Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Nucl Med Mol Imaging ; 49(13): 4478-4489, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35831715

RESUMEN

BACKGROUND: In patients with mild cognitive impairment (MCI), enhanced cerebral amyloid-ß plaque burden is a high-risk factor to develop dementia with Alzheimer's disease (AD). Not all patients have immediate access to the assessment of amyloid status (A-status) via gold standard methods. It may therefore be of interest to find suitable biomarkers to preselect patients benefitting most from additional workup of the A-status. In this study, we propose a machine learning-based gatekeeping system for the prediction of A-status on the grounds of pre-existing information on APOE-genotype 18F-FDG PET, age, and sex. METHODS: Three hundred and forty-two MCI patients were used to train different machine learning classifiers to predict A-status majority classes among APOE-ε4 non-carriers (APOE4-nc; majority class: amyloid negative (Aß-)) and carriers (APOE4-c; majority class: amyloid positive (Aß +)) from 18F-FDG-PET, age, and sex. Classifiers were tested on two different datasets. Finally, frequencies of progression to dementia were compared between gold standard and predicted A-status. RESULTS: Aß- in APOE4-nc and Aß + in APOE4-c were predicted with a precision of 87% and a recall of 79% and 51%, respectively. Predicted A-status and gold standard A-status were at least equally indicative of risk of progression to dementia. CONCLUSION: We developed an algorithm allowing approximation of A-status in MCI with good reliability using APOE-genotype, 18F-FDG PET, age, and sex information. The algorithm could enable better estimation of individual risk for developing AD based on existing biomarker information, and support efficient selection of patients who would benefit most from further etiological clarification. Further potential utility in clinical routine and clinical trials is discussed.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Disfunción Cognitiva , Humanos , Apolipoproteína E4/genética , Fluorodesoxiglucosa F18 , Reproducibilidad de los Resultados , Control de Acceso , Tomografía de Emisión de Positrones , Disfunción Cognitiva/diagnóstico por imagen , Péptidos beta-Amiloides , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Amiloide , Biomarcadores
2.
Nat Commun ; 10(1): 5409, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31776335

RESUMEN

Machine learning algorithms can be trained to estimate age from brain structural MRI. The difference between an individual's predicted and chronological age, predicted age difference (PAD), is a phenotype of relevance to aging and brain disease. Here, we present a new deep learning approach to predict brain age from a T1-weighted MRI. The method was trained on a dataset of healthy Icelanders and tested on two datasets, IXI and UK Biobank, utilizing transfer learning to improve accuracy on new sites. A genome-wide association study (GWAS) of PAD in the UK Biobank data (discovery set: [Formula: see text], replication set: [Formula: see text]) yielded two sequence variants, rs1452628-T ([Formula: see text], [Formula: see text]) and rs2435204-G ([Formula: see text], [Formula: see text]). The former is near KCNK2 and correlates with reduced sulcal width, whereas the latter correlates with reduced white matter surface area and tags a well-known inversion at 17q21.31 (H2).


Asunto(s)
Envejecimiento , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Aprendizaje Profundo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Bases de Datos Factuales , Estudio de Asociación del Genoma Completo , Humanos , Islandia , Imagen por Resonancia Magnética , Persona de Mediana Edad , Redes Neurales de la Computación , Pruebas Neuropsicológicas , Polimorfismo de Nucleótido Simple , Reino Unido , Adulto Joven
3.
Transl Psychiatry ; 7(4): e1109, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28440815

RESUMEN

Several copy number variants have been associated with neuropsychiatric disorders and these variants have been shown to also influence cognitive abilities in carriers unaffected by psychiatric disorders. Previously, we associated the 15q11.2(BP1-BP2) deletion with specific learning disabilities and a larger corpus callosum. Here we investigate, in a much larger sample, the effect of the 15q11.2(BP1-BP2) deletion on cognitive, structural and functional correlates of dyslexia and dyscalculia. We report that the deletion confers greatest risk of the combined phenotype of dyslexia and dyscalculia. We also show that the deletion associates with a smaller left fusiform gyrus. Moreover, tailored functional magnetic resonance imaging experiments using phonological lexical decision and multiplication verification tasks demonstrate altered activation in the left fusiform and the left angular gyri in carriers. Thus, by using convergent evidence from neuropsychological testing, and structural and functional neuroimaging, we show that the 15q11.2(BP1-BP2) deletion affects cognitive, structural and functional correlates of both dyslexia and dyscalculia.


Asunto(s)
Cognición/fisiología , Variaciones en el Número de Copia de ADN/genética , Discalculia/genética , Dislexia/genética , Discapacidad Intelectual/genética , Adolescente , Adulto , Anciano , Aberraciones Cromosómicas , Deleción Cromosómica , Cromosomas Humanos Par 15/genética , Discapacidades del Desarrollo/genética , Femenino , Neuroimagen Funcional/métodos , Neuroimagen Funcional/normas , Heterocigoto , Humanos , Islandia/epidemiología , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas/normas , Fenotipo , Lóbulo Temporal/anatomía & histología , Lóbulo Temporal/diagnóstico por imagen , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA