RESUMEN
Splenic marginal zone B-cell lymphoma (SMZL) is a heterogeneous clinico-biological entity. The clinical course is variable, multiple genes are mutated with no unifying mechanism, and essential regulatory pathways and surrounding microenvironments are diverse. We sought to clarify the heterogeneity of SMZL by resolving different subgroups and their underlying genomic abnormalities, pathway signatures, and microenvironment compositions to uncover biomarkers and therapeutic vulnerabilities. We studied 303 SMZL spleen samples collected through the IELSG46 multicenter international study (NCT02945319) by using a multiplatform approach. We carried out genetic and phenotypic analyses, defined self-organized signatures, validated the findings in independent primary tumor metadata and in genetically modified mouse models, and determined correlations with outcome data. We identified 2 prominent genetic clusters in SMZL, termed NNK (58% of cases, harboring NF-κB, NOTCH, and KLF2 modules) and DMT (32% of cases, with DNA-damage response, MAPK, and TLR modules). Genetic aberrations in multiple genes as well as cytogenetic and immunogenetic features distinguished NNK- from DMT-SMZLs. These genetic clusters not only have distinct underpinning biology, as judged by differences in gene-expression signatures, but also different outcomes, with inferior survival in NNK-SMZLs. Digital cytometry and in situ profiling segregated 2 basic types of SMZL immune microenvironments termed immune-suppressive SMZL (50% of cases, associated with inflammatory cells and immune checkpoint activation) and immune-silent SMZL (50% of cases, associated with an immune-excluded phenotype) with distinct mutational and clinical connotations. In summary, we propose a nosology of SMZL that can implement its classification and also aid in the development of rationally targeted treatments.
Asunto(s)
Linfoma de Células B de la Zona Marginal , Neoplasias del Bazo , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Aberraciones Cromosómicas , Inmunofenotipificación , Linfoma de Células B de la Zona Marginal/diagnóstico , Linfoma de Células B de la Zona Marginal/genética , Familia de Multigenes , Mutación , Bazo/patología , Neoplasias del Bazo/diagnóstico , Neoplasias del Bazo/genética , Transcriptoma , Microambiente TumoralRESUMEN
In eosinophilic granulomatosis with polyangiitis (EGPA) clonally expanded T cells might concur in granuloma formation and vascular injury. The TCR ß-variable (BV) chain repertoire and third complementarity determining region (CDR3) of peripheral CD4+ and CD8+ cells in EGPA patients and age-matched controls and the expression of cytokines and chemokine receptors were investigated. The CD8+ lymphocytes of EGPA patients showed an increased frequency of BV expansions with a skewed profile of BV CDR3 lengths, increased CCR5 and CXCR3 expression and increased INFγ and TNFα production. In two patients, the TCR CDR3 cDNA sequences of the expanded BV family were identified. The CD4+ lymphocytes of EGPA patients revealed a higher expression of CRTH2 and increased production of IL-5. In conclusion, CD4+ T cells display a Th2 profile and CD8+ T cells are clonally expanded in EGPA and have a proinflammatory phenotype, suggesting their pathogenic role in vasculitic damage.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Síndrome de Churg-Strauss/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores , Células Cultivadas , Síndrome de Churg-Strauss/sangre , Regiones Determinantes de Complementariedad , Femenino , Granuloma/inmunología , Humanos , Cambio de Clase de Inmunoglobulina/inmunología , Inflamación/inmunología , Interferón gamma/biosíntesis , Interleucina-5/biosíntesis , Masculino , Persona de Mediana Edad , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores CCR5/biosíntesis , Receptores CXCR3/biosíntesis , Receptores Inmunológicos/biosíntesis , Receptores de Prostaglandina/biosíntesis , Factor de Necrosis Tumoral alfa/biosíntesisRESUMEN
It has recently been proposed that defective differentiation of mammary luminal progenitors predisposes to basal-like breast cancer. However, the molecular and cellular mechanisms involved are still unclear. Here, we describe that the adaptor protein p130Cas is a crucial regulator of mouse mammary epithelial cell (MMEC) differentiation. Using a transgenic mouse model, we show that forced p130Cas overexpression in the luminal progenitor cell compartment results in the expansion of luminal cells, which aberrantly display basal cell features and reduced differentiation in response to lactogenic stimuli. Interestingly, MMECs overexpressing p130Cas exhibit hyperactivation of the tyrosine kinase receptor c-Kit. In addition, we demonstrate that the constitutive c-Kit activation alone mimics p130Cas overexpression, whereas c-Kit downregulation is sufficient to re-establish proper differentiation of p130Cas overexpressing cells. Overall, our data indicate that high levels of p130Cas, via abnormal c-Kit activation, promote mammary luminal cell plasticity, thus providing the conditions for the development of basal-like breast cancer. Consistently, p130Cas is overexpressed in human triple-negative breast cancer, further suggesting that p130Cas upregulation may be a priming event for the onset of basal-like breast cancer.
Asunto(s)
Proteína Sustrato Asociada a CrK/metabolismo , Glándulas Mamarias Animales/citología , Neoplasias Mamarias Experimentales/patología , Proteínas Proto-Oncogénicas c-kit/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Animales , Diferenciación Celular/fisiología , Procesos de Crecimiento Celular/fisiología , Células Cultivadas , Proteína Sustrato Asociada a CrK/biosíntesis , Proteína Sustrato Asociada a CrK/genética , Femenino , Humanos , Inmunohistoquímica , Glándulas Mamarias Animales/metabolismo , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/metabolismo , Ratones , Ratones Transgénicos , Embarazo , Proteínas Proto-Oncogénicas c-kit/genética , Transducción de Señal , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismoRESUMEN
Tumor cells promote the recruitment of immunosuppressive neutrophils, a subset of myeloid cells driving immune suppression, tumor proliferation, and treatment resistance. Physiologically, neutrophils are known to have a short half-life. Here, we report the identification of a subset of neutrophils that have upregulated expression of cellular senescence markers and persist in the tumor microenvironment. Senescent-like neutrophils express the triggering receptor expressed on myeloid cells 2 (TREM2) and are more immunosuppressive and tumor-promoting than canonical immunosuppressive neutrophils. Genetic and pharmacological elimination of senescent-like neutrophils decreases tumor progression in different mouse models of prostate cancer. Mechanistically, we have found that apolipoprotein E (APOE) secreted by prostate tumor cells binds TREM2 on neutrophils, promoting their senescence. APOE and TREM2 expression increases in prostate cancers and correlates with poor prognosis. Collectively, these results reveal an alternative mechanism of tumor immune evasion and support the development of immune senolytics targeting senescent-like neutrophils for cancer therapy.
Asunto(s)
Apolipoproteínas E , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Apolipoproteínas E/metabolismo , Senescencia Celular/genética , Glicoproteínas de Membrana/genética , Células Mieloides/metabolismo , Neoplasias de la Próstata/metabolismo , Receptores Inmunológicos/metabolismo , Microambiente TumoralRESUMEN
OBJECTIVES: Churg-Strauss syndrome (CSS) is a necrotising vasculitis of small vessels in which oligoclonally expanded TCR Vß CD8+ effector memory T cells populations (TEM) may be involved in vasculitic damage. The aim of this study was to assess the functional role of CD8+ T cells in CSS patients by flow cytometry analysis of membrane expression of cytotoxic markers NKG2D and CD107a. METHODS: Immunostaining of peripheral T cells and effector memory lymphocytes (TEM) from CSS patients and controls was performed by gating CD28 and CD45RA in the CD8+NKG2D+ and CD4+NKG2D+ populations. CD107a expression was evaluated in both whole CD8+ and CD4+ and the TEM cells by gating CD62 and CD45RA following polyclonal stimulation. RESULTS: NKG2D expression was shifted toward the CD8+CD28- fraction of T cells in CSS patients compared to healthy controls (56.1±25.8% versus 17.2±7.3%, respectively, p=0.002). CD8+Vß+ expanded T cells showed a significantly increased expression of NKG2D compared to the whole CD8+ T cell population (91.4±1.9% versus 79.7±3.8%, respectively, p=0.015). Moreover the CD8+ population from CSS upregulates CD107a on its surface upon polyclonal stimulation in a significantly higher proportion than healthy subjects (26.2±10.8% versus 8.2±2.9%, p=0.0031) and the majority CD8+ CD107+ cells from CSS patients showed a TEM phenotype compared to controls (64.8±4.9% vs. 19.8±2.9, respectively, p<0.001). CONCLUSIONS: In CSS, CD8+ TEM lymphocytes show markers of cytotoxic activity, which suggests a role for these cells in vasculitic damage.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Síndrome de Churg-Strauss/inmunología , Memoria Inmunológica , Proteínas de Membrana de los Lisosomas/análisis , Subfamilia K de Receptores Similares a Lectina de Células NK/análisis , Adulto , Anciano , Biomarcadores/análisis , Antígenos CD28/análisis , Linfocitos T CD4-Positivos/inmunología , Estudios de Casos y Controles , Selectina E/análisis , Femenino , Citometría de Flujo , Humanos , Inmunofenotipificación/métodos , Italia , Antígenos Comunes de Leucocito/análisis , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Paris , Fenotipo , Receptores de Antígenos de Linfocitos T alfa-beta/análisisRESUMEN
Tumour-infiltrating myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid cells. The main feature of MDSCs is their ability to suppress T-cell activation and function, which leads to immunosuppressive activity in the tumour microenvironment. Higher numbers of circulating and tumour-infiltrating MDSCs have been observed in a large number of patients with various types of tumour, and are linked to poor prognosis, especially in hormone-driven tumours. Recently, it has been demonstrated that the recruitment of MDSCs in prostate cancer confers resistance to canonical endocrine therapies, opening a new approach to the treatment of hormone-driven cancer patients.
Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias de la Próstata , Hormonas , Humanos , Masculino , Células Mieloides , Microambiente TumoralRESUMEN
Metastases account for most cancer-related deaths, yet the mechanisms underlying metastatic spread remain poorly understood. Recent evidence demonstrates that senescent cells, while initially restricting tumorigenesis, can induce tumor progression. Here, we identify the metalloproteinase inhibitor TIMP1 as a molecular switch that determines the effects of senescence in prostate cancer. Senescence driven either by PTEN deficiency or chemotherapy limits the progression of prostate cancer in mice. TIMP1 deletion allows senescence to promote metastasis, and elimination of senescent cells with a senolytic BCL-2 inhibitor impairs metastasis. Mechanistically, TIMP1 loss reprograms the senescence-associated secretory phenotype (SASP) of senescent tumor cells through activation of matrix metalloproteinases (MMPs). Loss of PTEN and TIMP1 in prostate cancer is frequent and correlates with resistance to docetaxel and worst clinical outcomes in patients treated in an adjuvant setting. Altogether, these findings provide insights into the dual roles of tumor-associated senescence and can potentially impact the treatment of prostate cancer.
Asunto(s)
Docetaxel/administración & dosificación , Eliminación de Gen , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata/patología , Inhibidor Tisular de Metaloproteinasa-1/genética , Animales , Senescencia Celular/efectos de los fármacos , Docetaxel/farmacología , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Metaloproteinasas de la Matriz/metabolismo , Ratones , Metástasis de la Neoplasia , Trasplante de Neoplasias , Células PC-3 , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismoRESUMEN
Comprehensive genomic studies have delineated key driver mutations linked to disease progression for most cancers. However, corresponding transcriptional changes remain largely elusive because of the bias associated with cross-study analysis. Here, we overcome these hurdles and generate a comprehensive prostate cancer transcriptome atlas that describes the roadmap to tumor progression in a qualitative and quantitative manner. Most cancers follow a uniform trajectory characterized by upregulation of polycomb-repressive-complex-2, G2-M checkpoints, and M2 macrophage polarization. Using patient-derived xenograft models, we functionally validate our observations and add single-cell resolution. Thereby, we show that tumor progression occurs through transcriptional adaption rather than a selection of pre-existing cancer cell clusters. Moreover, we determine at the single-cell level how inhibition of EZH2 - the top upregulated gene along the trajectory - reverts tumor progression and macrophage polarization. Finally, a user-friendly web-resource is provided enabling the investigation of dynamic transcriptional perturbations linked to disease progression.
Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/genética , Proteínas de Neoplasias/genética , Neoplasias de la Próstata/genética , Transcriptoma , Animales , Atlas como Asunto , Línea Celular Tumoral , Progresión de la Enfermedad , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Proteínas de Neoplasias/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Análisis de Componente Principal , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Transducción de Señal , Análisis de la Célula IndividualRESUMEN
The microbiota comprises the microorganisms that live in close contact with the host, with mutual benefit for both counterparts. The contribution of the gut microbiota to the emergence of castration-resistant prostate cancer (CRPC) has not yet been addressed. We found that androgen deprivation in mice and humans promotes the expansion of defined commensal microbiota that contributes to the onset of castration resistance in mice. Specifically, the intestinal microbial community in mice and patients with CRPC was enriched for species capable of converting androgen precursors into active androgens. Ablation of the gut microbiota by antibiotic therapy delayed the emergence of castration resistance even in immunodeficient mice. Fecal microbiota transplantation (FMT) from CRPC mice and patients rendered mice harboring prostate cancer resistant to castration. In contrast, tumor growth was controlled by FMT from hormone-sensitive prostate cancer patients and Prevotella stercorea administration. These results reveal that the commensal gut microbiota contributes to endocrine resistance in CRPC by providing an alternative source of androgens.
Asunto(s)
Andrógenos/biosíntesis , Bacterias/metabolismo , Microbioma Gastrointestinal/fisiología , Interacciones Microbiota-Huesped , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/microbiología , Anciano , Anciano de 80 o más Años , Antagonistas de Andrógenos/uso terapéutico , Animales , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Línea Celular Tumoral , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Neoplasias Experimentales , Prevotella/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Simbiosis , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
PURPOSE: In search of novel strategies to improve the outcome of advanced prostate cancer, we considered that prostate cancer cells rearrange iron homeostasis, favoring iron uptake and proliferation. We exploited this adaptation by exposing prostate cancer preclinical models to high-dose iron to induce toxicity and disrupt adaptation to androgen starvation. EXPERIMENTAL DESIGN: We analyzed markers of cell viability and mechanisms underlying iron toxicity in androgen receptor-positive VCaP and LNCaP, castration-resistant DU-145 and PC-3, and murine TRAMP-C2 cells treated with iron and/or the antiandrogen bicalutamide. We validated the results in vivo in VCaP and PC-3 xenografts and in TRAMP-C2 injected mice treated with iron and/or bicalutamide. RESULTS: Iron was toxic for all prostate cancer cells. In particular, VCaP, LNCaP, and TRAMP-C2 were highly iron sensitive. Toxicity was mediated by oxidative stress, which primarily affected lipids, promoting ferroptosis. In highly sensitive cells, iron additionally caused protein damage. High-basal iron content and oxidative status defined high iron sensitivity. Bicalutamide-iron combination exacerbated oxidative damage and cell death, triggering protein oxidation also in poorly iron-sensitive DU-145 and PC-3 cells.In vivo, iron reduced tumor growth in TRAMP-C2 and VCaP mice. In PC-3 xenografts, bicalutamide-iron combination caused protein oxidation and successfully impaired tumor expansion while single compounds were ineffective. Macrophages influenced body iron distribution but did not limit the iron effect on tumor expansion. CONCLUSIONS: Our models allow us to dissect the direct iron effect on cancer cells. We demonstrate the proof of principle that iron toxicity inhibits prostate cancer cell proliferation, proposing a novel tool to strengthen antiandrogen treatment efficacy.
Asunto(s)
Antagonistas de Andrógenos/farmacología , Anilidas/farmacología , Apoptosis , Sinergismo Farmacológico , Hierro/farmacología , Nitrilos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Compuestos de Tosilo/farmacología , Animales , Proliferación Celular , Humanos , Masculino , Ratones , Neoplasias de la Próstata/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Hypoxia is a condition of low oxygen tension occurring in inflammatory tissues. Dendritic cells (DC) are professional antigen-presenting cells whose differentiation, migration, and activities are intrinsically linked to the microenvironment. DCs will home and migrate through pathologic tissues before reaching their final destination in the lymph node. We studied the differentiation of human monocytes into immature DCs (iDCs) in a hypoxic microenvironment. We generated iDC in vitro under normoxic (iDCs) or hypoxic (Hi-DCs) conditions and examined the hypoxia-responsive element in the promoter, gene expression, and biochemical KEGG pathways. Hi-DCs had an interesting phenotype represented by up-regulation of genes associated with cell movement/migration. In addition, the Hi-DC cytokine/receptor pathway showed a dichotomy between down-regulated chemokines and up-regulated chemokine receptor mRNA expression. We showed that CCR3, CX3CR1, and CCR2 are hypoxia-inducible genes and that CCL18, CCL23, CCL26, CCL24, and CCL14 are inhibited by hypoxia. A strong chemotactic response to CCR2 and CXCR4 agonists distinguished Hi-DCs from iDCs at a functional level. The hypoxic microenvironment promotes the differentiation of Hi-DCs, which differs from iDCs for gene expression profile and function. The most prominent characteristic of Hi-DCs is the expression of a mobility/migratory rather than inflammatory phenotype. We speculate that Hi-DCs have the tendency to leave the hypoxic tissue and follow the chemokine gradient toward normoxic areas where they can mature and contribute to the inflammatory process.
Asunto(s)
Quimiocinas/genética , Células Dendríticas/citología , Células Dendríticas/metabolismo , Perfilación de la Expresión Génica , Receptores de Quimiocina/genética , Hipoxia de la Célula , Movimiento Celular , Regulación de la Expresión Génica , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
Dendritic cells (DCs) are the most potent antigen-presenting cells and fine-tune the immune response. We have investigated hypoxia's effects on the differentiation and maturation of DCs from human monocytes in vitro, and have shown that it affects DC functions. Hypoxic immature DCs (H-iDCs) significantly fail to capture antigens through down-modulation of the RhoA/Ezrin-Radixin-Moesin pathway and the expression of CD206. Moreover, H-iDCs released higher levels of CXCL1, VEGF, CCL20, CXCL8, and CXCL10 but decreased levels of CCL2 and CCL18, which predict a different ability to recruit neutrophils rather than monocytes and create a proinflammatory and proangiogenic environment. By contrast, hypoxia has no effect on DC maturation. Hypoxic mature DCs display a mature phenotype and activate both allogeneic and specific T cells like normoxic mDCs. This study provides the first demonstration that hypoxia inhibits antigen uptake by DCs and profoundly changes the DC chemokine expression profile and may have a critical role in DC differentiation, adaptation, and activation in inflamed tissues.
Asunto(s)
Antígenos/metabolismo , Diferenciación Celular/fisiología , Quimiocinas/metabolismo , Células Dendríticas/citología , Hipoxia/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Citocinas/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Dendríticas/metabolismo , Regulación hacia Abajo , Citometría de Flujo , Humanos , Activación de Linfocitos , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/citología , Monocitos/inmunología , Monocitos/metabolismo , Fenotipo , Fosforilación , Linfocitos T/inmunología , Linfocitos T/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Unión al GTP rho/metabolismoRESUMEN
Prostate adenocarcinoma (PCa) and melanoma are paradigmatic examples of tumors that are either poorly or highly sensitive to therapies based on monoclonal antibodies directed against regulatory pathways in T lymphocytes [i.e., immune checkpoint blockade (ICB)]. Yet, approximately 40% of melanoma patients are resistant or acquire resistance to ICB. What characterize the microenvironment of PCa and ICB-resistant melanoma are a scanty cytotoxic T cell infiltrate and a strong immune suppression, respectively. Here, we compare the tumor microenvironment in these two subgroups of cancer patients, focusing on some among the most represented immune checkpoint molecules: cytotoxic T lymphocyte-associated antigen-4, programmed death-1, lymphocyte activation gene-3, and T cell immunoglobulin and mucin-domain containing-3. We also report on several examples of crosstalk between cancer and immune cells that are mediated by inhibitory immune checkpoints and identify promising strategies aimed at overcoming ICB resistance both in PCa and melanoma.
Asunto(s)
Antineoplásicos Inmunológicos/inmunología , Neoplasias/inmunología , Neoplasias de la Próstata/inmunología , Linfocitos T Citotóxicos/inmunología , Adenocarcinoma/inmunología , Adenocarcinoma/patología , Adenocarcinoma/terapia , Antineoplásicos Inmunológicos/uso terapéutico , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Antígeno B7-H1/metabolismo , Antígeno CTLA-4/antagonistas & inhibidores , Antígeno CTLA-4/inmunología , Antígeno CTLA-4/metabolismo , Humanos , Inmunoterapia/métodos , Masculino , Melanoma/inmunología , Melanoma/patología , Melanoma/terapia , Neoplasias/patología , Neoplasias/terapia , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/terapia , Linfocitos T Citotóxicos/citologíaRESUMEN
Purpose: Irregular blood flow and endothelial cell anergy, which characterize many solid tumors, hinder tumor infiltration by cytotoxic T lymphocytes (CTL). This confers resistance to cancer immunotherapy with monoclonal antibodies directed against regulatory pathways in T lymphocytes (i.e., immune checkpoint blockade, ICB). We investigated whether NGR-TNF, a TNF derivative capable of targeting the tumor vasculature, and improving intratumor infiltration by activated CTLs, could sensitize tumors to ICB with antibodies specific for the PD-1 and CTLA-4 receptors.Experimental Design: Transgenic adenocarcinoma of the mouse prostate (TRAMP) mice with autochthonous prostate cancer and C57BL/6 mice with orthotopic B16 melanoma were treated with NGR-TNF, adoptive T-cell therapy (ACT), and ICB, and monitored for immune surveillance and disease progression.Results: The combination of ACT, NGR-TNF, and ICB was the most effective in delaying disease progression, and in improving overall survival of mice bearing ICB-resistant prostate cancer or melanoma. Mechanistically, the therapeutic effects were associated with potent tumor infiltration, especially by endogenous but also by adoptively transferred PD-1+, granzyme B+, and interferon-γ+ CTLs. The therapeutic effects were also associated with favorable T-effector/regulatory T cell ratios.Conclusions: Targeting the tumor vasculature with low-dose TNF in association with ACT may represent a novel strategy for enhancing T-cell infiltration in tumors and overcoming resistance to immune checkpoint blockers. Clin Cancer Res; 24(9); 2171-81. ©2018 AACR.
Asunto(s)
Neoplasias/etiología , Neoplasias/metabolismo , Neovascularización Patológica/inmunología , Neovascularización Patológica/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Antineoplásicos Inmunológicos/farmacología , Biomarcadores de Tumor , Línea Celular Tumoral , Terapia Combinada , Modelos Animales de Enfermedad , Inmunomodulación/efectos de los fármacos , Inmunofenotipificación , Inmunoterapia Adoptiva , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Masculino , Melanoma Experimental , Ratones , Ratones Noqueados , Neoplasias/patología , Neoplasias/terapia , Linfocitos T/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismoRESUMEN
Allogeneic hematopoietic cell transplantation (allo-HCT) is an adoptive immunotherapy strategy whose effectiveness relies on graft-versus-tumor (GVT) effect. We explored the feasibility of enhancing GVT after allo-HCT by peptide vaccination. Two myeloma patients were transplanted with a fludarabine-total body irradiation conditioning regimen and vaccinated with an HLA-A*0201-restricted modified survivin nonapeptide, plus montanide as adjuvant. At time of first vaccination, one patient had just attained serological remission despite documented relapse after transplant, while the other patient was in stable disease. Both patients had an immune response to vaccination: the frequency of survivin-specific CD8+ T cells increased between second and sixth vaccination and accounted for 0.5-0.8% of CD8+ cells; CD8+ cells were functional in ELISPOT assay. The first patient persists in complete remission with a follow-up of >5 years, while the second patient did not have a clinical response and vaccination was halted. We analyzed the T-cell receptor (TCR) repertoire of the first patient by spectratyping and found that vaccination did not affect the diversity of TCR profile, indicating that survivin clonotypes were probably spread in multiple TCR families. We generated a limited number (n = 4) of survivin-specific T cell clones: three were reactive only against the modified peptide, whereas one clone recognized also the naive peptide. Peptide vaccination is safe and applicable after allo-HCT and elicits an efficient antigen-specific T cell response without causing graft-versus-host disease.
Asunto(s)
Neoplasias Óseas/terapia , Linfocitos T CD8-positivos/inmunología , Enfermedad Injerto contra Huésped/prevención & control , Efecto Injerto vs Tumor/inmunología , Trasplante de Células Madre Hematopoyéticas , Mieloma Múltiple/terapia , Péptidos/inmunología , Survivin/inmunología , Neoplasias Óseas/secundario , Células Clonales , Citotoxicidad Inmunológica , Ensayo de Immunospot Ligado a Enzimas , Resultado Fatal , Femenino , Humanos , Inmunidad Celular , Masculino , Mieloma Múltiple/patología , Recurrencia Local de Neoplasia , Inducción de Remisión , Trasplante Homólogo , VacunaciónRESUMEN
Many patients with B-cell malignancies can be successfully treated, although tumor eradication is rarely achieved. T-cell-directed killing of tumor cells using engineered T-cells or bispecific antibodies is a promising approach for the treatment of hematologic malignancies. We investigated the efficacy of CD19xCD3 DART bispecific antibody in a broad panel of human primary B-cell malignancies. The CD19xCD3 DART identified 2 distinct subsets of patients, in which the neoplastic lymphocytes were eliminated with rapid or slow kinetics. Delayed responses were always overcome by a prolonged or repeated DART exposure. Both CD4 and CD8 effector cytotoxic cells were generated, and DART-mediated killing of CD4+ cells into cytotoxic effectors required the presence of CD8+ cells. Serial exposures to DART led to the exponential expansion of CD4 + and CD8 + cells and to the sequential ablation of neoplastic cells in absence of a PD-L1-mediated exhaustion. Lastly, patient-derived neoplastic B-cells (B-Acute Lymphoblast Leukemia and Diffuse Large B Cell Lymphoma) could be proficiently eradicated in a xenograft mouse model by DART-armed cytokine induced killer (CIK) cells. Collectively, patient tailored DART exposures can result in the effective elimination of CD19 positive leukemia and B-cell lymphoma and the association of bispecific antibodies with unmatched CIK cells represents an effective modality for the treatment of CD19 positive leukemia/lymphoma.
RESUMEN
Cancer immunotherapy with monoclonal antibodies directed against regulatory pathways in T lymphocytes has been revolutionizing medical oncology, and the clinical success of monoclonal antibodies targeting either cytotoxic T lymphocyte antigen-4 (CTLA-4) or program death-1 (PD-1) in patients affected by melanoma, Hodgkin's lymphoma, Merkel cell carcinoma, and head and neck, bladder, renal cell or non-small cell lung cancer is way beyond the most optimistic expectation. However, immune checkpoint blockade (ICB) has failed to arrest progression in a consistent amount of patients affected by those tumors, and various histological types, including breast, colon and prostate cancer, are less sensitive to this therapeutic approach. Such clinical findings have fueled massive research efforts in the attempt to identify pre-existing and acquired mechanisms of resistance to ICB. Here we focus on evidences emerging from studies in humans on how tumor cells and the tumor microenvironment contribute to the heterogeneous clinical responses, and we propose strategies stemming from pre-clinical models that might improve clinical outcomes for patients.
Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Resistencia a Antineoplásicos , Inmunoterapia , Neoplasias/terapia , Microambiente Tumoral , Animales , Antígeno CTLA-4/inmunología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Terapia Combinada , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia , Melanoma/terapia , Ratones , Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Linfocitos T/inmunologíaRESUMEN
miR-214 and miR-148b have been proposed to antagonize the effects of each other in enabling or blocking metastasis, respectively. In this study, we provide evidence deepening their role and interrelationship in the process of metastatic dissemination. Depleting miR-214 or elevating miR-148b blocked the dissemination of melanoma or breast cancer cells, an effect that could be accentuated by dual alteration. Mechanistic investigations indicated that dual alteration suppressed passage of malignant cells through the blood vessel endothelium by reducing expression of the cell adhesion molecules ITGA5 and ALCAM. Notably, transendothelial migration in vitro and extravasation in vivo impaired by singly alternating miR-214 or miR-148b could be overridden by overexpression of ITGA5 or ALCAM in the same tumor cells. In clinical specimens of primary breast cancer or metastatic melanoma, we found a positive correlation between miR-214 and ITGA5 or ALCAM along with an inverse correlation of miR-214 and miR-148b in the same specimens. Our findings define an antagonistic relationship of miR-214 and miR-148b in determining the dissemination of cancer cells via tumor-endothelial cell interactions, with possible implications for microRNA-mediated therapeutic interventions aimed at blocking cancer extravasation. Cancer Res; 76(17); 5151-62. ©2016 AACR.
Asunto(s)
Neoplasias de la Mama/patología , Melanoma/patología , MicroARNs/genética , Invasividad Neoplásica/genética , Animales , Antígenos CD/biosíntesis , Neoplasias de la Mama/genética , Moléculas de Adhesión Celular/biosíntesis , Moléculas de Adhesión Celular Neuronal/biosíntesis , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Células Endoteliales/patología , Femenino , Proteínas Fetales/biosíntesis , Regulación Neoplásica de la Expresión Génica/genética , Xenoinjertos , Humanos , Immunoblotting , Melanoma/genética , Ratones , Ratones Endogámicos NOD , Ratones SCIDRESUMEN
MicroRNAs are single-stranded non-coding RNAs that simultaneously down-modulate the expression of multiple genes post-transcriptionally by binding to the 3'UTRs of target mRNAs. Here we used computational methods to predict microRNAs relevant in breast cancer progression. Specifically, we applied different microRNA target prediction algorithms to various groups of differentially expressed protein-coding genes obtained from four breast cancer datasets. Six potential candidates were identified, among them miR-223, previously described to be highly expressed in the tumor microenvironment and known to be actively transferred into breast cancer cells. To investigate the function of miR-223 in tumorigenesis and to define its molecular mechanism, we overexpressed miR-223 in breast cancer cells in a transient or stable manner. Alternatively we overexpressed miR-223 in mouse embryonic fibroblasts or HEK293 cells and used their conditioned medium to treat tumor cells. With both approaches, we obtained elevated levels of miR-223 in tumor cells and observed decreased migration, increased cell death in anoikis conditions and augmented sensitivity to chemotherapy but no effect on adhesion and proliferation. The analysis of miR-223 predicted targets revealed enrichment in cell death and survival-related genes and in pathways frequently altered in breast cancer. Among these genes, we showed that protein levels for STAT5A, ITGA3 and NRAS were modulated by miR-223. In addition, we proved that STAT5A is a direct miR-223 target and highlighted a possible correlation between miR-223 and STAT5A in migration and chemotherapy response. Our investigation revealed that a computational analysis of cancer gene expression datasets can be a relevant tool to identify microRNAs involved in cancer progression and that miR-223 has a prominent role in breast malignancy that could potentially be exploited therapeutically.
Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , MicroARNs/genética , Regiones no Traducidas 3' , Anoicis/genética , Antineoplásicos/farmacología , Emparejamiento Base , Secuencia de Bases , Neoplasias de la Mama/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Biología Computacional , Bases de Datos Factuales , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , MicroARNs/química , MicroARNs/metabolismo , Procesamiento Postranscripcional del ARN , Factor de Transcripción STAT5/química , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Transducción de Señal/efectos de los fármacosRESUMEN
Cytokine-induced killer cells (CIKs) are ex vivo expanded T-NK lymphocytes capable of HLA-unrestricted antitumor activity. CIKs are promising candidates for adoptive cancer immunotherapies; they can be generated and infused in autologous settings of cancer patients, or from donors, after allogeneic hematopoietic cell transplant. Ex vivo expansion rates of CIKs are greatly variable among patients, with consequent potential clinical limitations for "poor expanders." We compared the standard expansion protocol with a new one, which included the timed addition of irradiated allogeneic peripheral blood mononuclear cells. Our hypothesis is that allogeneic stimulation might provide CIK cells with a proliferative boost and simultaneously decrease their alloreactivity versus third parties, if HLA-mismatched from the allogeneic stimulators. Allo-stimulated CIKs (AS-CIK) reached significantly higher expansion rates compared with standard controls, regardless if generated form healthy donors (131- vs. 32-fold) or cancer patients (117- vs. 14-fold). The expansion of the CD3CD56 subset was 2243-fold for AS-CIKs compared with 362 for standard CIKs. AS-CIKs efficiently killed osteosarcoma targets in vitro, results were comparable with that of standard CIKs. Standard and AS-CIKs did not show differences in phenotype and telomere length. The alloreactivity of AS-CIKs against third party HLA-mismatched peripheral blood mononuclear cells was reduced compared with standard CIKs (37% vs. 23%). In conclusion, alloreactivity of CIK cells may be exploited enhancing their final ex vivo expansion. In clinical perspective these findings may facilitate the extension of CIK-based immunotherapy to larger numbers of patients and, translated into hematopoietic cell transplant settings, contribute to reduce the risk of graft versus host disease in the hypothesis of infusions across HLA barriers.