RESUMEN
While spatial distribution shifts have been documented in many marine fishes under global change, the responses of elasmobranchs have rarely been studied, which may have led to an underestimation of their potential additional threats. Given their irreplaceable role in ecosystems and their high extinction risk, we used a 24-year time series (1997-2020) of scientific bottom trawl surveys to examine the effects of climate change on the spatial distribution of nine elasmobranch species within Northeast Atlantic waters. Using a hierarchical modeling of species communities, belonging to the joint species distribution models, we found that suitable habitats for four species increased on average by a factor of 1.6 and, for six species, shifted north-eastwards and/or to deeper waters over the past two decades. By integrating species traits, we showed changes in habitat suitability led to changes in the elasmobranchs trait composition. Moreover, communities shifted to deeper waters and their mean trophic level decreased. We also note an increase in the mean community size at maturity concurrent with a decrease in fecundity. Because skates and sharks are functionally unique and dangerously vulnerable to both climate change and fishing, we advocate for urgent considerations of species traits in management measures. Their use would make it better to identify species whose loss could have irreversible impacts in face of the myriad of anthropogenic threats.
Asunto(s)
Ecosistema , Tiburones , Animales , Cambio Climático , Fertilidad , PecesRESUMEN
The freshwater phase of the first seaward migration of juvenile Atlantic salmon (Salmo salar) is relatively well understood when compared with our understanding of the marine phase of their migration. In 2021, 1008 wild and 60 ranched Atlantic salmon smolts were tagged with acoustic transmitters in 12 rivers in England, Scotland, Northern Ireland and Ireland. Large marine receiver arrays were deployed in the Irish Sea at two locations: at the transition of the Irish Sea into the North Atlantic between Ireland and Scotland, and between southern Scotland and Northern Ireland, to examine the early phase of the marine migration of Atlantic salmon smolts. After leaving their natal rivers' post-smolt migration through the Irish Sea was rapid with minimum speeds ranging from 14.03 to 38.56 km.day-1 for Atlantic salmon smolts that entered the Irish Sea directly from their natal river, to 9.69-39.94 km.day-1 for Atlantic salmon smolts that entered the Irish Sea directly from their natal estuary. Population minimum migration success through the study area was strongly correlated with the distance of travel, populations further away from the point of entry to the open North Atlantic exhibited lower migration success. Post-smolts from different populations experienced different water temperatures on entering the North Atlantic. This was largely driven by the timing of their migration and may have significant consequences for feeding and ultimately survivorship. The influence of water currents on post-smolt movement was investigated using data from previously constructed numerical hydrodynamic models. Modeled water current data in the northern Irish Sea showed that post-smolts had a strong preference for migrating when the current direction was at around 283° (west-north-west) but did not migrate when exposed to strong currents in other directions. This is the most favorable direction for onward passage from the Irish Sea to the continental shelf edge current, a known accumulation point for migrating post-smolts. These results strongly indicate that post-smolts migrating through the coastal marine environment are: (1) not simply migrating by current following (2) engage in active directional swimming (3) have an intrinsic sense of their migration direction and (4) can use cues other than water current direction to orientate during this part of their migration.
Asunto(s)
Ríos , Salmo salar , Animales , Señales (Psicología) , Migración Animal , AguaRESUMEN
A database of 168 904 hauls covering the period from 1965 to 2019, from 46 surveys containing both fisheries-dependent (fishing vessels) and -independent data (scientific surveys) were collated from across the eastern Atlantic (Greater North Sea, Celtic Sea, Bay of Biscay and Iberian coast) and Metropolitan French Mediterranean waters. Data on diadromous fish (the European sturgeon (Acipenser sturio), allis shad (Alosa alosa), twait shad (Alosa fallax), Mediterranean twaite shad (Alosa agone), European eel (Anguilla anguilla), thinlip mullet (Chelon ramada), river lamprey (Lampetra fluviatilis), sea lamprey (Petromyzon marinus), smelt (Osmerus eperlanus), European flounder (Platichthys flesus), Atlantic salmon (Salmo salar) and the sea trout (Salmo trutta)) presence-absence was extracted and cleaned. The gear type and gear category which caught these species, their spatial location, and the date of capture (year and month), were also cleaned and standardised. Very little is known about diadromous fish at-sea and modelling data-poor and poorly detectable species such as diadromous fish is challenging for species conservation. Furthermore, databases which contain both scientific surveys and fisheries-dependent data on data-poor species at the temporal and geographical scale of this database are uncommon. This data could therefore be used to improve knowledge of diadromous fish spatial and temporal trends, and modelling techniques for data-poor species.
RESUMEN
Nature conservation and fisheries management often focus on particular seabed features that are considered vulnerable or important to commercial species. As a result, individual seabed types are protected in isolation, without any understanding of what effect the mixture of seabed types within the landscape has on ecosystem functions. Here we undertook predictive seabed modelling within a coastal marine protected area using observations from underwater stereo-video camera deployments and environmental information (depth, wave fetch, maximum tidal speeds, distance from coast and underlying geology). The effect of the predicted substratum type, extent and heterogeneity or the diversity of substrata, within a radius of 1500 m around each camera deployment of juvenile gadoid relative abundance was analysed. The predicted substratum model performed well with wave fetch and depth being the most influential predictor variables. Gadus morhua (Atlantic cod) were associated with relatively more rugose substrata (Algal-gravel-pebble and seagrass) and heterogeneous landscapes, than Melanogrammus aeglefinus (haddock) or Merlangius merlangus (whiting) (sand and mud). An increase in M. merlangus relative abundance was observed with increasing substratum extent. These results reveal that landscape effects should be considered when protecting the seabed for fish and not just individual seabed types. The landscape approach used in this study therefore has important implications for marine protected area, fisheries management and monitoring advice concerning demersal fish populations.
Asunto(s)
Explotaciones Pesqueras , Gadiformes , Modelos Teóricos , AnimalesRESUMEN
Listeners must cope with a great deal of variability in the speech signal, and thus theories of speech perception must also account for variability, which comes from a number of sources, including variation between accents. It is well known that there is a processing cost when listening to speech in an accent other than one's own, but recent work has suggested that this cost is reduced when listening to a familiar accent widely represented in the media, and/or when short amounts of exposure to an accent are provided. Little is known, however, about how these factors (long-term familiarity and short-term familiarization with an accent) interact. The current study tested this interaction by playing listeners difficult-to-segment sentences in noise, before and after a familiarization period where the same sentences were heard in the clear, allowing us to manipulate short-term familiarization. Listeners were speakers of either Glasgow English or Standard Southern British English, and they listened to speech in either their own or the other accent, thereby allowing us to manipulate long-term familiarity. Results suggest that both long-term familiarity and short-term familiarization mitigate the perceptual processing costs of listening to an accent that is not one's own, but seem not to compensate for them entirely, even when the accent is widely heard in the media.