RESUMEN
Cancer cells can evade natural killer (NK) cell activity, thereby limiting anti-tumor immunity. To reveal genetic determinants of susceptibility to NK cell activity, we examined interacting NK cells and blood cancer cells using single-cell and genome-scale functional genomics screens. Interaction of NK and cancer cells induced distinct activation and type I interferon (IFN) states in both cell types depending on the cancer cell lineage and molecular phenotype, ranging from more sensitive myeloid to less sensitive B-lymphoid cancers. CRISPR screens in cancer cells uncovered genes regulating sensitivity and resistance to NK cell-mediated killing, including adhesion-related glycoproteins, protein fucosylation genes, and transcriptional regulators, in addition to confirming the importance of antigen presentation and death receptor signaling pathways. CRISPR screens with a single-cell transcriptomic readout provided insight into underlying mechanisms, including regulation of IFN-γ signaling in cancer cells and NK cell activation states. Our findings highlight the diversity of mechanisms influencing NK cell susceptibility across different cancers and provide a resource for NK cell-based therapies.
Asunto(s)
Neoplasias Hematológicas , Neoplasias , Humanos , Células Asesinas Naturales , Neoplasias/genética , Presentación de Antígeno , Genómica , Citotoxicidad Inmunológica/genética , Línea Celular TumoralRESUMEN
Mitochondria have a complex communication network with the surrounding cell and can alter nuclear DNA methylation (DNAm). Variation in the mitochondrial DNA (mtDNA) has also been linked to differential DNAm. Genome-wide association studies have identified numerous DNAm quantitative trait loci, but these studies have not examined the mitochondrial genome. Herein, we quantified nuclear DNAm from blood and conducted a mitochondrial genome-wide association study of DNAm, with an additional emphasis on sex- and prediabetes-specific heterogeneity. We used the Young Finns Study (n = 926) with sequenced mtDNA genotypes as a discovery sample and sought replication in the Ludwigshafen Risk and Cardiovascular Health study (n = 2317). We identified numerous significant associations in the discovery phase (P < 10-9), but they were not replicated when accounting for multiple testing. In total, 27 associations were nominally replicated with a P < 0.05. The replication analysis presented no evidence of sex- or prediabetes-specific heterogeneity. The 27 associations were included in a joint meta-analysis of the two cohorts, and 19 DNAm sites associated with mtDNA variants, while four other sites showed haplogroup associations. An expression quantitative trait methylation analysis was performed for the identified DNAm sites, pinpointing two statistically significant associations. This study provides evidence of a mitochondrial genetic control of nuclear DNAm with little evidence found for sex- and prediabetes-specific effects. The lack of a comparable mtDNA data set for replication is a limitation in our study and further studies are needed to validate our results.
Asunto(s)
Genoma Mitocondrial , Estado Prediabético , Metilación de ADN/genética , ADN Mitocondrial/genética , Epigénesis Genética , Genoma Mitocondrial/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Estado Prediabético/genética , Sitios de Carácter Cuantitativo/genéticaRESUMEN
Inadequate molecular and clinical stratification of the patients with high-risk diffuse large B-cell lymphoma (DLBCL) is a clinical challenge hampering the establishment of personalized therapeutic options. We studied the translational significance of liquid biopsy in a uniformly treated trial cohort. Pretreatment circulating tumor DNA (ctDNA) revealed hidden clinical and biological heterogeneity, and high ctDNA burden determined increased risk of relapse and death independently of conventional risk factors. Genomic dissection of pretreatment ctDNA revealed translationally relevant phenotypic, molecular, and prognostic information that extended beyond diagnostic tissue biopsies. During therapy, chemorefractory lymphomas exhibited diverging ctDNA kinetics, whereas end-of-therapy negativity for minimal residual disease (MRD) characterized cured patients and resolved clinical enigmas, including false residual PET positivity. Furthermore, we discovered fragmentation disparities in the cell-free DNA that characterize lymphoma-derived ctDNA and, as a proof-of-concept for their clinical application, used machine learning to show that end-of-therapy fragmentation patterns predict outcome. Altogether, we have discovered novel molecular determinants in the liquid biopsy that can noninvasively guide treatment decisions.
Asunto(s)
ADN Tumoral Circulante , Linfoma de Células B Grandes Difuso , Biomarcadores de Tumor/genética , ADN Tumoral Circulante/genética , Humanos , Linfoma de Células B Grandes Difuso/diagnóstico , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/terapiaRESUMEN
Chimeric antigen receptor (CAR) T-cell therapy has proven effective in relapsed and refractory B-cell malignancies, but resistance and relapses still occur. Better understanding of mechanisms influencing CAR T-cell cytotoxicity and the potential for modulation using small-molecule drugs could improve current immunotherapies. Here, we systematically investigated druggable mechanisms of CAR T-cell cytotoxicity using >500 small-molecule drugs and genome-scale CRISPR-Cas9 loss-of-function screens. We identified several tyrosine kinase inhibitors that inhibit CAR T-cell cytotoxicity by impairing T-cell signaling transcriptional activity. In contrast, the apoptotic modulator drugs SMAC mimetics sensitized B-cell acute lymphoblastic leukemia and diffuse large B-cell lymphoma cells to anti-CD19 CAR T cells. CRISPR screens identified death receptor signaling through FADD and TNFRSF10B (TRAIL-R2) as a key mediator of CAR T-cell cytotoxicity and elucidated the RIPK1-dependent mechanism of sensitization by SMAC mimetics. Death receptor expression varied across genetic subtypes of B-cell malignancies, suggesting a link between mechanisms of CAR T-cell cytotoxicity and cancer genetics. These results implicate death receptor signaling as an important mediator of cancer cell sensitivity to CAR T-cell cytotoxicity, with potential for pharmacological targeting to enhance cancer immunotherapy. The screening data provide a resource of immunomodulatory properties of cancer drugs and genetic mechanisms influencing CAR T-cell cytotoxicity.
Asunto(s)
Citotoxicidad Inmunológica/inmunología , Resistencia a Antineoplásicos/inmunología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Inmunoterapia Adoptiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Linfocitos T Citotóxicos/inmunología , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Pruebas Inmunológicas de Citotoxicidad/métodos , Humanos , Activación de Linfocitos/inmunología , Linfoma de Células B Grandes Difuso/inmunología , Receptores Quiméricos de AntígenosRESUMEN
HYPOTHESIS: To identify genetic factors predisposing to migraine-epilepsy phenotype utilizing a multi-generational family with known linkage to chr12q24.2-q24.3. METHODS: We used single nucleotide polymorphism (SNP) genotyping and next-generation sequencing technologies to perform linkage, haplotype, and variant analyses in an extended Finnish migraine-epilepsy family (n = 120). In addition, we used a large genome-wide association study (GWAS) dataset of migraine and two biobank studies, UK Biobank and FinnGen, to test whether variants within the susceptibility region associate with migraine or epilepsy related phenotypes in a population setting. RESULTS: The family showed the highest evidence of linkage (LOD 3.42) between rs7966411 and epilepsy. The haplotype shared among 12 out of 13 epilepsy patients in the family covers almost the entire NCOR2 and co-localizes with one of the risk loci of the recent GWAS on migraine. The haplotype harbors nine low-frequency variants with potential regulatory functions. Three of them, in addition to two common variants, show nominal associations with neurological disorders in either UK Biobank or FinnGen. CONCLUSION: We provide several independent lines of evidence supporting association between migraine-epilepsy phenotype and NCOR2. Our study suggests that NCOR2 may have a role in both migraine and epilepsy and thus would provide evidence for shared pathophysiology underlying these two diseases.
Asunto(s)
Epilepsia , Trastornos Migrañosos , Epilepsia/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Trastornos Migrañosos/genética , Co-Represor 2 de Receptor Nuclear/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
Severe acute respiratory syndrome coronavirus 2 Alpha and Beta variants became dominant in Finland in spring 2021 but had diminished by summer. We used phylogenetic clustering to identify sources of spreading. We found that outbreaks were mostly seeded by a few introductions, highlighting the importance of surveillance and prevention policies.
Asunto(s)
COVID-19 , SARS-CoV-2 , Finlandia/epidemiología , Humanos , Incidencia , FilogeniaRESUMEN
The effect of mitochondrial DNA (mtDNA) variation on peripheral blood transcriptomics in health and disease is not fully known. Sex-specific mitochondrially controlled gene expression patterns have been shown in Drosophila melanogaster but in humans, evidence is lacking. Functional variation in mtDNA may also have a role in the development of type 2 diabetes and its precursor state, i.e. prediabetes. We examined the associations between mitochondrial single-nucleotide polymorphisms (mtSNPs) and peripheral blood transcriptomics with a focus on sex- and prediabetes-specific effects. The genome-wide blood cell expression data of 19 637 probes, 199 deep-sequenced mtSNPs and nine haplogroups of 955 individuals from a population-based Young Finns Study cohort were used. Significant associations were identified with linear regression and analysis of covariance. The effects of sex and prediabetes on the associations between gene expression and mtSNPs were studied using random-effect meta-analysis. Our analysis identified 53 significant expression probe-mtSNP associations after Bonferroni correction, involving 7 genes and 31 mtSNPs. Eight probe-mtSNP signals remained independent after conditional analysis. In addition, five genes showed differential expression between haplogroups. The meta-analysis did not show any significant differences in linear model effect sizes between males and females but identified the association between the OASL gene and mtSNP C16294T to show prediabetes-specific effects. This study pinpoints new independent mtSNPs associated with peripheral blood transcriptomics and replicates six previously reported associations, providing further evidence of the mitochondrial genetic control of blood cell gene expression. In addition, we present evidence that prediabetes might lead to perturbations in mitochondrial control.
Asunto(s)
ADN Mitocondrial/genética , Regulación de la Expresión Génica/genética , Adulto , Secuencia de Bases , Células Sanguíneas/metabolismo , Células Sanguíneas/fisiología , ADN Mitocondrial/sangre , Diabetes Mellitus Tipo 2/genética , Femenino , Expresión Génica , Estudios de Asociación Genética/métodos , Variación Genética/genética , Genética de Población/métodos , Estudio de Asociación del Genoma Completo/métodos , Haplotipos , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/genética , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN , Transcriptoma/genéticaRESUMEN
Conventional next-generation sequencing methods, used in most gene panels, cannot separate maternally and paternally derived sequence information of distant variants. In recessive diseases, two or more equally plausible causative variants with unsolved phase information prevent accurate molecular diagnosis. In reality, close relatives might be unavailable for segregation analysis. Here, we utilized whole genome linked-read sequencing to assign variants to haplotypes in two patients with inherited retinal dystrophies. Patient 1 with macular dystrophy had variants c.3442T>C, p.(Cys1148Arg), c.4209G>T, p.(Glu1403Asp), and c.1182C>T, p.(Cys394=) in CRB1, and Patient 2 with nonsyndromic retinitis pigmentosa had c.1328T>A, p.(Val443Asp) and c.3032C>G, p.(Ser1011*) in AHI1. The relatives were not available for genotyping. Using whole genome linked-read sequencing we phased the variants to haplotypes providing genetic background for the retinal dystrophies. In future, when the price of sequencing methods that provides long-read data decreases and their read-depth and accuracy increases, they are probably considered the primary or adjunctive sequencing methods in genetic testing, allowing the immediate collection of phase information and thus obviating the need for the carrier testing and segregation analysis.
Asunto(s)
Proteínas del Ojo/genética , Pruebas Genéticas , Haplotipos/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Distrofias Retinianas/genética , Adulto , Femenino , Genoma Humano/genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Mutación/genética , Linaje , Distrofias Retinianas/patología , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Secuenciación Completa del GenomaRESUMEN
BACKGROUND: Colorectal cancer (CRC) screening reduces CRC incidence and mortality. However, current screening methods are either hampered by invasiveness or suboptimal performance, limiting their effectiveness as primary screening methods. To aid in the development of a non-invasive screening test with improved sensitivity and specificity, we have initiated a prospective biomarker study (CRCbiome), nested within a large randomized CRC screening trial in Norway. We aim to develop a microbiome-based classification algorithm to identify advanced colorectal lesions in screening participants testing positive for an immunochemical fecal occult blood test (FIT). We will also examine interactions with host factors, diet, lifestyle and prescription drugs. The prospective nature of the study also enables the analysis of changes in the gut microbiome following the removal of precancerous lesions. METHODS: The CRCbiome study recruits participants enrolled in the Bowel Cancer Screening in Norway (BCSN) study, a randomized trial initiated in 2012 comparing once-only sigmoidoscopy to repeated biennial FIT, where women and men aged 50-74 years at study entry are invited to participate. Since 2017, participants randomized to FIT screening with a positive test result have been invited to join the CRCbiome study. Self-reported diet, lifestyle and demographic data are collected prior to colonoscopy after the positive FIT-test (baseline). Screening data, including colonoscopy findings are obtained from the BCSN database. Fecal samples for gut microbiome analyses are collected both before and 2 and 12 months after colonoscopy. Samples are analyzed using metagenome sequencing, with taxonomy profiles, and gene and pathway content as primary measures. CRCbiome data will also be linked to national registries to obtain information on prescription histories and cancer relevant outcomes occurring during the 10 year follow-up period. DISCUSSION: The CRCbiome study will increase our understanding of how the gut microbiome, in combination with lifestyle and environmental factors, influences the early stages of colorectal carcinogenesis. This knowledge will be crucial to develop microbiome-based screening tools for CRC. By evaluating biomarker performance in a screening setting, using samples from the target population, the generalizability of the findings to future screening cohorts is likely to be high. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01538550 .
Asunto(s)
Neoplasias Colorrectales/diagnóstico , Detección Precoz del Cáncer/métodos , Microbioma Gastrointestinal , Estilo de Vida , Anciano , Estudios de Casos y Controles , Colonoscopía , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/microbiología , Femenino , Estudios de Seguimiento , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Noruega/epidemiología , Sangre Oculta , Pronóstico , Estudios Prospectivos , Curva ROCRESUMEN
Common variable immunodeficiency and other late-onset immunodeficiencies often co-manifest with autoimmunity and lymphoproliferation. The pathogenesis of most cases is elusive, as only a minor subset harbors known monogenic germline causes. The involvement of both B and T cells is however implicated. To study whether somatic mutations in CD4+ and CD8+ T cells associate with immunodeficiency, we recruited 17 patients and 21 healthy controls. Eight patients had late-onset common variable immunodeficiency and nine patients other immunodeficiency and/or severe autoimmunity. In total, autoimmunity occurred in 94% and lymphoproliferation in 65%. We performed deep sequencing of 2533 immune-associated genes from CD4+ and CD8+ cells. Deep T-cell receptor beta sequencing was used to characterize CD4+ and CD8+ T-cell receptor repertoires. The prevalence of somatic mutations was 65% in all immunodeficiency patients, 75% in common variable immunodeficiency and 48% in controls. Clonal hematopoiesis-associated variants in both CD4+ and CD8+ cells occurred in 24% of immunodeficiency patients. Results demonstrated mutations in known tumor suppressors, oncogenes, and genes that are critical for immune- and proliferative functions, such as STAT5B (two patients), C5AR1 (two patients), KRAS (one patient), and NOD2 (one patient). Additionally, as a marker of T-cell receptor repertoire perturbation, common variable immunodeficiency patients harbored increased frequencies of clones with identical complementarity determining region 3 sequences despite unique nucleotide sequences when compared to controls. In conclusion, somatic mutations in genes implicated for autoimmunity and lymphoproliferation are common in CD4+ and CD8+ cells of patients with immunodeficiency. They may contribute to immune dysregulation in a subset of immunodeficiency patients.
Asunto(s)
Síndromes de Inmunodeficiencia , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Regiones Determinantes de Complementariedad/genética , Humanos , Mutación , Receptores de Antígenos de Linfocitos T alfa-beta/genéticaRESUMEN
Fetal akinesia deformation sequence (FADS) and lethal multiple pterygium syndrome (LMPS) are clinically overlapping syndromes manifesting with reduced or absent fetal movement, arthrogryposis, and several anomalies during fetal life. The etiology of these syndromes is heterogeneous, and in many cases it remains unknown. In order to determine the genetic etiology of FADS in two fetuses with fetal akinesia, arthrogryposis, edema, and partial cleft palate, we utilized exome sequencing. Our investigations revealed a homozygous nonsense variant [c.1116C>A, p.(Cys372Ter)] in the SLC18A3 gene, which encodes for the vesicular acetylcholine transporter (VAChT) responsible for active transport of acetylcholine in the neuromuscular junction. This is the first description of a nonsense variant in the SLC18A3 gene, as only missense variants and whole gene deletions have been previously identified in patients. The previously detected SLC18A3 defects have been associated with congenital myasthenic syndromes, and therefore our findings extend the clinical spectrum of SLC18A3 defects to severe prenatal phenotypes. Our findings suggest that nonsense variants in SLC18A3 cause a more severe phenotype than missense variants and are in line with previous studies showing a lethal phenotype in VAChT knockout mice. Our results underline the importance of including SLC18A3 sequencing in the differential diagnostics of fetuses with arthrogryposis, FADS, or LMPS of unknown etiology.
Asunto(s)
Artrogriposis , Mutación Missense , Proteínas de Transporte Vesicular de Acetilcolina/genética , Animales , Femenino , Humanos , Ratones , Ratones Noqueados , EmbarazoRESUMEN
Somatic mutations have a central role in cancer but their role in other diseases such as autoimmune disorders is poorly understood. Earlier work has provided indirect evidence of rare somatic mutations in autoreactive T-lymphocytes in multiple sclerosis (MS) patients but such mutations have not been identified thus far. We analysed somatic mutations in blood in 16 patients with relapsing MS and 4 with other neurological autoimmune disease. To facilitate the detection of somatic mutations CD4+, CD8+, CD19+ and CD4-/CD8-/CD19- cell subpopulations were separated. We performed next-generation DNA sequencing targeting 986 immune-related genes. Somatic mutations were called by comparing the sequence data of each cell subpopulation to other subpopulations of the same patient and validated by amplicon sequencing. We found non-synonymous somatic mutations in 12 (60%) patients (10 MS, 1 myasthenia gravis, 1 narcolepsy). There were 27 mutations, all different and mostly novel (67%). They were discovered at subpopulation-wise allelic fractions of 0.2%-4.6% (median 0.95%). Multiple mutations were found in 8 patients. The mutations were enriched in CD8+ cells (85% of mutations). In follow-up after a median time of 2.3years, 96% of the mutations were still detectable. These results unravel a novel class of persistent somatic mutations, many of which were in genes that may play a role in autoimmunity (ATM, BTK, CD46, CD180, CLIP2, HMMR, IKFZF3, ITGB3, KIR3DL2, MAPK10, CD56/NCAM1, RBM6, RORA, RPA1 and STAT3). Whether some of this class of mutations plays a role in disease is currently unclear, but these results define an interesting hitherto unknown research target for future studies.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Mutación/genética , Adulto , Anciano , Enfermedades Autoinmunes del Sistema Nervioso/sangre , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Autoinmunidad/inmunología , Linfocitos T CD4-Positivos/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/sangre , Esclerosis Múltiple/inmunología , Miastenia Gravis/sangre , Narcolepsia/sangre , Narcolepsia/inmunología , Adulto JovenRESUMEN
BACKGROUND: Asbestos is a carcinogen linked to malignant mesothelioma (MM) and lung cancer. Some gene aberrations related to asbestos exposure are recognized, but many associated mutations remain obscure. We performed exome sequencing to determine the association of previously known mutations (driver gene mutations) with asbestos and to identify novel mutations related to asbestos exposure in lung adenocarcinoma (LAC) and MM. METHODS: Exome sequencing was performed on DNA from 47 tumor tissues of MM (21) and LAC (26) patients, 27 of whom had been asbestos-exposed (18 MM, 9 LAC). In addition, 9 normal lung/blood samples of LAC were sequenced. Novel mutations identified from exome data were validated by amplicon-based deep sequencing. Driver gene mutations in BRAF, EGFR, ERBB2, HRAS, KRAS, MET, NRAS, PIK3CA, STK11, and ephrin receptor genes (EPHA1-8, 10 and EPHB1-4, 6) were studied for both LAC and MM, and in BAP1, CUL1, CDKN2A, and NF2 for MM. RESULTS: In asbestos-exposed MM patients, previously non-described NF2 frameshift mutation (one) and BAP1 mutations (four) were detected. Exome data mining revealed some genes potentially associated with asbestos exposure, such as MRPL1 and SDK1. BAP1 and COPG1 mutations were seen exclusively in MM. Pathogenic KRAS mutations were common in LAC patients (42 %), both in non-exposed (n = 5) and exposed patients (n = 6). Pathogenic BRAF mutations were found in two LACs. CONCLUSION: BAP1 mutations occurred in asbestos-exposed MM. MRPL1, SDK1, SEMA5B, and INPP4A could possibly serve as candidate genes for alterations associated with asbestos exposure. KRAS mutations in LAC were not associated with asbestos exposure.
Asunto(s)
Adenocarcinoma/genética , Exoma/genética , Neoplasias Pulmonares/genética , Mesotelioma/genética , Neoplasias Peritoneales/genética , Neoplasias Pleurales/genética , Amianto/efectos adversos , Moléculas de Adhesión Celular/genética , Proteína Coatómero/genética , Análisis Mutacional de ADN , Receptores ErbB/genética , Femenino , Humanos , Masculino , Glicoproteínas de Membrana/genética , Mesotelioma Maligno , Proteínas Mitocondriales/genética , Péptido Sintasas/genética , Monoéster Fosfórico Hidrolasas/genética , Polimorfismo de Nucleótido Simple , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptores de la Familia Eph/genética , Proteínas Ribosómicas/genética , Semaforinas/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genéticaRESUMEN
BACKGROUND: T-cell large granular lymphocytic leukemia is a rare lymphoproliferative disorder characterized by the expansion of clonal CD3+CD8+ cytotoxic T lymphocytes (CTLs) and often associated with autoimmune disorders and immune-mediated cytopenias. METHODS: We used next-generation exome sequencing to identify somatic mutations in CTLs from an index patient with large granular lymphocytic leukemia. Targeted resequencing was performed in a well-characterized cohort of 76 patients with this disorder, characterized by clonal T-cell-receptor rearrangements and increased numbers of large granular lymphocytes. RESULTS: Mutations in the signal transducer and activator of transcription 3 gene (STAT3) were found in 31 of 77 patients (40%) with large granular lymphocytic leukemia. Among these 31 patients, recurrent mutational hot spots included Y640F in 13 (17%), D661V in 7 (9%), D661Y in 7 (9%), and N647I in 3 (4%). All mutations were located in exon 21, encoding the Src homology 2 (SH2) domain, which mediates the dimerization and activation of STAT protein. The amino acid changes resulted in a more hydrophobic protein surface and were associated with phosphorylation of STAT3 and its localization in the nucleus. In vitro functional studies showed that the Y640F and D661V mutations increased the transcriptional activity of STAT3. In the affected patients, downstream target genes of the STAT3 pathway (IFNGR2, BCL2L1, and JAK2) were up-regulated. Patients with STAT3 mutations presented more often with neutropenia and rheumatoid arthritis than did patients without these mutations. CONCLUSIONS: The SH2 dimerization and activation domain of STAT3 is frequently mutated in patients with large granular lymphocytic leukemia; these findings suggest that aberrant STAT3 signaling underlies the pathogenesis of this disease. (Funded by the Academy of Finland and others.).
Asunto(s)
Leucemia Linfocítica Granular Grande/genética , Factor de Transcripción STAT3/genética , Anciano , Exoma , Expresión Génica , Humanos , Masculino , Mutación , Receptores de Antígenos de Linfocitos T , Análisis de Secuencia de ARN , Transcripción Genética , Regulación hacia ArribaRESUMEN
Little is known about the genetic factors that contribute to familial colorectal cancer type X (FCCX), characterized by hereditary nonpolyposis colorectal carcinoma with no mismatch repair defects. Genetic linkage analysis, exome sequencing, tumor studies, and functional investigations of 4 generations of a FCCX family led to the identification of a truncating germline mutation in RPS20, which encodes a component (S20) of the small ribosomal subunit and is a new colon cancer predisposition gene. The mutation was associated with a defect in pre-ribosomal RNA maturation. Our findings show that mutations in a gene encoding a ribosomal protein can predispose individuals to microsatellite-stable colon cancer. Evaluation of additional FCCX families for mutations in RPS20 and other ribosome-associated genes is warranted.
Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Reparación de la Incompatibilidad de ADN , Mutación de Línea Germinal , Proteínas Ribosómicas/genética , Análisis Mutacional de ADN , Exosomas , Femenino , Ligamiento Genético , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Herencia , Humanos , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Factores de RiesgoRESUMEN
Large granular lymphocytic (LGL) leukemia is characterized by clonal expansion of cytotoxic T cells or natural killer cells. Recently, somatic mutations in the signal transducer and activator of transcription 3 (STAT3) gene were discovered in 28% to 40% of LGL leukemia patients. By exome and transcriptome sequencing of 2 STAT3 mutation-negative LGL leukemia patients, we identified a recurrent, somatic missense mutation (Y665F) in the Src-like homology 2 domain of the STAT5b gene. Targeted amplicon sequencing of 211 LGL leukemia patients revealed 2 additional patients with STAT5b mutations (N642H), resulting in a total frequency of 2% (4 of 211) of STAT5b mutations across all patients. The Y665F and N642H mutant constructs increased the transcriptional activity of STAT5 and tyrosine (Y694) phosphorylation, which was also observed in patient samples. The clinical course of the disease in patients with the N642H mutation was aggressive and fatal, clearly different from typical LGL leukemia with a relatively favorable outcome. This is the first time somatic STAT5 mutations are discovered in human cancer and further emphasizes the role of STAT family genes in the pathogenesis of LGL leukemia.
Asunto(s)
Leucemia Linfocítica Granular Grande/genética , Factor de Transcripción STAT5/genética , Dominios Homologos src/genética , Anciano , Estudios de Cohortes , Dimerización , Exoma/genética , Femenino , Pruebas Genéticas , Células HeLa , Humanos , Masculino , Persona de Mediana Edad , Mutagénesis , Mutación , Fosforilación/genética , Estructura Terciaria de Proteína , Factor de Transcripción STAT5/química , Factor de Transcripción STAT5/metabolismo , Transcripción Genética/genética , Proteínas Supresoras de Tumor/genéticaRESUMEN
Large granular lymphocyte leukemia (LGL) is often associated with immune cytopenias and can cooccur in the context of aplastic anemia (AA) and myelodysplastic syndromes (MDS). We took advantage of the recent description of signal transducer and activator of transcription 3 (STAT3) mutations in LGL clonal expansions to test, using sensitive methods, for the presence of these mutations in a large cohort of 367 MDS and 140 AA cases. STAT3 clones can be found not only in known LGL concomitant cases, but in a small proportion of unsuspected ones (7% AA and 2.5% MDS). In STAT3-mutated AA patients, an interesting trend toward better responses of immunosuppressive therapy and an association with the presence of human leukocyte antigen-DR15 were found. MDSs harboring a STAT3 mutant clone showed a lower degree of bone marrow cellularity and a higher frequency of developing chromosome 7 abnormalities. STAT3-mutant LGL clones may facilitate a persistently dysregulated autoimmune activation, responsible for the primary induction of bone marrow failure in a subset of AA and MDS patients.
Asunto(s)
Anemia Aplásica/genética , Leucemia Linfocítica Granular Grande/genética , Mutación , Síndromes Mielodisplásicos/genética , Factor de Transcripción STAT3/genética , Adulto , Anemia Aplásica/complicaciones , Anemia Aplásica/mortalidad , Separación Celular , Femenino , Citometría de Flujo , Humanos , Estimación de Kaplan-Meier , Leucemia Linfocítica Granular Grande/complicaciones , Leucemia Linfocítica Granular Grande/mortalidad , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/complicaciones , Síndromes Mielodisplásicos/mortalidad , Modelos de Riesgos Proporcionales , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
T-cell large granular lymphocytic leukemia and chronic lymphoproliferative disorder of natural killer cells are intriguing entities between benign and malignant lymphoproliferation. The molecular pathogenesis has partly been uncovered by the recent discovery of somatic activating STAT3 and STAT5b mutations. Here we show that 43% (75/174) of patients with T-cell large granular lymphocytic leukemia and 18% (7/39) with chronic lymphoproliferative disorder of natural killer cells harbor STAT3 mutations when analyzed by quantitative deep amplicon sequencing. Surprisingly, 17% of the STAT3-mutated patients carried multiple STAT3 mutations, which were located in different lymphocyte clones. The size of the mutated clone correlated well with the degree of clonal expansion of the T-cell repertoire analyzed by T-cell receptor beta chain deep sequencing. The analysis of sequential samples suggested that current immunosuppressive therapy is not able to reduce the level of the mutated clone in most cases, thus warranting the search for novel targeted therapies. Our findings imply that the clonal landscape of large granular lymphocytic leukemia is more complex than considered before, and a substantial number of patients have multiple lymphocyte subclones harboring different STAT3 mutations, thus mimicking the situation in acute leukemia.
Asunto(s)
Artritis Reumatoide/genética , Biomarcadores/análisis , Evolución Clonal/genética , Leucemia Linfocítica Granular Grande/genética , Mutación/genética , Factor de Transcripción STAT3/genética , Linfocitos T/patología , Adulto , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Femenino , Estudios de Seguimiento , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/patología , Leucemia Linfocítica Granular Grande/tratamiento farmacológico , Leucemia Linfocítica Granular Grande/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Adulto JovenRESUMEN
Genetic alterations affecting 9p are commonly present in many cancer types and many cancer-related genes are located in this chromosomal region. We sequenced all of the genes located in a 32Mb region of 9p by targeted next generation sequencing (NGS) in 96 patients with different cancer types, including acute lymphoblastic leukemia, bone malignant fibrous histiocytoma/undifferentiated pleomorphic sarcoma, fibrosarcoma, Ewing's sarcoma, and lung carcinoma. Copy number alterations (CNA), and mutations were studied from the NGS data. We detected a deletion at the CDKN2A locus as being the most frequent genetic alteration in all cancer types. In addition to this locus, NGS also identified other small regions of copy number loss and gain. However, different cancer types did not reveal any statistically significant differences with regard to CNA frequency or type. Of the 191 genes within the target region, two novel recurrent mutations were found in the MELK and PDCD1LG2 genes. The most commonly mutated gene in sarcomas was TLN1 (8%) and PAX5 in ALL (9%). Mutations in PAX5, and RUSC2, were seen exclusively in ALL patients and those in KIAA1432, CA9, TLN1, and MELK only in sarcomas (MFH, FS, EFT). Thus using targeted NGS of the 9p region, in addition to commonly deleted CDKN2A locus, we were able to identify a number of small deletions and gains, as well as novel recurrent mutations in different cancer types. © 2014 Wiley Periodicals, Inc.