Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Elife ; 132024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640016

RESUMEN

Mediator of ERBB2-driven cell motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high-MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.


Asunto(s)
Homeostasis , Hierro , Neoplasias , Humanos , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Línea Celular Tumoral , Ferroptosis , Hierro/metabolismo , Proteína 1 Reguladora de Hierro , Neoplasias/metabolismo , Neoplasias/genética , Unión Proteica , Receptores de Transferrina/metabolismo , Receptores de Transferrina/genética
2.
Clin Cancer Res ; 29(14): 2686-2701, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-36976175

RESUMEN

PURPOSE: Accumulating analyses of pro-oncogenic molecular mechanisms triggered a rapid development of targeted cancer therapies. Although many of these treatments produce impressive initial responses, eventual resistance onset is practically unavoidable. One of the main approaches for preventing this refractory condition relies on the implementation of combination therapies. This includes dual-specificity reagents that affect both of their targets with a high level of selectivity. Unfortunately, selection of target combinations for these treatments is often confounded by limitations in our understanding of tumor biology. Here, we describe and validate a multipronged unbiased strategy for predicting optimal co-targets for bispecific therapeutics. EXPERIMENTAL DESIGN: Our strategy integrates ex vivo genome-wide loss-of-function screening, BioID interactome profiling, and gene expression analysis of patient data to identify the best fit co-targets. Final validation of selected target combinations is done in tumorsphere cultures and xenograft models. RESULTS: Integration of our experimental approaches unambiguously pointed toward EGFR and EPHA2 tyrosine kinase receptors as molecules of choice for co-targeting in multiple tumor types. Following this lead, we generated a human bispecific anti-EGFR/EPHA2 antibody that, as predicted, very effectively suppresses tumor growth compared with its prototype anti-EGFR therapeutic antibody, cetuximab. CONCLUSIONS: Our work not only presents a new bispecific antibody with a high potential for being developed into clinically relevant biologics, but more importantly, successfully validates a novel unbiased strategy for selecting biologically optimal target combinations. This is of a significant translational relevance, as such multifaceted unbiased approaches are likely to augment the development of effective combination therapies for cancer treatment. See related commentary by Kumar, p. 2570.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Humanos , Receptores ErbB/metabolismo , Línea Celular Tumoral , Cetuximab/farmacología , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Anticuerpos Biespecíficos/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/genética
3.
Cells ; 11(14)2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35883689

RESUMEN

Neuroendocrine prostate cancer (NEPC) represents a highly aggressive form of prostate tumors. NEPC results from trans-differentiated castration-resistant prostate cancer (CRPC) with increasing evidence indicating that the incidence of NEPC often results from the adaptive response to androgen deprivation therapy. Recent studies have shown that a subset of NEPC exhibits overexpression of the MYCN oncogene along with the loss of tumor suppressing TP53 and RB1 activities. N-MYC is structurally disordered with no binding pockets available on its surface and so far, no clinically approved drug is available. We adopted a drug-repurposing strategy, screened ~1800 drug molecules, and identified fludarabine phosphate to preferentially inhibit the proliferation of N-MYC overexpressing NEPC cells by inducing reactive oxygen species (ROS). We also show that fludarabine phosphate affects N-MYC protein levels and N-MYC transcriptional targets in NEPC cells. Moreover, enhanced ROS production destabilizes N-MYC protein by inhibiting AKT signaling and is responsible for the reduced survival of NEPC cells and tumors. Our results indicate that increasing ROS production by the administration of fludarabine phosphate may represent an effective treatment option for patients with N-MYC overexpressing NEPC tumors.


Asunto(s)
Carcinoma Neuroendocrino , Neoplasias de la Próstata , Antagonistas de Andrógenos/uso terapéutico , Carcinoma Neuroendocrino/patología , Línea Celular Tumoral , Reposicionamiento de Medicamentos , Humanos , Masculino , Proteína Proto-Oncogénica N-Myc/metabolismo , Neoplasias de la Próstata/patología , Especies Reactivas de Oxígeno/uso terapéutico , Fosfato de Vidarabina/análogos & derivados
4.
Cell Death Discov ; 7(1): 364, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34811362

RESUMEN

The progression of prostate cancer (PC) into neuroendocrine prostate cancer (NEPC) is a major challenge in treating PC. In NEPC, the PC cells undergo neuroendocrine differentiation (NED); however, the exact molecular mechanism that triggers NED is unknown. Peripheral nerves are recently shown to promote PC. However, their contribution to NEPC was not studied well. In this study, we explored whether sympathetic neurosignaling contributes to NED. We found that human prostate tumors from patients that later developed metastases and castration-resistant prostate cancer (CRPC), a stage preceding to NEPC, have high sympathetic innervations. Our work revealed that high concentrations of the sympathetic neurotransmitter norepinephrine (NE) induces NED-like changes in PC cells in vitro, evident by their characteristic cellular and molecular changes. The NE-mediated NED was effectively inhibited by the Adrß2 blocker propranolol. Strikingly, propranolol along with castration also significantly inhibited the development and progression of NEPC in vivo in an orthotopic NEPC model. Altogether, our results indicate that the NE-Adrß2 axis is a potential therapeutic intervention point for NEPC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA