trinitrotolueno/química , Biodegradación Ambiental , Medios de Cultivo/análisis , Medios de Cultivo/química , Cromatografía de Gases y Espectrometría de Masas , Nitrógeno/química , Contaminantes del Suelo/química , Trichoderma/metabolismo
20.
Molecules ; 25(12)2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580359

RESUMEN

Herein we report the synthesis and structural elucidation of two novel imine-based ligands, 2-(1,10-phenanthrolin-5-yl)imino)methyl)-5-bromophenol (PIB) and N-(1,10-phenanthrolin-5-yl)-1-(thiophen-3-yl)methanimine (PTM) ligands. An in vitro cytotoxicity assay of the synthesized molecules was carried out against breast, cervical, colorectal, and prostate cancer cell lines as well as immortalized human keratinocytes. The observations indicated that both the molecules possesses dose-dependent selective cytotoxicity of cancer cells with no detrimental effect on the normal cell lines. Furthermore, the detailed computational analysis of newly synthetized ligands (PIB and PTM) has been conducted in order to identify their most important parts from the perspective of local reactivity. The IC50 values of PIB treatment on MCF-7, HeLa, HCT-116 and PC-3 were 15.10, 16.25, 17.88, 17.55 and 23.86 micromoles, respectively. Meanwhile, the IC50 values of PTM on MCF-7, HeLa, HCT-116, PC-3 and HaCat were observed to be 14.82, 15.03, 17.88, 17.28 and 21.22 micromoles, respectively. For computational analysis, we have employed the combination of Density Functional Theory (DFT) calculations and MD simulations. DFT calculations provided us with information about structure and reactivity descriptors based on the electron distribution. Surfaces of molecular electrostatic potential (MEP) and averaged local ionization energy (ALIE) indicated the sites within studied molecules that are most reactive. These results indicated the importance of nitrogen atoms and OH group. Additionally, the values of bond dissociation for hydrogen abstraction showed that both molecules, especially the PTM, are stable toward the influence of autoxidation mechanism. On the other side, MD simulations gave us an insight how ligands interact with water molecules. Namely, the radial distribution functions (RDF) indicated that the hydrogen atom of the OH group in the case of the PIB has the most pronounced interactions with water.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Iminas/farmacología , Neoplasias/tratamiento farmacológico , Fenantrolinas/farmacología , Línea Celular Tumoral , Humanos , Iminas/síntesis química , Iminas/química , Ligandos , Simulación del Acoplamiento Molecular , Neoplasias/patología , Fenantrolinas/síntesis química , Fenantrolinas/química , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA