Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38257668

RESUMEN

Implantable cell replacement therapies promise to completely restore the function of neural structures, possibly changing how we currently perceive the onset of neurodegenerative diseases. One of the major clinical hurdles for the routine implementation of stem cell therapies is poor cell retention and survival, demanding the need to better understand these mechanisms while providing precise and scalable approaches to monitor these cell-based therapies in both pre-clinical and clinical scenarios. This poses significant multidisciplinary challenges regarding planning, defining the methodology and requirements, prototyping and different stages of testing. Aiming toward an optogenetic neural stem cell implant controlled by a smart wireless electronic frontend, we show how an iterative development methodology coupled with a modular design philosophy can mitigate some of these challenges. In this study, we present a miniaturized, wireless-controlled, modular multisensor platform with fully interfaced electronics featuring three different modules: an impedance analyzer, a potentiostat and an optical stimulator. We show the application of the platform for electrical impedance spectroscopy-based cell monitoring, optical stimulation to induce dopamine release from optogenetically modified neurons and a potentiostat for cyclic voltammetry and amperometric detection of dopamine release. The multisensor platform is designed to be used as an opto-electric headstage for future in vivo animal experiments.


Asunto(s)
Experimentación Animal , Dopamina , Animales , Optogenética , Encéfalo , Prótesis e Implantes
2.
Arch Toxicol ; 95(5): 1659-1670, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33660062

RESUMEN

To test large numbers of chemicals for developmental toxicity, rapid in vitro tests with standardized readouts for automated data acquisition are needed. However, the most widely used assay, the embryonic stem cell test, relies on the counting of beating embryoid bodies by visual inspection, which is laborious and time consuming. We previously developed the PluriBeat assay based on differentiation of human induced pluripotent stem cells (hiPSC) that we demonstrated to be predictive for known teratogens at relevant concentrations using the readout of beating cardiomyocytes. Here, we report the development of a novel assay, which we term the PluriLum assay, where we have introduced a luciferase reporter gene into the locus of NKX2.5 of our hiPSC line. This enabled us to measure luminescence intensities instead of counting beating cardiomyocytes, which is less labor intensive. We established two NKX2.5 reporter cell lines and validated their pluripotency and genetic stability. Moreover, we confirmed that the genetically engineered NKX2.5 reporter cell line differentiated into cardiomyocytes with the same efficiency as the original wild-type line. We then exposed the cells to valproic acid (25-300 µM) and thalidomide (0.1-36 µM) and compared the PluriBeat readout of the cardiomyocytes with the luminescence intensity of the PluriLum assay. The results showed that thalidomide decreased luminescence intensity significantly with a higher potency and efficacy compared to the beating readout. With this, we have developed a novel hiPSC-based assay with a standardized readout that may have the potential for higher throughput screening for developmental toxicity.


Asunto(s)
Pruebas de Toxicidad/métodos , Diferenciación Celular , Línea Celular , Células Cultivadas , Células Madre Embrionarias , Genes Reporteros , Humanos , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Teratógenos
3.
Anal Bioanal Chem ; 412(24): 6307-6318, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32166446

RESUMEN

Vesicles constructed of either synthetic polymers alone (polymersomes) or a combination of polymers and lipids (lipo-polymersomes) demonstrate excellent long-term stability and ability to integrate membrane proteins. Applications using lipo-polymersomes with integrated membrane proteins require suitable supports to maintain protein functionality. Using lipo-polymersomes loaded with the light-driven proton pump bacteriorhodopsin (BR), we demonstrate here how the photocurrent is influenced by a chosen support. In our study, we deposited BR-loaded lipo-polymersomes in a cross-linked polyelectrolyte multilayer assembly either directly physisorbed on gold electrode microchips or cross-linked on an intermediary polyethersulfone (PES) membrane covalently grafted using a hydrogel cushion. In both cases, electrochemical impedance spectroscopic characterization demonstrated successful polyelectrolyte assembly with BR-loaded lipo-polymersomes. Light-induced proton pumping by BR-loaded lipo-polymersomes in the different support constructs was characterized by amperometric recording of the generated photocurrent. Application of the hydrogel/PES membrane support together with the polyelectrolyte assembly decreased the transient current response upon light activation of BR, while enhancing the generated stationary current to over 700 nA/cm2. On the other hand, the current response from BR-loaded lipo-polymersomes in a polyelectrolyte assembly without the hydrogel/PES membrane support was primarily a transient peak combined with a low-nanoampere-level stationary photocurrent. Hence, the obtained results demonstrated that by using a hydrogel/PES support it was feasible to monitor continuously light-induced proton flux in biomimetic applications of lipo-polymersomes. Graphical abstract.


Asunto(s)
Bacteriorodopsinas/química , Halobacterium salinarum/química , Membranas Artificiales , Polímeros/química , Sulfonas/química , Fuentes de Energía Bioeléctrica , Reactivos de Enlaces Cruzados/química , Electricidad , Diseño de Equipo , Hidrogeles/química , Luz , Modelos Moleculares , Polielectrolitos/química
4.
Anal Bioanal Chem ; 412(24): 6371-6380, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32451643

RESUMEN

Evaluation and understanding the effect of drug delivery in in vitro systems is fundamental in drug discovery. We present an assay based on real-time electrical impedance spectroscopy (EIS) measurements that can be used to follow the internalisation and cytotoxic effect of a matrix metalloproteinase (MMP)-sensitive liposome formulation loaded with oxaliplatin (OxPt) on colorectal cancer cells. The EIS response identified two different cellular processes: (i) a negative peak in the cell index (CI) within the first 5 h, due to onset of liposome endocytosis, followed by (ii) a subsequent CI increase, due to the reattachment of cells until the onset of cytotoxicity with a decrease in CI. Free OxPt or OxPt-loaded Stealth liposomes did not show this two-stage EIS response; the latter can be due to the fact that Stealth cannot be cleaved by MMPs and thus is not taken up by the cells. Real-time bright-field imaging supported the EIS data, showing variations in cell adherence and cell morphology after exposure to the different liposome formulations. A drastic decrease in cell coverage as well as rounding up of cells during the first 5 h of exposure to OxPt-loaded (MMP)-sensitive liposome formulation is reflected by the first negative EIS response, which indicates the onset of liposome endocytosis. Graphical abstract.


Asunto(s)
Antineoplásicos/administración & dosificación , Endocitosis , Liposomas , Oxaliplatino/administración & dosificación , Antineoplásicos/farmacología , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Espectroscopía Dieléctrica , Humanos , Oxaliplatino/farmacología
5.
Arch Toxicol ; 94(11): 3831-3846, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32700165

RESUMEN

There is a great need for novel in vitro methods to predict human developmental toxicity to comply with the 3R principles and to improve human safety. Human-induced pluripotent stem cells (hiPSC) are ideal for the development of such methods, because they are easy to retrieve by conversion of adult somatic cells and can differentiate into most cell types of the body. Advanced three-dimensional (3D) cultures of these cells, so-called embryoid bodies (EBs), moreover mimic the early developing embryo. We took advantage of this to develop a novel human toxicity assay to predict chemically induced developmental toxicity, which we termed the PluriBeat assay. We employed three different hiPSC lines from male and female donors and a robust microtiter plate-based method to produce EBs. We differentiated the cells into cardiomyocytes and introduced a scoring system for a quantitative readout of the assay-cardiomyocyte contractions in the EBs observed on day 7. Finally, we tested the three compounds thalidomide (2.3-36 µM), valproic acid (25-300 µM), and epoxiconazole (1.3-20 µM) on beating and size of the EBs. We were able to detect the human-specific teratogenicity of thalidomide and found the rodent toxicant epoxiconazole as more potent than thalidomide in our assay. We conclude that the PluriBeat assay is a novel method for predicting chemicals' adverse effects on embryonic development.


Asunto(s)
Bioensayo/métodos , Cuerpos Embrioides/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos , Teratógenos/toxicidad , Pruebas de Toxicidad/métodos , Línea Celular , Biología Evolutiva , Cuerpos Embrioides/fisiología , Compuestos Epoxi/toxicidad , Femenino , Humanos , Masculino , Miocitos Cardíacos/fisiología , Oxazinas/metabolismo , Células Madre Pluripotentes/fisiología , Teratogénesis , Talidomida/toxicidad , Triazoles/toxicidad , Ácido Valproico/toxicidad , Xantenos/metabolismo
6.
Analyst ; 142(23): 4553-4559, 2017 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-29114664

RESUMEN

During the last few decades, great advances have been reached in high-throughput design and building of genetically engineered microbial strains, leading to a need for fast and reliable screening methods. We developed and optimized a microfluidic supported liquid membrane (SLM) extraction device and combined it with surface enhanced Raman scattering (SERS) sensing for the screening of a biological process, namely for the quantification of a bacterial secondary metabolite, p-coumaric acid (pHCA), produced by Escherichia coli. The microfluidic device proved to be robust and reusable, enabling efficient removal of interfering compounds from the real samples, reaching more than 13-fold up-concentration of the donor at 10 µL min-1 flow rate. With this method, we quantified pHCA directly from the bacterial supernatant, distinguishing between various culture conditions based on the pHCA production yield. The obtained data showed good correlation with HPLC analysis.


Asunto(s)
Escherichia coli/química , Dispositivos Laboratorio en un Chip , Espectrometría Raman , Cromatografía Líquida de Alta Presión , Metabolismo Secundario
7.
Anal Chem ; 88(19): 9582-9589, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27598723

RESUMEN

An impedance-based label-free affinity sensor was developed for the recognition of glycated hemoglobin (HbA1c). Interdigitated gold microelectrode arrays (IDAs) were first modified with a self-assembled monolayer of cysteamine followed by cross-linking with glutaraldehyde and subsequent binding of 3-aminophenylboronic acid (APBA), which selectively binds HbA1c via cis-diol interactions. Impedance sensing was demonstrated to be highly responsive to the clinically relevant HbA1c levels (0.1%-8.36%) with a detection and quantitation limit of 0.024% (3σ/slope) and 0.08% (10σ/slope), respectively. The specificity of the assay was evaluated with nonglycated hemoglobin (HbAo), showing that the impedance response remained unchanged over the concentration range of 10 to 20 g dL-1 HbAo. This demonstrated that the sensor system could be used to specifically distinguish HbA1c from HbAo. Moreover, the binding of HbA1c to the APBA-modified electrodes was reversible, providing a reusable sensing interface as well as showing a stable response after 4 weeks (96% of the initial response). When assaying normal (4.10%) and diabetic (8.36%) HbA1c levels (10 assays per day during a three-day period including a regeneration step after each assay), the overall assay reproducibility, expressed as relative standard error of the mean (n = 30), was 1.1%. The performance of the sensor system was also compared with a commercial method (n = 15) using patient-derived blood samples. A good agreement (Bland-Altman bias plot) and correlation (Passing-Bablok regression analysis) was demonstrated between the boronate-based affinity sensor and the standard method.


Asunto(s)
Técnicas Biosensibles , Ácidos Borónicos/química , Impedancia Eléctrica , Hemoglobina Glucada/análisis , Técnicas Biosensibles/instrumentación , Electrodos , Oro/química , Humanos , Propiedades de Superficie
8.
Anal Biochem ; 515: 1-8, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27641112

RESUMEN

Redox regulation is important for numerous processes in plant cells including abiotic stress, pathogen defence, tissue development, seed germination and programmed cell death. However, there are few methods allowing redox homeostasis to be addressed in whole plant cells, providing insight into the intact in vivo environment. An electrochemical redox assay that applies the menadione-ferricyanide double mediator is used to assess changes in the intracellular and extracellular redox environment in living aleurone layers of barley (Hordeum vulgare cv. Himalaya) grains, which respond to the phytohormones gibberellic acid and abscisic acid. Gibberellic acid is shown to elicit a mobilisation of electrons as detected by an increase in the reducing capacity of the aleurone layers. By taking advantage of the membrane-permeable menadione/menadiol redox pair to probe the membrane-impermeable ferricyanide/ferrocyanide redox pair, the mobilisation of electrons was dissected into an intracellular and an extracellular, plasma membrane-associated component. The intracellular and extracellular increases in reducing capacity were both suppressed when the aleurone layers were incubated with abscisic acid. By probing redox levels in intact plant tissue, the method provides a complementary approach to assays of reactive oxygen species and redox-related enzyme activities in tissue extracts.


Asunto(s)
Ácido Abscísico/metabolismo , Germinación/fisiología , Giberelinas/metabolismo , Hordeum/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Semillas/metabolismo , Oxidación-Reducción
9.
Biomacromolecules ; 17(4): 1321-9, 2016 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-26902925

RESUMEN

Scaffolds with multiple functionalities have attracted widespread attention in the field of tissue engineering due to their ability to control cell behavior through various cues, including mechanical, chemical, and electrical. Fabrication of such scaffolds from clinically approved materials is currently a huge challenge. The goal of this work was to fabricate a tissue engineering scaffold from clinically approved materials with the capability of delivering biomolecules and direct cell fate. We have used a simple 3D printing approach, that combines polymer casting with supercritical fluid technology to produce 3D interpenetrating polymer network (IPN) scaffold of silicone-poly(2-hydroxyethyl methacrylate)-co-poly(ethylene glycol) methyl ether acrylate (pHEMA-co-PEGMEA). The pHEMA-co-PEGMEA IPN materials were employed to support growth of human mesenchymal stem cells (hMSC), resulting in high cell viability and metabolic activity over a 3 weeks period. In addition, the IPN scaffolds support 3D tissue formation inside the porous scaffold with well spread cell morphology on the surface of the scaffold. As a proof of concept, sustained doxycycline (DOX) release from pHEMA-co-PEGMEA IPN was demonstrated and the biological activity of released drug from IPN was confirmed using a DOX regulated green fluorescent reporter (GFP) gene expression assay with HeLa cells. Given its unique mechanical and drug releasing characteristics, IPN scaffolds may be used for directing stem cell differentiation by releasing various chemicals from its hydrogel network.


Asunto(s)
Materiales Biocompatibles/farmacología , Diferenciación Celular/efectos de los fármacos , Hidrogeles/farmacología , Células Madre Mesenquimatosas/citología , Siliconas/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Materiales Biocompatibles/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxiciclina/química , Liberación de Fármacos , Células HeLa , Humanos , Hidrogeles/química , Células Madre Mesenquimatosas/efectos de los fármacos , Metacrilatos/química , Impresión Tridimensional
10.
Sensors (Basel) ; 16(11)2016 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-27801809

RESUMEN

We compare ultrasonic welding (UW) and thermal bonding (TB) for the integration of embedded thin-film gold electrodes for electrochemical applications in injection molded (IM) microfluidic chips. The UW bonded chips showed a significantly superior electrochemical performance compared to the ones obtained using TB. Parameters such as metal thickness of electrodes, depth of electrode embedding, delivered power, and height of energy directors (for UW), as well as pressure and temperature (for TB), were systematically studied to evaluate the two bonding methods and requirements for optimal electrochemical performance. The presented technology is intended for easy and effective integration of polymeric Lab-on-Chip systems to encourage their use in research, commercialization and education.

11.
Anal Chem ; 87(4): 2204-12, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25582124

RESUMEN

In this work, we have developed a microfluidic cytotoxicity assay for a cell culture and detection platform, which enables both fluid handling and electrochemical/optical detection. The cytotoxic effect of anticancer drugs doxorubicin (DOX), oxaliplatin (OX) as well as OX-loaded liposomes, developed for targeted drug delivery, was evaluated using real-time impedance monitoring. The time-dependent effect of DOX on HeLa cells was monitored and found to have a delayed onset of cytotoxicity in microfluidics compared with static culture conditions based on data obtained in our previous study. The result of a fluorescent microscopic annexin V/propidium iodide assay, performed in microfluidics, confirmed the outcome of the real-time impedance assay. In addition, the response of HeLa cells to OX-induced cytotoxicity proved to be slower than toxicity induced by DOX. A difference in the time-dependent cytotoxic response of fibrosarcoma cells (HT1080) to free OX and OX-loaded liposomes was observed and attributed to incomplete degradation of the liposomes, which results in lower drug availability. The matrix metalloproteinase (MMP)-dependent release of OX from OX-loaded liposomes was also confirmed using laryngopharynx carcinoma cells (FaDu). The comparison and the observed differences between the cytotoxic effects under microfluidic and static conditions highlight the importance of comparative studies as basis for implementation of microfluidic cytotoxic assays.


Asunto(s)
Antineoplásicos/farmacología , Doxorrubicina/farmacología , Liposomas/química , Técnicas Analíticas Microfluídicas , Compuestos Organoplatinos/farmacología , Antineoplásicos/química , Muerte Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Doxorrubicina/química , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Compuestos Organoplatinos/química , Oxaliplatino , Relación Estructura-Actividad , Células Tumorales Cultivadas
12.
Biomed Microdevices ; 17(1): 21, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25653071

RESUMEN

Black lipid membranes (BLMs) are significant in studies of membrane transport, incorporated proteins/ion transporters, and hence in construction of biosensor devices. Although BLMs provide an accepted mimic of cellular membranes, they are inherently fragile. Techniques are developed to stabilize them, such as hydrogel supports. In this paper, we present a reusable device for studies on hydrogel supported (hs) BLMs. These are formed across an ethylene tetrafluoroethylene (ETFE) aperture array supported by the hydrogel, which is during in situ polymerization covalently "sandwiched" between the ETFE substrate and a gold electrode microchip, thus allowing direct electrochemical studies with the integrated working electrodes. Using electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy and contact angle measurements, we demonstrate the optimized chemical modifications of the gold electrode microchips and plasma modification of the ETFE aperture arrays facilitating covalent "sandwiching" of the hydrogel. Both fluorescence microscopy and EIS were used to demonstrate the induced spontaneous thinning of a deposited lipid solution, leading to formation of stabilized hsBLMs on average in 10 min. The determined specific membrane capacitance and resistance were shown to vary in the range 0.31-0.49 µF/cm(2) and 45-65 kΩ cm(2), respectively, corresponding to partially solvent containing BLMs with an average life time of 60-80 min. The characterized hsBLM formation and devised equivalent circuit models lead to a schematic model to illustrate lipid molecule distribution in hydrogel-supported apertures. The functionality of stabilized hsBLMs and detection sensitivity of the platform were verified by monitoring the effect of the ion transporter valinomycin.


Asunto(s)
Técnicas Electroquímicas/métodos , Oro/química , Hidrogeles/química , Lípidos/química , Membranas Artificiales , Electrodos
13.
Sensors (Basel) ; 14(6): 9505-21, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-24878592

RESUMEN

In this paper we demonstrate the fabrication and electrochemical characterization of a microchip with 12 identical but individually addressable electrochemical measuring sites, each consisting of a set of interdigitated electrodes acting as a working electrode as well as two circular electrodes functioning as a counter and reference electrode in close proximity. The electrodes are made of gold on a silicon oxide substrate and are passivated by a silicon nitride membrane. A method for avoiding the creation of high edges at the electrodes (known as lift-off ears) is presented. The microchip design is highly symmetric to accommodate easy electronic integration and provides space for microfluidic inlets and outlets for integrated custom-made microfluidic systems on top.


Asunto(s)
Técnicas Electroquímicas/instrumentación , Microelectrodos , Técnicas Analíticas Microfluídicas/instrumentación , Diseño de Equipo , Microscopía de Fuerza Atómica
14.
Analyst ; 138(13): 3651-9, 2013 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-23628978

RESUMEN

A surface modification of interdigitated gold microelectrodes (IDEs) with a doped polypyrrole (PPy) film for detection of dopamine released from populations of differentiated PC12 cells is presented. A thin PPy layer was potentiostatically electropolymerized from an aqueous pyrrole solution onto electrode surfaces. The conducting polymer film was doped during electropolymerization by introducing counter-ions in the monomer solution. Several counter-ions were tested and the resulting electrode modifications were characterized electrochemically to find the optimal dopant that increases sensitivity in dopamine detection. Overoxidation of the PPy films was shown to contribute to a significant enhancement in sensitivity to dopamine. The changes caused by overoxidation in the electrochemical behavior and electrode morphology were investigated using cyclic voltammetry and SEM as well as AFM, respectively. The optimal dopant for dopamine detection was found to be polystyrene sulfonate anion (PSS(-)). Rat pheochromocytoma (PC12) cells, a suitable model to study exocytotic dopamine release, were differentiated on IDEs functionalized with an overoxidized PSS(-)-doped PPy film. The modified electrodes were used to amperometrically detect dopamine released by populations of cells upon triggering cellular exocytosis with an elevated K(+) concentration. A comparison between the generated current on bare gold electrodes and gold electrodes modified with overoxidized doped PPy illustrates the clear advantage of the modification, yielding 2.6-fold signal amplification. The results also illustrate how to use cell population based dopamine exocytosis measurements to obtain biologically significant information that can be relevant in, for instance, the study of neural stem cell differentiation into dopaminergic neurons.


Asunto(s)
Técnicas de Química Analítica/instrumentación , Dopamina/análisis , Dopamina/metabolismo , Polímeros/química , Pirroles/química , Animales , Diferenciación Celular , Electroquímica , Exocitosis , Oro/química , Microelectrodos , Oxidación-Reducción , Células PC12 , Polimerizacion , Ratas
15.
Anal Bioanal Chem ; 405(11): 3847-58, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23371527

RESUMEN

Conventionally, microbial bioelectrochemical assays have been conducted using immobilized cells on an electrode that is placed in an electrochemical batch cell. In this paper, we describe a developed microfluidic platform with integrated microelectrode arrays for automated bioelectrochemical assays utilizing a new double mediator system to map redox metabolism and screen for genetic modifications in Saccharomyces cerevisiae cells. The function of this new double mediator system based on menadione and osmium redox polymer (PVI-Os) is demonstrated. "Wiring" of S. cerevisiae cells using PVI-Os shows a significant improvement of bioelectrochemical monitoring in a microfluidic environment and functions as an effective immobilization matrix for cells that are not strongly adherent. The function of the developed microfluidic platform is demonstrated using two strains of S. cerevisiae, ENY.WA and its deletion mutant EBY44, which lacks the enzyme phosphoglucose isomerase. The cellular responses to introduced glucose and fructose were recorded for the two S. cerevisiae strains, and the obtained results are compared with previously published work when using an electrochemical batch cell, indicating that microfluidic bioelectrochemical assays employing the menadione-PVI-Os double mediator system provides an effective means to conduct automated microbial assays.


Asunto(s)
Microfluídica/instrumentación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Células Inmovilizadas/química , Células Inmovilizadas/metabolismo , Técnicas Electroquímicas/instrumentación , Diseño de Equipo , Fructosa/metabolismo , Eliminación de Gen , Glucosa/metabolismo , Microelectrodos , Osmio/química , Oxidación-Reducción , Polímeros/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Vitamina K 3/química
16.
J Vis Exp ; (195)2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37212554

RESUMEN

The embedded 3D printing of cells inside a granular support medium has emerged in the past decade as a powerful approach for the freeform biofabrication of soft tissue constructs. However, granular gel formulations have been restricted to a limited number of biomaterials that allow for the cost-effective generation of large amounts of hydrogel microparticles. Therefore, granular gel support media have generally lacked the cell-adhesive and cell-instructive functions found in the native extracellular matrix (ECM). To address this, a methodology has been developed for the generation of self-healing annealable particle-extracellular matrix (SHAPE) composites. SHAPE composites consist of a granular phase (microgels) and a continuous phase (viscous ECM solution) that, together, allow for both programmable high-fidelity printing and an adjustable biofunctional extracellular environment. This work describes how the developed methodology can be utilized for the precise biofabrication of human neural constructs. First, alginate microparticles, which serve as the granular component in the SHAPE composites, are fabricated and combined with a collagen-based continuous component. Then, human neural stem cells are printed inside the support material, followed by the annealing of the support. The printed constructs can be maintained for weeks to allow the differentiation of the printed cells into neurons. Simultaneously, the collagen continuous phase allows for axonal outgrowth and the interconnection of regions. Finally, this works provides information on how to perform live-cell fluorescence imaging and immunocytochemistry to characterize the 3D-printed human neural constructs.


Asunto(s)
Bioimpresión , Microgeles , Humanos , Microgeles/análisis , Ingeniería de Tejidos/métodos , Matriz Extracelular/química , Materiales Biocompatibles/química , Hidrogeles/química , Impresión Tridimensional , Andamios del Tejido/química , Bioimpresión/métodos
17.
Bioelectrochemistry ; 149: 108306, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36345111

RESUMEN

The pathophysiological progress of Parkinson's disease leads through degeneration of dopaminergic neurons in the substantia nigra to complete cell death and lack of dopamine in the striatum where it modulates motor functions. Transplantation of dopaminergic stem cell-derived neurons is a possible therapy to restore dopamine levels. We have previously presented multifunctional pyrolytic carbon coated leaky optoelectrical fibers (LOEFs) with laser ablated micro-optical windows (µOWs) as carriers for channelrhodopsin-2 modified optogenetically active neurons for light-induced on-demand dopamine release and amperometric real-time detection. To increase the dopamine release by stimulating a larger neuronal population with light, we present here a novel approach to generate µOWs through laser ablation around the entire circumference of optical fibers to obtain Omni-LOEFs. Cyclic voltammetric characterization of the pyrolytic carbon showed that despite the increased number of µOWs, the electrochemical properties were not deteriorated. Finally, we demonstrate that the current recorded during real-time detection of dopamine upon light-induced stimulation of neurons differentiated on Omni-LOEFs is significantly higher compared to recordings from the same number of cells seeded on LOEFs with µOWs only on one side. Moreover, by varying the cell seeding density, we show that the recorded current is proportional to the dimension of the cell population.


Asunto(s)
Dopamina , Optogenética , Neuronas/fisiología , Carbono/metabolismo
18.
Biochim Biophys Acta ; 1808(10): 2600-7, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21683056

RESUMEN

This study describes the interaction between sodium dodecyl sulfate (SDS) and membrane proteins reconstituted into large unilamellar lipid vesicles and detergent micelles studied by circular dichroism (CD) and polarity sensitive probe labeling. Specifically, we carried out a comparative study of two aquaporins with high structural homology SoPIP2;1 and AqpZ using identical reconstitution conditions. Our CD results indicate that SDS, when added to membrane-reconstituted aquaporins in concentrations below the SDS critical micelle concentration (CMC, ~8mM), causes helical rearrangements of both aquaporins. However, we do not find compelling evidence for unfolding. In contrast when SDS is added to detergent stabilized aquaporins, SoPIP2;1 partly unfolds, while AqpZ secondary structure is unaffected. Using a fluorescent polarity sensitive probe (Badan) we show that SDS action on membrane reconstituted SoPIP2;1 as well as AqpZ is associated with initial increased hydrophobic interactions in protein transmembrane (TM) spanning regions up to a concentration of 0.1× CMC. At higher SDS concentrations TM hydrophobic interactions, as reported by Badan, decrease and reach a plateau from SDS CMC up to 12.5× CMC. Combined, our results show that SDS does not unfold neither SoPIP2;1 nor AqpZ during transition from a membrane reconstituted form to a detergent stabilized state albeit the native folds are changed.


Asunto(s)
Acuaporinas/química , Escherichia coli/química , Dodecil Sulfato de Sodio/química , Spinacia oleracea/química , Dicroismo Circular , Colorantes Fluorescentes , Espectrometría de Fluorescencia
19.
J Nanosci Nanotechnol ; 12(4): 3077-83, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22849068

RESUMEN

In this paper we present a series of experiments showing that vertical self-assembled diphenylalanine peptide nanowires (PNWs) are a suitable candidate material for cellular biosensing. We grew HeLa and PC12 cells onto PNW modified gold surfaces and observed no hindrance of cell growth caused by the peptide nanostructures; furthermore we studied the properties of PNWs by investigating their influence on the electrochemical behavior of gold electrodes. The PNWs were functionalized with polypyrrole (PPy) by chemical polymerization, therefore creating conducting peptide/polymer nanowire structures vertically attached to a metal electrode. The electroactivity of such structures was characterized by cyclic voltammetry. The PNW/PPy modified electrodes were finally used as amperometric dopamine sensors, yielding a detection limit of 3,1 microM.


Asunto(s)
Nanocables , Fenilalanina/análogos & derivados , Animales , Técnicas Biosensibles , División Celular , Dipéptidos , Electrodos , Oro , Células HeLa , Humanos , Microscopía Electrónica de Rastreo , Células PC12 , Fenilalanina/química , Ratas
20.
Adv Sci (Weinh) ; 9(25): e2201392, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35712780

RESUMEN

Human in vitro models of neural tissue with tunable microenvironment and defined spatial arrangement are needed to facilitate studies of brain development and disease. Towards this end, embedded printing inside granular gels holds great promise as it allows precise patterning of extremely soft tissue constructs. However, granular printing support formulations are restricted to only a handful of materials. Therefore, there has been a need for novel materials that take advantage of versatile biomimicry of bulk hydrogels while providing high-fidelity support for embedded printing akin to granular gels. To address this need, Authors present a modular platform for bioengineering of neuronal networks via direct embedded 3D printing of human stem cells inside Self-Healing Annealable Particle-Extracellular matrix (SHAPE) composites. SHAPE composites consist of soft microgels immersed in viscous extracellular-matrix solution to enable precise and programmable patterning of human stem cells and consequent generation mature subtype-specific neurons that extend projections into the volume of the annealed support. The developed approach further allows multi-ink deposition, live spatial and temporal monitoring of oxygen levels, as well as creation of vascular-like channels. Due to its modularity and versatility, SHAPE biomanufacturing toolbox has potential to be used in applications beyond functional modeling of mechanically sensitive neural constructs.


Asunto(s)
Microgeles , Tejido Nervioso , Humanos , Hidrogeles , Impresión Tridimensional , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA