Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 37(10): e23203, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37732638

RESUMEN

Exercise is widely recognized as beneficial for tendon healing. Recently, it has been described that muscle-derived molecules secreted in response to static exercise influence tendon healing. In this study, the optimal static loading intensity for tendon healing and the composition of secretome released by myoblasts in response to different intensities of static strain were investigated. In an in vitro coculture model, myoblasts were mechanically loaded using a Flexcell Tension System. Tenocytes were seeded on transwell inserts that allowed communication between the tenocytes and myoblasts without direct contact. Proliferation and migration assays, together with RNA sequencing, were used to determine potential cellular signaling pathways. The secretome from myoblasts exposed to 2% static loading increased the proliferation and migration of the cocultured tenocytes. RNA-seq analysis revealed that this loading condition upregulated the expression of numerous genes encoding secretory proteins, including insulin-like growth factor-1 (IGF-1). Confirmation of IGF-1 expression and secretion was carried out using qPCR and enzyme-linked immunosorbt assay (ELISA), revealing a statistically significant upregulation in response to 2% static loading in comparison to both control conditions and higher loading intensities of 5% and 10%. Addition of an inhibitor of the IGF-1 receptor (PQ401) to the tenocytes significantly reduced myoblast secretome-induced tenocyte proliferation. In conclusion, IGF-1 may be an important molecule in the statically loaded myoblast secretome, which is responsible for influencing tenocytes during exercise-induced healing.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Receptor IGF Tipo 1 , Tenocitos , Secretoma , Mioblastos , Proliferación Celular
2.
FASEB J ; 37(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37219456

RESUMEN

Achilles tendon rupture is a common debilitating medical condition. The healing process is slow and can be affected by heterotopic ossification (HO), which occurs when pathologic bone-like tissue is deposited instead of the soft collagenous tendon tissue. Little is known about the temporal and spatial progression of HO during Achilles tendon healing. In this study we characterize HO deposition, microstructure, and location at different stages of healing in a rat model. We use phase contrast-enhanced synchrotron microtomography, a state-of-the-art technique that allows 3D imaging at high-resolution of soft biological tissues without invasive or time-consuming sample preparation. The results increase our understanding of HO deposition, from the early inflammatory phase of tendon healing, by showing that the deposition is initiated as early as one week after injury in the distal stump and mostly growing on preinjury HO deposits. Later, more deposits form first in the stumps and then all over the tendon callus, merging into large, calcified structures, which occupy up to 10% of the tendon volume. The HOs were characterized by a looser connective trabecular-like structure and a proteoglycan-rich matrix containing chondrocyte-like cells with lacunae. The study shows the potential of 3D imaging at high-resolution by phase-contrast tomography to better understand ossification in healing tendons.


Asunto(s)
Tendón Calcáneo , Osificación Heterotópica , Animales , Ratas , Cicatrización de Heridas , Osteogénesis , Huesos
3.
FASEB J ; 34(10): 13409-13418, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32794252

RESUMEN

Elastic fibers containing elastin play an important role in tendon functionality, but the knowledge on presence and function of elastin during tendon healing is limited. The aim of this study was to investigate elastin content and distribution in intact and healing Achilles tendons and to understand how elastin influence the viscoelastic properties of tendons. The right Achilles tendon was completely transected in 81 Sprague-Dawley rats. Elastin content was quantified in intact and healing tendons (7, 14, and 28 days post-surgery) and elastin distribution was visualized by immunohistochemistry at 14 days post-surgery. Degradation of elastin by elastase incubation was used to study the role of elastin on viscoelastic properties. Mechanical testing was either performed as a cyclic test (20× 10 N) or as a creep test. We found significantly higher levels of elastin in healing tendons at all time-points compared to intact tendons (4% in healing tendons 28 days post-surgery vs 2% in intact tendons). The elastin was more widely distributed throughout the extracellular matrix in the healing tendons in contrast to the intact tendon where the distribution was not so pronounced. Elastase incubation reduced the elastin levels by approximately 30% and led to a 40%-50% reduction in creep. This reduction was seen in both intact and healing tendons. Our results show that healing tendons contain more elastin and is more compliable than intact tendons. The role of elastin in tendon healing and tissue compliance indicates a protective role of elastic fibers to prevent re-injuries during early tendon healing. PLAIN LANGUAGE SUMMARY: Tendons transfer high loads from muscles to bones during locomotion. They are primarily made by the protein collagen, a protein that provide strength to the tissues. Besides collagen, tendons also contain other building blocks such as, for example, elastic fibers. Elastic fibers contain elastin and elastin is important for the extensibility of the tendon. When a tendon is injured and ruptured the tissue heals through scar formation. This scar tissue is different from a normal intact tendon and it is important to understand how the tendons heal. Little is known about the presence and function of elastin during healing of tendon injuries. We have shown, in animal experiments, that healing tendons have higher amounts of elastin compared to intact tendons. The elastin is also spread throughout the tissue. When we reduced the levels of this protein, we discovered altered mechanical properties of the tendon. The healing tendon can normally extend quite a lot, but after elastin removal this extensibility was less obvious. The ability of the healing tissue to extend is probably important to protect the tendon from re-injuries during the first months after rupture. We therefore propose that the tendons heal with a large amount of elastin to prevent re-ruptures during early locomotion.


Asunto(s)
Tendón Calcáneo , Elastina/fisiología , Rotura/metabolismo , Traumatismos de los Tendones/metabolismo , Cicatrización de Heridas , Tendón Calcáneo/lesiones , Tendón Calcáneo/metabolismo , Animales , Fenómenos Biomecánicos , Femenino , Ratas , Ratas Sprague-Dawley
4.
Clin Orthop Relat Res ; 478(5): 1101-1108, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31913154

RESUMEN

BACKGROUND: Tendon loading might play a role in the development of heterotopic ossification after Achilles tendon ruptures. Early heavy loading on a healing tendon in animals has been shown to prolong the proinflammatory response, and inflammatory cells are thought to drive heterotopic ossification formation. Taken together, this suggests that early rehabilitation might influence heterotopic ossification development. QUESTIONS/PURPOSES: The purposes of this study were to investigate (1) whether the presence of heterotopic ossification after Achilles tendon ruptures influences clinical outcome and (2) whether early mobilization or weightbearing prevents the development of heterotopic ossification. METHODS: This was a retrospective analysis of 69 patients from a previous clinical trial. All patients were treated surgically, but with three different early rehabilitation protocols after surgery: late weightbearing and ankle immobilization, late weightbearing and ankle mobilization, and early weightbearing and ankle mobilization. Plain radiographs taken 2, 6, 12, 26, and 52 weeks postoperatively were analyzed for heterotopic ossification, which was detected in 19% of patients (13 of 69) at 52 weeks. Heterotopic ossification was measured, scored, and correlated to clinical outcomes; heel-raise index (HRI), ankle joint ROM, tendon strain, Achilles tendon rupture score (ATRS), and Victorian Institute of Sport Assessment-Achilles (VISA-A) questionnaire scores at 26 and 52 weeks postoperatively. RESULTS: Heterotopic ossification had no adverse effects on patient-reported outcomes (ATRS or VISA-A), tendon strain, or ROM. In fact, patients with heterotopic ossification tended to have a better HRI at 52 weeks compared with patients without (mean difference 14% [95% CI -0.2 to 27]; p = 0.053). Neither the occurrence (heterotopic ossification/no heterotopic ossification) nor the heterotopic ossification severity (ossification score) differed between the three rehabilitation groups. Seventeen percent of the patients (four of 24) with early functional rehabilitation (early weightbearing and ankle joint mobilization exercise) had heterotopic ossification (score, 2-3) while late weightbearing and immobilization resulted in heterotopic ossification in 13% of the patients (score, 3-4). CONCLUSIONS: Heterotopic ossification occurs relatively frequently after Achilles tendon ruptures but appears to have no adverse effects on functional outcomes. Furthermore, heterotopic ossification develops during the first 6 weeks after rupture, and weightbearing or ankle-joint mobilization does not prevent this from occurring. LEVEL OF EVIDENCE: Level III, prognostic study.


Asunto(s)
Tendón Calcáneo/lesiones , Osificación Heterotópica/etiología , Rotura/complicaciones , Traumatismos de los Tendones/complicaciones , Tendón Calcáneo/fisiopatología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Osificación Heterotópica/fisiopatología , Osificación Heterotópica/prevención & control , Modalidades de Fisioterapia , Recuperación de la Función/fisiología , Estudios Retrospectivos , Rotura/rehabilitación , Traumatismos de los Tendones/fisiopatología , Traumatismos de los Tendones/rehabilitación , Resultado del Tratamiento , Soporte de Peso/fisiología
5.
Cell Tissue Res ; 370(3): 451-460, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28975451

RESUMEN

The role of inflammation and the mechanism of tendon healing after rupture has historically been a matter of controversy. The purpose of the present study is to investigate the role of mast cells and their relation to the NMDA receptor-1 (a glutamate receptor) during healing after Achilles tendon rupture. Eight female Sprague Dawley rats had their right Achilles tendon transected. Three weeks after rupture, histological quantification of mast cell numbers and their state of degranulation was assessed by histochemistry. Co-localization of mast cell tryptase (a mast cell marker) and NMDA receptor-1 was determined by immunofluorescence. The intact left Achilles tendon was used as control. An increased number of mast cells and a higher proportion of degranulated mast cells were found in the healing Achilles tendon compared to the intact. In addition, increased co-localization of mast cell tryptase and NMDA receptor-1 was seen in the areas of myotendinous junction, mid-tendon proper and bone tendon junction of the healing versus the intact tendon. These findings introduce a possible role for mast cells in the healing phase after Achilles tendon rupture.


Asunto(s)
Tendón Calcáneo/lesiones , Degranulación de la Célula/fisiología , Mastocitos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Traumatismos de los Tendones/patología , Cicatrización de Heridas/fisiología , Tendón Calcáneo/patología , Animales , Fenómenos Biomecánicos , Recuento de Células , Femenino , Ratas , Ratas Sprague-Dawley , Triptasas/metabolismo
6.
J Biol Chem ; 290(26): 16440-50, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-25979340

RESUMEN

Lysyl oxidases (LOXs) are a family of copper-dependent oxido-deaminases that can modify the side chain of lysyl residues in collagen and elastin, thereby leading to the spontaneous formation of non-reducible aldehyde-derived interpolypeptide chain cross-links. The consequences of LOX inhibition in producing lathyrism are well documented, but the consequences on collagen fibril formation are less clear. Here we used ß-aminoproprionitrile (BAPN) to inhibit LOX in tendon-like constructs (prepared from human tenocytes), which are an experimental model of cell-mediated collagen fibril formation. The improvement in structure and strength seen with time in control constructs was absent in constructs treated with BAPN. As expected, BAPN inhibited the formation of aldimine-derived cross-links in collagen, and the constructs were mechanically weak. However, an unexpected finding was that BAPN treatment led to structurally abnormal collagen fibrils with irregular profiles and widely dispersed diameters. Of special interest, the abnormal fibril profiles resembled those seen in some Ehlers-Danlos Syndrome phenotypes. Importantly, the total collagen content developed normally, and there was no difference in COL1A1 gene expression. Collagen type V, decorin, fibromodulin, and tenascin-X proteins were unaffected by the cross-link inhibition, suggesting that LOX regulates fibrillogenesis independently of these molecules. Collectively, the data show the importance of LOX for the mechanical development of early collagenous tissues and that LOX is essential for correct collagen fibril shape formation.


Asunto(s)
Síndrome de Ehlers-Danlos/enzimología , Colágenos Fibrilares/metabolismo , Proteína-Lisina 6-Oxidasa/metabolismo , Tendones/enzimología , Adolescente , Adulto , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/metabolismo , Femenino , Colágenos Fibrilares/genética , Humanos , Masculino , Proteína-Lisina 6-Oxidasa/genética , Tendones/metabolismo , Adulto Joven
7.
Eur J Nucl Med Mol Imaging ; 43(10): 1868-77, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27072812

RESUMEN

PURPOSE: Following Achilles tendon rupture, running is often allowed after 6 months. However, tendon healing is slow and the metabolic status of the tendon at this point is unknown. The purpose of this study was to investigate tendon metabolism (glucose uptake) and vascularization at 3, 6 and 12 months after Achilles tendon rupture as measured using PET and power Doppler ultrasonography (PDUS). METHODS: The study group comprised 23 patients with surgically repaired Achilles tendon rupture who were investigated at 3 months (n = 7), 6 months (n = 7) and 12 months (n = 9) after surgery. The triceps surae complex was loaded over 20 min of slow treadmill walking while a radioactive tracer ((18)F-FDG) was administered prior to PET. Vascularization was measured in terms of PDUS flow activity, and patient-reported outcomes were scored using the Achilles tendon rupture score (ATRS) and sports assessment (VISA-A) questionnaire. RESULTS: Relative glucose uptake ((18)F-FDG) was higher in repaired tendons than in intact tendons at all time-points (6, 3 and 1.6 times higher at 3, 6 and 12 months, respectively; P ≤ 0.001), and was also higher in the tendon core than in the periphery at 3 and 6 months (P ≤ 0.02), but lower at 12 months (P = 0.06). Relative glucose uptake was negatively related to ATRS at 6 months after repair (r = -0.89, P ≤ 0.01). PDUS flow activity was higher in repaired tendons than in intact tendons at 3 and 6 months (P < 0.05 for both), but had normalized by 12 months. CONCLUSION: These data demonstrate that the healing process as determined by metabolic activity and vascularization continues for 6 months after injury when large loads are typically allowed on the tendon. Indeed, metabolic activity remained elevated for more than 1 year after injury despite normalized vascularization. The robust negative correlation between tendon metabolism and patient-reported outcome suggests that a high metabolic activity 6 months after the injury may be related to a poor clinical healing outcome.


Asunto(s)
Tendón Calcáneo/lesiones , Tendón Calcáneo/metabolismo , Fluorodesoxiglucosa F18/farmacocinética , Rotura/metabolismo , Rotura/cirugía , Tenotomía , Tendón Calcáneo/cirugía , Adulto , Femenino , Humanos , Estudios Longitudinales , Masculino , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Recuperación de la Función , Reproducibilidad de los Resultados , Rotura/diagnóstico por imagen , Sensibilidad y Especificidad , Distribución Tisular , Resultado del Tratamiento
8.
Sci Rep ; 14(1): 15304, 2024 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961188

RESUMEN

Inflammation, corticosteroids, and loading all affect tendon healing, with an interaction between them. However, underlying mechanisms behind the effect of corticosteroids and the interaction with loading remain unclear. The aim of this study was to investigate the role of dexamethasone during tendon healing, including specific effects on tendon cells. Rats (n = 36) were randomized to heavy loading or mild loading, the Achilles tendon was transected, and animals were treated with dexamethasone or saline. Gene and protein analyses of the healing tendon were performed for extracellular matrix-, inflammation-, and tendon cell markers. We further tested specific effects of dexamethasone on tendon cells in vitro. Dexamethasone increased mRNA levels of S100A4 and decreased levels of ACTA2/α-SMA, irrespective of load level. Heavy loading + dexamethasone reduced mRNA levels of FN1 and TenC (p < 0.05), while resolution-related genes were unaltered (p > 0.05). In contrast, mild loading + dexamethasone increased mRNA levels of resolution-related genes ANXA1, MRC1, PDPN, and PTGES (p < 0.03). Altered protein levels were confirmed in tendons with mild loading. Dexamethasone treatment in vitro prevented tendon construct formation, increased mRNA levels of S100A4 and decreased levels of SCX and collagens. Dexamethasone during tendon healing appears to act through immunomodulation by promoting resolution, but also through an effect on tendon cells.


Asunto(s)
Tendón Calcáneo , Dexametasona , Traumatismos de los Tendones , Cicatrización de Heridas , Dexametasona/farmacología , Animales , Ratas , Cicatrización de Heridas/efectos de los fármacos , Traumatismos de los Tendones/tratamiento farmacológico , Traumatismos de los Tendones/metabolismo , Tendón Calcáneo/efectos de los fármacos , Tendón Calcáneo/metabolismo , Tendón Calcáneo/lesiones , Tendón Calcáneo/patología , Proteína de Unión al Calcio S100A4/metabolismo , Proteína de Unión al Calcio S100A4/genética , Masculino , Anexina A1/metabolismo , Anexina A1/genética , Actinas/metabolismo , Actinas/genética , Colágeno/metabolismo , Ratas Sprague-Dawley , Tendones/efectos de los fármacos , Tendones/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de los fármacos , ARN Mensajero/metabolismo , ARN Mensajero/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico
9.
Acta Biomater ; 174: 245-257, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38096959

RESUMEN

Recovery of the collagen structure following Achilles tendon rupture is poor, resulting in a high risk for re-ruptures. The loading environment during healing affects the mechanical properties of the tendon, but the relation between loading regime and healing outcome remains unclear. This is partially due to our limited understanding regarding the effects of loading on the micro- and nanostructure of the healing tissue. We addressed this through a combination of synchrotron phase-contrast X-ray microtomography and small-angle X-ray scattering tensor tomography (SASTT) to visualize the 3D organization of microscale fibers and nanoscale fibrils, respectively. The effect of in vivo loading on these structures was characterized in early healing of rat Achilles tendons by comparing full activity with immobilization. Unloading resulted in structural changes that can explain the reported impaired mechanical performance. In particular, unloading led to slower tissue regeneration and maturation, with less and more disorganized collagen, as well as an increased presence of adipose tissue. This study provides the first application of SASTT on soft musculoskeletal tissues and clearly demonstrates its potential to investigate a variety of other collagenous tissues. STATEMENT OF SIGNIFICANCE: Currently our understanding of the mechanobiological effects on the recovery of the structural hierarchical organization of injured Achilles tendons is limited. We provide insight into how loading affects the healing process by using a cutting-edge approach to for the first time characterize the 3D micro- and nanostructure of the regenerating collagen. We uncovered that, during early healing, unloading results in a delayed and more disorganized regeneration of both fibers (microscale) and fibrils (nanoscale), as well as increased presence of adipose tissue. The results set the ground for the development of further specialized protocols for tendon recovery.


Asunto(s)
Tendón Calcáneo , Traumatismos de los Tendones , Ratas , Animales , Tendón Calcáneo/diagnóstico por imagen , Colágeno/farmacología , Cicatrización de Heridas , Tomografía por Rayos X
10.
Am J Sports Med ; 52(1): 164-173, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38164679

RESUMEN

BACKGROUND: Both acute and chronic Achilles tendon ruptures are affected by alterations in the extracellular matrix during the healing process of the tendon. Yet, these alterations in gene expression patterns are not well characterized. PURPOSE: To characterize temporal and spatial differences in gene expression patterns after an Achilles tendon rupture and to evaluate if cells from chronic Achilles tendon ruptures have the same ability to form new tendon tissue (tendon constructs) as healthy tendon cells. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 35 patients with surgically treated Achilles tendon ruptures were included in the study and divided into 3 groups: acute (<4 weeks), short-term chronic (1-6 months), and long-term chronic (>6 months). Biopsy specimens were collected during surgical repair and were used to analyze the gene expression within the different groups and to compare mRNA levels in the proximal and distal tendon ends. A complementary in vitro experiment was performed to evaluate if cells from chronic Achilles tendon ruptures can form tendon constructs. RESULTS: The mRNA levels for COL1A1 and COL3A1 were significantly higher in the short-term chronic group compared with the acute group (P < .05). Both MMP-1 and MMP-13 had the highest mRNA levels in the acute group (P < .01) compared with the long-term chronic group, while MMP-2 had the highest mRNA level in the short-term chronic group. Significant differences between the proximal and distal tendon ends were only detected for the monocyte and macrophage marker CD163 (P < .05), which was more expressed proximally. Cells extracted from chronic Achilles tendon ruptures displayed a similar ability and effectiveness to form tendon constructs as healthy tendon cells. CONCLUSION: A high collagenase gene activity after an Achilles tendon rupture indicated possible rapid matrix degradation in the acute phase. Chronic ruptures appeared to initiate the healing process even before treatment, indicated by the higher expression of collagen in the short-term chronic group. Cells from chronic Achilles tendon ruptures also displayed an ability to form new tendon tissue in vitro. CLINICAL RELEVANCE: The study shows a rapid increase in collagenase gene expression, which could lead to matrix degradation that continues for months after an Achilles tendon rupture.


Asunto(s)
Tendón Calcáneo , Traumatismos del Tobillo , Traumatismos de los Tendones , Humanos , Interleucina-6 , Tendón Calcáneo/cirugía , Traumatismos de los Tendones/genética , Traumatismos de los Tendones/cirugía , Traumatismos de los Tendones/patología , Rotura/cirugía , Colagenasas , ARN Mensajero , Expresión Génica , Resultado del Tratamiento
11.
J Struct Biol X ; 7: 100087, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36938139

RESUMEN

Heterotopic mineralization entails pathological mineral formation inside soft tissues. In human tendons mineralization is often associated with tendinopathies, tendon weakness and pain. In Achilles tendons, mineralization is considered to occur through heterotopic ossification (HO) primarily in response to tendon pathologies. However, refined details regarding HO deposition and microstructure are unknown. In this study, we characterize HO in intact rat Achilles tendons through high-resolution phase contrast enhanced synchrotron X-ray tomography. Furthermore, we test the potential of studying local tissue injury by needling intact Achilles tendons and the relation between tissue microdamage and HO. The results show that HO occurs in all intact Achilles tendons at 16 weeks of age. HO deposits are characterized by an elongated ellipsoidal shape and by a fiber-like internal structure which suggests that some collagen fibers have mineralized. The data indicates that deposition along fibers initiates in the pericellular area, and propagates into the intercellular area. Within HO deposits cells are larger and more rounded compared to tenocytes between unmineralized fibers, which are fewer and elongated. The results also indicate that multiple HO deposits may merge into bigger structures with time by accession along unmineralized fibers. Furthermore, the presence of unmineralized regions within the deposits may indicate that HOs are not only growing, but mineral resorption may also occur. Additionally, phase contrast synchrotron X-ray tomography allowed to distinguish microdamage at the fiber level in response to needling. The needle injury protocol could in the future enable to elucidate the relation between local inflammation, microdamage, and HO deposition.

12.
Acta Biomater ; 168: 264-276, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37479155

RESUMEN

Tendons are collagen-based connective tissues where the composition, structure and mechanics respond and adapt to the local mechanical environment. Adaptation to prolonged inactivity can result in stiffer tendons that are more prone to injury. However, the complex relation between reduced loading, structure, and mechanical performance is still not fully understood. This study combines mechanical testing with high-resolution synchrotron X-ray imaging, scattering techniques and histology to elucidate how reduced loading affects the structural properties and mechanical response of rat Achilles tendons on multiple length scales. The results show that reduced in vivo loading leads to more crimped and less organized fibers and this structural inhomogeneity could be the reason for the altered mechanical response. Unloading also seems to change the fibril response, possibly by altering the strain partitioning between hierarchical levels, and to reduce cell density. This study elucidates the relation between in vivo loading, the Achilles tendon nano-, meso­structure and mechanical response. The results provide fundamental insights into the mechanoregulatory mechanisms guiding the intricate biomechanics, tissue structural organization, and performance of complex collagen-based tissues. STATEMENT OF SIGNIFICANCE: Achilles tendon properties allow a dynamic interaction between muscles and tendon and influence force transmission during locomotion. Lack of physiological loading can have dramatic effects on tendon structure and mechanical properties. We have combined the use of cutting-edge high-resolution synchrotron techniques with mechanical testing to show how reduced loading affects the tendon on multiple hierarchical levels (from nanoscale up to whole organ) clarifying the relation between structural changes and mechanical performance. Our findings set the first step to address a significant healthcare challenge, such as the design of tailored rehabilitations that take into consideration structural changes after tendon immobilization.


Asunto(s)
Tendón Calcáneo , Traumatismos de los Tendones , Ratas , Animales , Tendón Calcáneo/fisiología , Tejido Conectivo/patología , Traumatismos de los Tendones/patología , Colágeno , Fibras Musculares Esqueléticas , Fenómenos Biomecánicos
13.
Matrix Biol ; 115: 32-47, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36435426

RESUMEN

The specific viscoelastic mechanical properties of Achilles tendons are highly dependent on the structural characteristics of collagen at and between all hierarchical levels. Research has been conducted on the deformation mechanisms of positional tendons and single fibrils, but knowledge about the coupling between the whole tendon and nanoscale deformation mechanisms of more commonly injured energy-storing tendons, such as Achilles tendons, remains sparse. By exploiting the highly periodic arrangement of tendons at the nanoscale, in situ loading of rat Achilles tendons during small-angle X-ray scattering acquisition was used to investigate the collagen structural response during load to rupture, cyclic loading and stress relaxation. The fibril strain was substantially lower than the applied tissue strain. The fibrils strained linearly in the elastic region of the tissue, but also exhibited viscoelastic properties, such as an increased stretchability and recovery during cyclic loading and fibril strain relaxation during tissue stress relaxation. We demonstrate that the changes in the width of the collagen reflections could be attributed to strain heterogeneity and not changes in size of the coherently diffracting domains. Fibril strain heterogeneity increased with applied loads and after the toe region, fibrils also became increasingly disordered. Additionally, a thorough evaluation of radiation damage was performed. In conclusion, this study clearly displays the simultaneous structural response and adaption of the collagen fibrils to the applied tissue loads and provide novel information about the transition of loads between length scales in the Achilles tendon.


Asunto(s)
Tendón Calcáneo , Ratas , Animales , Tendón Calcáneo/fisiología , Fenómenos Biomecánicos , Colágeno/química , Matriz Extracelular
14.
J Appl Physiol (1985) ; 135(2): 326-333, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37348011

RESUMEN

Permanent loss of muscle function seen after an Achilles tendon rupture may partly be explained by tendon elongation and accompanying shortening of the muscle. Muscle fascicle length shortens, serial sarcomere number is reduced, and the sarcomere length is unchanged after Achilles tendon transection (ATT), and these changes are mitigated with suturing. The method involved in this study was a controlled laboratory study. Two groups of rats underwent ATT on one side with a contralateral control (CTRL): A) ATT with 3 mm removal of the Achilles tendon and no suturing (substantial tendon elongation), and B) ATT with suture repair (minimal tendon elongation). The operated limb was immobilized for 2 wk to reduce load. Four weeks after surgery the rats were euthanized, and hindlimbs were analyzed for tendon length, gastrocnemius medialis (GM) muscle mass, length, fascicle length, sarcomere number and length. No differences were observed between the groups, and in both groups the Achilles tendon length was longer (15.2%, P < 0.001), GM muscle mass was smaller (17.5%, P < 0.001), and muscle length was shorter (8.2%, P < 0.001) on the ATT compared with CTRL side. GM fascicle length was shorter (11.2%, P < 0.001), and sarcomere number was lower (13.8%, P < 0.001) on the ATT side in all regions. Sarcomere length was greater in the proximal (5.8%, P < 0.001) and mid (4.2%, P = 0.003), but not distal region on the ATT side. In this animal model, regardless of suturing, ATT resulted in tendon elongation, loss of muscle mass and length, and reduced serial sarcomere number, which resulted in an "overshoot" lengthening of the sarcomeres.NEW & NOTEWORTHY Following acute Achilles tendon rupture, patients are often left with functional deficits. The specific reason remains largely unknown. The shortened muscle leads to reduced fascicle length, in turn leading to adaptation by reduced serial sarcomere numbers. Surprisingly, this adaptation appears to "overshoot" and lead to increased sarcomere length. The present animal model advances understanding of how muscle sarcomeres, which are difficult to measure in humans, are affected when undue elongation takes place after tendon rupture.


Asunto(s)
Tendón Calcáneo , Músculo Esquelético , Humanos , Femenino , Animales , Ratas , Tendón Calcáneo/lesiones , Tendón Calcáneo/fisiología , Músculo Esquelético/fisiología , Adaptación Fisiológica , Sarcómeros/fisiología , Rotura
15.
Acta Orthop ; 83(3): 305-10, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22616743

RESUMEN

BACKGROUND AND PURPOSE: Should blockade of TNF-α be avoided after orthopedic surgery? Healing of injuries in soft tissues and bone starts with a brief inflammatory phase. Modulation of inflammatory signaling might therefore interfere with healing. For example, Cox inhibitors impair healing in animal models of tendon, ligament, and bone injury, as well as in fracture patients. TNF-α is expressed locally at increased levels during early healing of these tissues. We therefore investigated whether blocking of TNF-α with etanercept influences the healing process in established rat models of injury of tendons and metaphyseal bone. METHODS: Rats were injected with etanercept, 3.5 mg/kg 3 times a week. Healing of transected Achilles tendons and bone healing around screws implanted in the tibial metaphysis were estimated by mechanical testing. Tendons were allowed to heal either with or without mechanical loading. Ectopic bone induction following intramuscular BMP-2 implants has previously been shown to be stimulated by etanercept in rodents. This was now tested as a positive control. RESULTS: Tendon peak force after 10 days was not significantly influenced by etanercept. Changes exceeding 29% could be excluded with 95% confidence. Likewise, screw pull-out force was not significantly influenced. More than 25% decrease or 18% increase could be excluded with 95% confidence. However, etanercept treatment increased the amount of bone induced by intramuscular BMP-2 implants, as estimated by blind histological scoring. INTERPRETATION: Etanercept does not appear to impair tendon or metaphyseal bone healing to any substantial degree.


Asunto(s)
Tendón Calcáneo/lesiones , Antiinflamatorios no Esteroideos/farmacología , Inmunoglobulina G/farmacología , Cicatrización de Heridas/efectos de los fármacos , Músculos Abdominales , Análisis de Varianza , Animales , Tornillos Óseos/efectos adversos , Etanercept , Osificación Heterotópica/tratamiento farmacológico , Osificación Heterotópica/etiología , Prótesis e Implantes/efectos adversos , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Receptores del Factor de Necrosis Tumoral , Tibia/lesiones
16.
Acta Orthop ; 83(5): 523-8, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23043271

RESUMEN

BACKGROUND AND PURPOSE: Extracellular matrix remodeling is altered in rotator cuff tears, partly due to altered expression of matrix metalloproteinases (MMPs) and their inhibitors. It is unclear whether this altered expression can be traced as changes in plasma protein levels. We measured the plasma levels of MMPs and their tissue inhibitors (TIMPs) in patients with rotator cuff tears and related changes in the pattern of MMP and TIMP levels to the extent of the rotator cuff tear. METHODS: Blood samples were collected from 17 patients, median age 61 (39-77) years, with sonographically verified rotator cuff tears (partial- or full-thickness). These were compared with 16 age- and sex-matched control individuals with sonographically intact rotator cuffs. Plasma levels of MMPs and TIMPs were measured simultaneously using Luminex technology and ELISA. RESULTS: The plasma levels of TIMP-1 were elevated in patients with rotator cuff tears, especially in those with full-thickness tears. The levels of TIMP-1, TIMP-3, and MMP-9 were higher in patients with full-thickness tears than in those with partial-thickness tears, but only the TIMP-1 levels were significantly different from those in the controls. INTERPRETATION: The observed elevation of TIMP-1 in plasma might reflect local pathological processes in or around the rotator cuff, or a genetic predisposition in these patients. That the levels of TIMP-1 and of certain MMPs were found to differ significantly between partial and full-thickness tears may reflect the extent of the lesion or different etiology and pathomechanisms.


Asunto(s)
Lesiones del Manguito de los Rotadores , Traumatismos de los Tendones/sangre , Inhibidor Tisular de Metaloproteinasa-1/sangre , Adulto , Anciano , Humanos , Metaloproteinasas de la Matriz/sangre , Persona de Mediana Edad , Manguito de los Rotadores/diagnóstico por imagen , Traumatismos de los Tendones/diagnóstico por imagen , Inhibidores Tisulares de Metaloproteinasas/sangre , Ultrasonografía
17.
Am J Sports Med ; 50(5): 1306-1316, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35234541

RESUMEN

BACKGROUND: Corticosteroid treatments such as dexamethasone are commonly used to treat tendinopathy but with mixed outcomes. Although this treatment can cause tendon rupture, it can also stimulate the tendon to heal. However, the mechanisms behind corticosteroid treatment during tendon healing are yet to be understood. PURPOSE: To comprehend when and how dexamethasone treatment can ameliorate injured tendons by using a rat model of Achilles tendon healing. STUDY DESIGN: Controlled laboratory study. METHODS: An overall 320 rats were used for a sequence of 6 experiments. We investigated whether the drug effect was time-, dose-, and load-dependent. Additionally, morphological data and drug administration routes were examined. Healing tendons were tested mechanically or used for histological examination 12 days after transection. Blood was collected for flow cytometry analysis in 1 experiment. RESULTS: We found that the circadian rhythm and drug injection timing influenced the treatment outcome. Dexamethasone treatment at the right time point (days 7-11) and dose (0.1 mg/kg) significantly improved the material properties of the healing tendon, while the adverse effects were reduced. Local dexamethasone treatment did not lead to increased peak stress, but it triggered systemic granulocytosis and lymphopenia. Mechanical loading (full or moderate) is essential for the positive effects of dexamethasone, as complete unloading leads to the absence of improvements. CONCLUSION: We conclude that dexamethasone treatment to improve Achilles tendon healing is dose- and time-dependent, and positive effects are perceived even in a partly unloaded condition. CLINICAL RELEVANCE: These findings are promising from a clinical perspective, as the positive effect of this drug was seen even when given at lower doses and in a moderate loading condition, which better mimics the load level in patients with tendon ruptures.


Asunto(s)
Tendón Calcáneo , Traumatismos de los Tendones , Tendón Calcáneo/lesiones , Animales , Fenómenos Biomecánicos , Dexametasona/farmacología , Modelos Animales de Enfermedad , Humanos , Ratas , Traumatismos de los Tendones/terapia , Cicatrización de Heridas
18.
Am J Sports Med ; 50(12): 3286-3298, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36005394

RESUMEN

BACKGROUND: Early tensile loading improves material properties of healing Achilles tendon ruptures in animal models and in surgically treated human ruptures. However, the effect of such rehabilitation in patients who are nonsurgically treated remains unknown. HYPOTHESIS: In nonsurgically treated Achilles tendon ruptures, early tensile loading would lead to higher elastic modulus 19 weeks after the injury compared with controls. STUDY DESIGN: Randomized controlled trial; Level of evidence, 2. METHODS: Between October 2015 and November 2018, a total of 40 nonsurgically treated patients with acute Achilles tendon rupture were randomized to an early tensile loading (loaded group) or control group. Tantalum bead markers were inserted percutaneously into the tendon stumps 2 weeks after the injury to allow high-precision measurements of callus deformation under mechanical testing. The loaded group used a training pedal twice daily to produce a gradual increase in tensile load during the following 5 weeks. Both groups were allowed full weightbearing in an ankle orthosis and unloaded range of motion exercises. Patients were followed clinically and via roentgen stereophotogrammetric analysis and computed tomography at 7, 19, and 52 weeks after the injury. RESULTS: The mean ± standard deviation elastic modulus at 19 weeks was 95.6 ± 38.2 MPa in the loaded group and 108 ± 45.2 MPa in controls (P = .37). The elastic modulus increased in both groups, although it was lower in the loaded group at all time points. Tendon cross-sectional area increased from 7 weeks to 19 weeks, from 231 ± 99.5 to 388 ± 142 mm2 in the loaded group and from 188 ± 65.4 to 335 ± 87.2 mm2 in controls (P < .001 for the effect of time). Cross-sectional area for the loaded group versus controls at 52 weeks was 302 ± 62.4 mm2 versus 252 ± 49.2 mm2, respectively (P = .03). Gap elongation was 7.35 ± 13.9 mm in the loaded group versus 2.86 ± 5.52 mm in controls (P = .27). CONCLUSION: Early tensile loading in nonsurgically treated Achilles tendon ruptures did not lead to higher elastic modulus in the healing tendon but altered the structural properties of the tendon via an increased tendon thickness. REGISTRATION: NCT0280575 (ClinicalTrials.gov identifier).


Asunto(s)
Tendón Calcáneo , Traumatismos del Tobillo , Traumatismos de los Tendones , Tendón Calcáneo/lesiones , Tendón Calcáneo/cirugía , Módulo de Elasticidad , Humanos , Rotura/cirugía , Tantalio , Traumatismos de los Tendones/rehabilitación , Traumatismos de los Tendones/cirugía , Resultado del Tratamiento
19.
Br J Haematol ; 155(2): 198-208, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21848891

RESUMEN

Recent findings have indicated that tyrosine kinase inhibitors (TKIs) targeting the ERBB receptor family display anti-leukaemic effects, despite the lack of receptor expression on human leukaemic cells. The occurrence of activating mutations in the gene encoding FMS-like tyrosine kinase 3 (FLT3) in patients with acute myeloid leukaemia (AML) has rendered inhibition of this receptor a promising therapeutic target. Due to possibility of cross-reactivity, we investigated the effect of the irreversible pan-ERBB inhibitor canertinib (CI-1033) on leukaemic cells expressing FLT3. The drug had anti-proliferative and apoptotic effects on primary AML cells and human leukaemic cell lines expressing mutated FLT3. In several AML patient samples, a blast cell population expressing FLT3-internal tandem duplication (ITD) was eradicated by canertinib. Canertinib inhibited receptor autophosphorylation and kinase activity of both mutated and FLT3 ligand stimulated wildtype FLT3, leading to inhibition of the PI3-kinase and MAP kinase pathways. Apoptotic induction was dependent on pro-apoptotic BH3-only protein BCL2L11/BIM because siRNA silencing attenuated apoptosis. Moreover, the drug induced regression of cells expressing FLT3-ITD in a murine in vivo-transplantation model at previously described tolerated doses. These results indicate that canertinib, as an irreversible TKI, could constitute a novel treatment regimen in patients with mutated or overexpressed FLT3.


Asunto(s)
Leucemia Mieloide Aguda/tratamiento farmacológico , Morfolinas/uso terapéutico , Proteínas Oncogénicas v-erbB/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/enzimología , Humanos , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos DBA , Morfolinas/farmacología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Trasplante de Neoplasias , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/enzimología , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Secuencias Repetidas en Tándem , Células Tumorales Cultivadas/efectos de los fármacos , Células Tumorales Cultivadas/enzimología , Tirosina Quinasa 3 Similar a fms/genética
20.
Blood ; 113(10): 2302-11, 2009 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-19064725

RESUMEN

Constitutively activating internal tandem duplications (ITD) of FLT3 (FMS-like tyrosine kinase 3) are the most common mutations in acute myeloid leukemia (AML) and correlate with poor prognosis. Receptor tyrosine kinase inhibitors targeting FLT3 have developed as attractive treatment options. Because relapses occur after initial responses, identification of FLT3-ITD-mediated signaling events are important to facilitate novel therapeutic interventions. Here, we have determined the growth-inhibitory and proapoptotic mechanisms of 2 small molecule inhibitors of FLT3, AG1295 or PKC412, in hematopoietic progenitor cells, human leukemic cell lines, and primary AML cells expressing FLT3-ITD. Inactivation of the PI3-kinase pathway, but not of Ras-mitogen-activated protein (MAP) kinase signaling, was essential to elicit cytotoxic responses. Both compounds induced up-regulation of proapoptotic BH3-only proteins Bim and Puma, and subsequent cell death. However, only silencing of Bim, or its direct transcriptional activator FOXO3a, abrogated apoptosis efficiently. Similar findings were made in bone marrow cells from gene-targeted mice lacking Bim and/or Puma infected with FLT3-ITD and treated with inhibitor, where loss of Puma only provided transient protection from apoptosis, but loss of Bim preserved clonal survival upon FLT3-ITD inhibition.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/efectos de los fármacos , Leucemia Mieloide Aguda/metabolismo , Proteínas de la Membrana/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/metabolismo , Tirosina Quinasa 3 Similar a fms/genética , Animales , Proteínas Reguladoras de la Apoptosis/efectos de los fármacos , Proteína 11 Similar a Bcl2 , Western Blotting , Línea Celular Tumoral , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/efectos de los fármacos , Factores de Transcripción Forkhead/metabolismo , Células Madre Hematopoyéticas/efectos de los fármacos , Humanos , Inmunoprecipitación , Leucemia Mieloide Aguda/genética , Proteínas de la Membrana/efectos de los fármacos , Ratones , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Estaurosporina/análogos & derivados , Estaurosporina/farmacología , Transducción Genética , Tirfostinos/farmacología , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA