RESUMEN
Glioblastoma, a type of cancer affecting the central nervous system, is characterized by its poor prognosis and the dynamic alteration of its metabolic phenotype to fuel development and progression. Critical to cellular metabolism, mitochondria play a pivotal role, where the acetylation of lysine residues on mitochondrial enzymes emerges as a crucial regulatory mechanism of protein function. This post-translational modification, which negatively impacts the mitochondrial proteome's functionality, is modulated by the enzyme sirtuin 3 (SIRT3). Aiming to elucidate the regulatory role of SIRT3 in mitochondrial metabolism within glioblastoma, we employed high-resolution mass spectrometry to analyze the proteome and acetylome of two glioblastoma cell lines, each exhibiting distinct metabolic behaviors, following the chemical inhibition of SIRT3. Our findings reveal that the protein synthesis machinery, regulated by lysine acetylation, significantly influences the metabolic phenotype of these cells. Moreover, we have shed light on potential novel SIRT3 targets, thereby unveiling new avenues for future investigations. This research highlights the critical function of SIRT3 in mitochondrial metabolism and its broader implications for cellular energetics. It also provides a comparative analysis of the proteome and acetylome across glioblastoma cell lines with opposing metabolic phenotypes.
Asunto(s)
Glioblastoma , Sirtuina 3 , Humanos , Sirtuina 3/metabolismo , Proteoma/metabolismo , Lisina/metabolismo , Glioblastoma/metabolismo , Mitocondrias/metabolismo , Procesamiento Proteico-Postraduccional , Fenotipo , Acetilación , Proteínas Mitocondriales/metabolismoRESUMEN
Methyl parathion is an organophosphorus pesticide widely employed worldwide to control pests in agricultural and domestic environments. However, due to its intensive use, high toxicity, and environmental persistence, methyl parathion is recognized as an important ecosystem and human health threat, causing severe environmental pollution events and numerous human poisoning and deaths each year. Therefore, identifying and characterizing microorganisms capable of fully degrading methyl parathion and its degradation metabolites is a crucial environmental task for the bioremediation of pesticide-polluted sites. Burkholderia zhejiangensis CEIB S4-3 is a bacterial strain isolated from agricultural soils capable of immediately hydrolyzing methyl parathion at a concentration of 50 mg/L and degrading the 100% of the released p-nitrophenol in a 12-hour lapse when cultured in minimal salt medium. In this study, a comparative proteomic analysis was conducted in the presence and absence of methyl parathion to evaluate the biological mechanisms implicated in the methyl parathion biodegradation and resistance by the strain B. zhejiangensis CEIB S4-3. In each treatment, the changes in the protein expression patterns were evaluated at three sampling times, zero, three, and nine hours through the use of two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), and the differentially expressed proteins were identified by mass spectrometry (MALDI-TOF). The proteomic analysis allowed the identification of 72 proteins with differential expression, 35 proteins in the absence of the pesticide, and 37 proteins in the experimental condition in the presence of methyl parathion. The identified proteins are involved in different metabolic processes such as the carbohydrate and amino acids metabolism, carbon metabolism and energy production, fatty acids ß-oxidation, and the aromatic compounds catabolism, including enzymes of the both p-nitrophenol degradation pathways (Hydroquinone dioxygenase and Hydroxyquinol 1,2 dioxygenase), as well as the overexpression of proteins implicated in cellular damage defense mechanisms such as the response and protection of the oxidative stress, reactive oxygen species defense, detoxification of xenobiotics, and DNA repair processes. According to these data, B. zhejiangensis CEIB S4-3 overexpress different proteins related to aromatic compounds catabolism and with the p-nitrophenol degradation pathways, the higher expression levels observed in the two subunits of the enzyme Hydroquinone dioxygenase, suggest a preferential use of the Hydroquinone metabolic pathway in the p-nitrophenol degradation process. Moreover the overexpression of several proteins implicated in the oxidative stress response, xenobiotics detoxification, and DNA damage repair reveals the mechanisms employed by B. zhejiangensis CEIB S4-3 to counteract the adverse effects caused by the methyl parathion and p-nitrophenol exposure.
Asunto(s)
Dioxigenasas , Metil Paratión , Plaguicidas , Aminoácidos , Burkholderiaceae , Carbohidratos , Carbono , Ecosistema , Ácidos Grasos , Hidroquinonas/análisis , Metil Paratión/análisis , Metil Paratión/química , Metil Paratión/toxicidad , Nitrofenoles , Compuestos Organofosforados , Proteómica , Especies Reactivas de Oxígeno , SueloRESUMEN
INTRODUCTION: Lysine acetylation is a reversible post-translational modification (PTM) regulated through the action of specific types of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (HDACs), in addition to bromodomains, which are a group of conserved domains which identify acetylated lysine residues, several of the players in the process of protein acetylation, including enzymes and bromodomain-containing proteins, have been related to the progression of several diseases. The combination of high-resolution mass spectrometry-based proteomics, and immunoprecipitation to enrich acetylated peptides has contributed in recent years to expand the knowledge about this PTM described initially in histones and nuclear proteins, and is currently reported in more than 5000 human proteins, that are regulated by this PTM. AREAS COVERED: This review presents an overview of the main participant elements, the scenario in the development of protein lysine acetylation, and its role in different human pathologies. EXPERT OPINION: Acetylation targets are practically all cellular processes in eukaryotes and prokaryotes organisms. Consequently, this modification has been linked to many pathologies like cancer, viral infection, obesity, diabetes, cardiovascular, and nervous system-associated diseases, to mention a few relevant examples. Accordingly, some intermediate mediators in the acetylation process have been projected as therapeutic targets.
Asunto(s)
Lisina , Proteómica , Acetilación , Histonas , Humanos , Lisina/metabolismo , Procesamiento Proteico-PostraduccionalRESUMEN
An important goal of the Human Proteome Organization (HUPO) Chromosome-centric Human Proteome Project (C-HPP) is to correctly define the number of canonical proteins encoded by their cognate open reading frames on each chromosome in the human genome. When identified with high confidence of protein evidence (PE), such proteins are termed PE1 proteins in the online database resource, neXtProt. However, proteins that have not been identified unequivocally at the protein level but that have other evidence suggestive of their existence (PE2-4) are termed missing proteins (MPs). The number of MPs has been reduced from 5511 in 2012 to 2186 in 2018 (neXtProt 2018-01-17 release). Although the annotation of the human proteome has made significant progress, the "parts list" alone does not inform function. Indeed, 1937 proteins representing â¼10% of the human proteome have no function either annotated from experimental characterization or predicted by homology to other proteins. Specifically, these 1937 "dark proteins" of the so-called dark proteome are composed of 1260 functionally uncharacterized but identified PE1 proteins, designated as uPE1, plus 677 MPs from categories PE2-PE4, which also have no known or predicted function and are termed uMPs. At the HUPO-2017 Annual Meeting, the C-HPP officially adopted the uPE1 pilot initiative, with 14 participating international teams later committing to demonstrate the feasibility of the functional characterization of large numbers of dark proteins (CP), starting first with 50 uPE1 proteins, in a stepwise chromosome-centric organizational manner. The second aim of the feasibility phase to characterize protein (CP) functions of 50 uPE1 proteins, termed the neXt-CP50 initiative, is to utilize a variety of approaches and workflows according to individual team expertise, interest, and resources so as to enable the C-HPP to recommend experimentally proven workflows to the proteome community within 3 years. The results from this pilot will not only be the cornerstone of a larger characterization initiative but also enhance understanding of the human proteome and integrated cellular networks for the discovery of new mechanisms of pathology, mechanistically informative biomarkers, and rational drug targets.
Asunto(s)
Cromosomas Humanos/genética , Bases de Datos de Proteínas , Proteoma/análisis , Genoma Humano , Humanos , Espectrometría de Masas , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta , Proyectos Piloto , Proteoma/genéticaRESUMEN
Lysine acetylation is a widespread posttranslational modification affecting many biological pathways. Recent studies indicate that acetylated lysine residues mainly exhibit low acetylation occupancy, but challenges in sample preparation and analysis make it difficult to confidently assign these numbers, limiting understanding of their biological significance. Here, we tested three common sample preparation methods to determine their suitability for assessing acetylation stoichiometry in three human cell lines, identifying the acetylation occupancy in more than 1,300 proteins from each cell line. The stoichiometric analysis in combination with quantitative proteomics also enabled us to explore their functional roles. We found that higher abundance of the deacetylase sirtuin 1 (SIRT1) correlated with lower acetylation occupancy and lower levels of ribosomal proteins, including those involved in ribosome biogenesis and rRNA processing. Treatment with the SIRT1 inhibitor EX-527 confirmed SIRT1's role in the regulation of pre-rRNA synthesis and processing. Specifically, proteins involved in pre-rRNA transcription, including subunits of the polymerase I and SL1 complexes and the RNA polymerase I-specific transcription initiation factor RRN3, were up-regulated after SIRT1 inhibition. Moreover, many protein effectors and regulators of pre-rRNA processing needed for rRNA maturation were also up-regulated after EX-527 treatment with the outcome that pre-rRNA and 28S rRNA levels also increased. More generally, we found that SIRT1 inhibition down-regulates metabolic pathways, including glycolysis and pyruvate metabolism. Together, these results provide the largest data set thus far of lysine acetylation stoichiometry (available via ProteomeXchange with identifier PXD005903) and set the stage for further biological investigations of this central posttranslational modification.
Asunto(s)
Regulación de la Expresión Génica , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/metabolismo , Sirtuina 1/metabolismo , Acetilación/efectos de los fármacos , Métodos Analíticos de la Preparación de la Muestra , Carbazoles/farmacología , Línea Celular Transformada , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Cinética , Mapeo Peptídico , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteómica/métodos , Procesamiento Postranscripcional del ARN/efectos de los fármacos , ARN Ribosómico 28S/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/genética , Espectrometría de Masas en TándemRESUMEN
BACKGROUND: Epithelial ovarian cancer is the second most lethal gynecological cancer worldwide. Ascites can be found in all clinical stages, however in advanced disease stages IIIC and IV it is more frequent and could be massive, associated with worse prognosis. Due to the above, it was our interest to understanding how the ascites of ovarian cancer patients induces the mechanisms by which the cells present in it acquire a more aggressive phenotype and to know new proteins associated to this process. METHODS: A proteomic analysis of SKOV-3 cells treated with five different EOC ascites was performed by two-dimensional electrophoresis coupled to MALDI-TOF. The level of expression of the proteins of interest was validated by RT-PCR because several of these proteins have only been reported at the messenger level. RESULTS: Among the proteins identified that increased their expression in ascites-treated SKOV-3 cells, were Ran GTPase, ZNF268, and Synaptotagmin like-3. On the other hand, proteins that were negatively regulated by ascites were HLA-I, HSPB1, ARF1, Synaptotagmin 1, and hnRNPH1, among others. Furthermore, an interactome for every one of these proteins was done in order to identify biological processes, molecular actions, and cellular components in which they may participate. CONCLUSIONS: Identified proteins participate in cellular processes highly relevant to the aggressive phenotype such as nuclear transport, regulation of gene expression, vesicular trafficking, evasion of the immune response, invasion, metastasis, and in resistance to chemotherapy. These proteins may represent a source of information which has the potential to be evaluated for the design of therapies directed against these malignant cells that reside on ovarian cancer ascites.
RESUMEN
Benzo[a]pyrene (BaP) is recognized as a potentially carcinogenic and mutagenic hydrocarbon, and thus, its removal from the environment is a priority. The use of thermophilic bacteria capable of biodegrading or biotransforming this compound to less toxic forms has been explored in recent decades, since it provides advantages compared to mesophilic organisms. This study assessed the biotransformation of BaP by the thermophilic bacterium Bacillus licheniformis M2-7. Our analysis of the biotransformation process mediated by strain M2-7 on BaP shows that it begins during the first 3 h of culture. The gas chromatogram of the compound produced shows a peak with a retention time of 17.38 min, and the mass spectra shows an approximate molecular ion of m/z 167, which coincides with the molecular weight of the chemical formula C6H4(COOH)2, confirming a chemical structure corresponding to phthalic acid. Catechol 2,3-dioxygenase (C23O) enzyme activity was detected in minimal saline medium supplemented with BaP (0.33 U mg-1 of protein). This finding suggests that B. licheniformis M2-7 uses the meta pathway for biodegrading BaP using the enzyme C23O, thereby generating phthalic acid as an intermediate.
Asunto(s)
Bacillus licheniformis/enzimología , Bacillus licheniformis/metabolismo , Benzo(a)pireno/metabolismo , Bacillus licheniformis/crecimiento & desarrollo , Benzo(a)pireno/análisis , Benzo(a)pireno/química , Biodegradación Ambiental , Biotransformación , Catecol 2,3-Dioxigenasa/metabolismo , Cromatografía de Gases , Contaminantes Ambientales , Activación Enzimática , Espectrometría de Masas , Peso Molecular , Ácidos Ftálicos/metabolismo , Microbiología del SueloRESUMEN
Type 2 diabetes mellitus is characterized by hyperglycemia and insulin-resistance. Diabetes results from pancreatic inability to secrete the insulin needed to overcome this resistance. We analyzed the protein profile from the pancreas of ten-week old diabetic db/db and wild type mice through proteomics. Pancreatic proteins were separated in two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and significant changes in db/db mice respect to wild type mice were observed in 27 proteins. Twenty five proteins were identified by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) and their interactions were analyzed using search tool for the retrieval of interacting genes/proteins (STRING) and database for annotation, visualization and integrated discovery (DAVID). Some of these proteins were Pancreatic α-amylase, Cytochrome b5, Lithostathine-1, Lithostathine-2, Chymotrypsinogen B, Peroxiredoxin-4, Aspartyl aminopeptidase, Endoplasmin, and others, which are involved in the metabolism of carbohydrates and proteins, as well as in oxidative stress, and inflammation. Remarkably, these are mostly endoplasmic reticulum proteins related to peptidase activity, i.e., they are involved in proteolysis, glucose catabolism and in the tumor necrosis factor-mediated signaling pathway. These results suggest mechanisms for insulin resistance, and the chronic inflammatory state observed in diabetes.
Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Páncreas/patología , Mapas de Interacción de Proteínas , Proteoma/metabolismo , Proteómica/métodos , Animales , Diabetes Mellitus Tipo 2/patología , Electroforesis en Gel Bidimensional/métodos , Femenino , Ratones , Páncreas/metabolismo , Proteoma/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodosRESUMEN
Lysine acetylation is an evolutionarily conserved protein modification that changes protein functions and plays an essential role in many cellular processes, such as central metabolism, transcriptional regulation, chemotaxis, and pathogen virulence. It can alter DNA binding, enzymatic activity, protein-protein interactions, protein stability, or protein localization. In prokaryotes, lysine acetylation occurs non-enzymatically and by the action of lysine acetyltransferases (KAT). In enzymatic acetylation, KAT transfers the acetyl group from acetyl-CoA (AcCoA) to the lysine side chain. In contrast, acetyl phosphate (AcP) is the acetyl donor of chemical acetylation. Regardless of the acetylation type, the removal of acetyl groups from acetyl lysines occurs only enzymatically by lysine deacetylases (KDAC). KATs are grouped into three main superfamilies based on their catalytic domain sequences and biochemical characteristics of catalysis. Specifically, members of the GNAT are found in eukaryotes and prokaryotes and have a core structural domain architecture. These enzymes can acetylate small molecules, metabolites, peptides, and proteins. This review presents current knowledge of acetylation mechanisms and functional implications in bacterial metabolism, pathogenicity, stress response, translation, and the emerging topic of protein acetylation in the gut microbiome. Additionally, the methods used to elucidate the biological significance of acetylation in bacteria, such as relative quantification and stoichiometry quantification, and the genetic code expansion tool (CGE), are reviewed.
Asunto(s)
Bacterias , Proteínas Bacterianas , Procesamiento Proteico-Postraduccional , Acetilación , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Bacterias/metabolismo , Bacterias/genética , Lisina/metabolismo , Lisina Acetiltransferasas/metabolismo , Lisina Acetiltransferasas/genética , Acetilcoenzima A/metabolismoRESUMEN
RhizoBindingSites is a de novo depurified database of conserved DNA motifs potentially involved in the transcriptional regulation of the Rhizobium, Sinorhizobium, Bradyrhizobium, Azorhizobium, and Mesorhizobium genera covering 9 representative symbiotic species, deduced from the upstream regulatory sequences of orthologous genes (O-matrices) from the Rhizobiales taxon. The sites collected with O-matrices per gene per genome from RhizoBindingSites were used to deduce matrices using the dyad-Regulatory Sequence Analysis Tool (RSAT) method, giving rise to novel S-matrices for the construction of the RizoBindingSites v2.0 database. A comparison of the S-matrix logos showed a greater frequency and/or re-definition of specific-position nucleotides found in the O-matrices. Moreover, S-matrices were better at detecting genes in the genome, and there was a more significant number of transcription factors (TFs) in the vicinity than O-matrices, corresponding to a more significant genomic coverage for S-matrices. O-matrices of 3187 TFs and S-matrices of 2754 TFs from 9 species were deposited in RhizoBindingSites and RhizoBindingSites v2.0, respectively. The homology between the matrices of TFs from a genome showed inter-regulation between the clustered TFs. In addition, matrices of AraC, ArsR, GntR, and LysR ortholog TFs showed different motifs, suggesting distinct regulation. Benchmarking showed 72%, 68%, and 81% of common genes per regulon for O-matrices and approximately 14% less common genes with S-matrices of Rhizobium etli CFN42, Rhizobium leguminosarum bv. viciae 3841, and Sinorhizobium meliloti 1021. These data were deposited in RhizoBindingSites and the RhizoBindingSites v2.0 database (http://rhizobindingsites.ccg.unam.mx/).
RESUMEN
Rhizobium etli CFN42 proteome-transcriptome mixed data of exponential growth and nitrogen-fixing bacteroids, as well as Sinorhizobium meliloti 1021 transcriptome data of growth and nitrogen-fixing bacteroids, were integrated into transcriptional regulatory networks (TRNs). The one-step construction network consisted of a matrix-clustering analysis of matrices of the gene profile and all matrices of the transcription factors (TFs) of their genome. The networks were constructed with the prediction of regulatory network application of the RhizoBindingSites database (http://rhizobindingsites.ccg.unam.mx/). The deduced free-living Rhizobium etli network contained 1,146 genes, including 380 TFs and 12 sigma factors. In addition, the bacteroid R. etli CFN42 network contained 884 genes, where 364 were TFs, and 12 were sigma factors, whereas the deduced free-living Sinorhizobium meliloti 1021 network contained 643 genes, where 259 were TFs and seven were sigma factors, and the bacteroid Sinorhizobium meliloti 1021 network contained 357 genes, where 210 were TFs and six were sigma factors. The similarity of these deduced condition-dependent networks and the biological E. coli and B. subtilis independent condition networks segregates from the random Erdös-Rényi networks. Deduced networks showed a low average clustering coefficient. They were not scale-free, showing a gradually diminishing hierarchy of TFs in contrast to the hierarchy role of the sigma factor rpoD in the E. coli K12 network. For rhizobia networks, partitioning the genome in the chromosome, chromids, and plasmids, where essential genes are distributed, and the symbiotic ability that is mostly coded in plasmids, may alter the structure of these deduced condition-dependent networks. It provides potential TF gen-target relationship data for constructing regulons, which are the basic units of a TRN.
RESUMEN
HPV 16 integration is crucial for the onset and progression of premalignant lesions to invasive squamous cell carcinoma (ISCC) because it promotes the amplification of proto-oncogenes and the silencing of tumor suppressor genes; some of these are proteins with PDZ domains involved in homeostasis and cell polarity. Through a bioinformatics approach based on interaction networks, a group of proteins associated with HPV 16 infection, PDZ domains, and direct physical interaction with E6 and related to different hallmarks of cancer were identified. MAGI-1 was selected to evaluate the expression profile and subcellular localization changes in premalignant lesions and ISCC with HPV 16 in an integrated state in cervical cytology; the profile expression of MAGI-1 diminished according to lesion grade. Surprisingly, in cell lines CaSki and SiHa, the protein localization was cytoplasmic and nuclear. In contrast, in histological samples, a change in subcellular localization from the cytoplasm in low-grade squamous intraepithelial lesions (LSIL) to the nucleus in the high-grade squamous intraepithelial lesion (HSIL) was observed; in in situ carcinomas and ISCC, MAGI-1 expression was absent. In conclusion, MAGI-1 expression could be a potential biomarker for distinguishing those cells with normal morphology but with HPV 16 integrated from those showing morphology-related uterine cervical lesions associated with tumor progression.
RESUMEN
High-risk human papillomavirus (HR-HPV) is associated with the development of different types of cancer, such as cervical, head and neck (including oral, laryngeal, and oropharyngeal), vulvar, vaginal, penile, and anal cancers. The progression of premalignant lesions to cancer depends on factors associated with the host cell and the different epithelia infected by HPV, such as basal cells of the flat epithelium and the cells of the squamocolumnar transformation zone (STZ) found in the uterine cervix and the anal canal, which is rich in heparan sulfate proteoglycans and integrin-like receptors. On the other hand, factors associated with the viral genotype, infection with multiple viruses, viral load, viral persistence, and type of integration determine the viral breakage pattern and the sites at which the virus integrates into the host cell genome (introns, exons, intergenic regions), inducing the loss of function of tumor suppressor genes and increasing oncogene expression. This review describes the role of viral integration and the molecular mechanisms induced by HR-HPV in different types of tissues. The purpose of this review is to identify the common factors associated with the role of integration events in the progression of premalignant lesions in different types of cancer.
RESUMEN
Long noncoding RNAs (lncRNAs) are essential regulatory elements of sex chromosomes that act to equalize gene expression levels between males and females. XIST, RSX, and roX2 regulate X chromosomes in placental mammals, marsupials, and Drosophila, respectively. Because the green anole (Anolis carolinensis) shows complete dosage compensation of its X chromosome, we tested whether a lncRNA was involved. We found an ancient lncRNA, MAYEX, that gained male-specific expression more than 89 million years ago. MAYEX evolved a notable association with the acetylated histone 4 lysine 16 (H4K16ac) epigenetic mark and the ability to loop its locus to the totality of the X chromosome to increase expression levels. MAYEX is the first lncRNA in reptiles linked to a dosage compensation mechanism that balances the expression of sex chromosomes.
Asunto(s)
Compensación de Dosificación (Genética) , Lagartos , ARN Largo no Codificante , Cromosoma X , Animales , Femenino , Masculino , Acetilación , Epigénesis Genética , Evolución Molecular , Histonas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Cromosoma X/genética , Lagartos/genéticaRESUMEN
Several environmental stresses generate high amounts of reactive oxygen species (ROS) in plant cells, resulting in oxidative stress. Symbiotic nitrogen fixation (SNF) in the legume-rhizobia symbiosis is sensitive to damage from oxidative stress. Active nodules of the common bean (Phaseolus vulgaris) exposed to the herbicide paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride hydrate), which stimulates ROS accumulation, exhibited reduced nitrogenase activity and ureide content. We analyzed the global gene response of nodules subjected to oxidative stress using the Bean Custom Array 90K, which includes probes from 30,000 expressed sequence tags (ESTs). A total of 4280 ESTs were differentially expressed in stressed bean nodules; of these, 2218 were repressed. Based on Gene Ontology analysis, these genes were grouped into 42 different biological process categories. Analysis with the PathExpress bioinformatic tool, adapted for bean, identified five significantly repressed metabolic pathways related to carbon/nitrogen metabolism, which is crucial for nodule function. Quantitative reverse transcription (qRT)-PCR analysis of transcription factor (TF) gene expression showed that 67 TF genes were differentially expressed in nodules exposed to oxidative stress. Putative cis-elements recognized by highly responsive TF were detected in promoter regions of oxidative stress regulated genes. The expression of oxidative stress responsive genes and of genes important for SNF in bacteroids analyzed in stressed nodules revealed that these conditions elicited a transcriptional response.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Estrés Oxidativo , Phaseolus/genética , Nódulos de las Raíces de las Plantas/genética , Factores de Transcripción/genética , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo/genética , Paraquat , Phaseolus/metabolismo , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Regiones Promotoras Genéticas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rhizobium tropici/genética , Rhizobium tropici/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , SimbiosisRESUMEN
Transmembrane proteins (TMEM) are located in the different biological membranes of the cell and have at least one passage through these cellular compartments. TMEM proteins carry out a wide variety of functions necessary to maintain cell homeostasis TMEM165 participates in glycosylation protein, TMEM88 in the development of cardiomyocytes, TMEM45A in epidermal keratinization, and TMEM74 regulating autophagy. However, for many TMEM proteins, their physiological function remains unknown. The role of these proteins is being recently investigated in cancer since transcriptomic and proteomic studies have revealed that exits differential expression of TMEM proteins in different neoplasms concerning cancer-free tissues. Among the cellular processes in which TMEM proteins have been involved in cancer are the promotion or suppression of cell proliferation, epithelial-mesenchymal transition, invasion, migration, intravasation/extravasation, metastasis, modulation of the immune response, and response to antineoplastic drugs. Inclusive data suggests that the participation of TMEM proteins in these cellular events could be carried out through involvement in different cell signaling pathways. However, the exact mechanisms not clear. This review shows a description of the involvement of TMEM proteins that promote or decrease cell proliferation, migration, and invasion in cancer cells, describes those TMEM proteins for which both a tumor suppressor and a tumor promoter role have been identified, depending on the type of cancer in which the protein is expressed. As well as some TMEM proteins involved in chemoresistance. A better characterization of these proteins is required to improve the understanding of the tumors in which their expression and function are altered; in addition to improving the understanding of the role of these proteins in cancer will show those TMEM proteins be potential candidates as biomarkers of response to chemotherapy or prognostic biomarkers or as potential therapeutic targets in cancer.
RESUMEN
A cysticercosis model of Taenia crassiceps ORF strain in susceptible BALB/c mice revealed a Th2 response after 4 weeks, allowing for the growth of the parasite, whereas resistant C57BL/6 mice developed a sustained Th1 response, limiting parasitic growth. However, little is known about how cysticerci respond to an immunological environment in resistant mice. Here, we show that the Th1 response, during infection in resistant C57BL/6 mice, lasted up to 8 weeks and kept parasitemia low. Proteomics analysis of parasites during this Th1 environment showed an average of 128 expressed proteins; we chose 15 proteins whose differential expression varied between 70 and 100%. A total of 11 proteins were identified that formed a group whose expression increased at 4 weeks and decreased at 8 weeks, and another group with proteins whose expression was high at 2 weeks and decreased at 8 weeks. These identified proteins participate in tissue repair, immunoregulation and parasite establishment. This suggests that T. crassiceps cysticerci in mice resistant under the Th1 environment express proteins that control damage and help to establish a parasite in the host. These proteins could be targets for drugs or vaccine development.
RESUMEN
With the aim of exploring the source of the high variability observed in the production of perezone, in Acourtia cordata wild plants, we analyze the influence of soil parameters and phenotypic characteristics on its perezone content. Perezone is a sesquiterpene quinone responsible for several pharmacological effects and the A. cordata plants are the natural source of this metabolite. The chemistry of perezone has been widely studied, however, no studies exist related to its production under natural conditions, nor to its biosynthesis and the environmental factors that affect the yield of this compound in wild plants. We also used a proteomic approach to detect differentially expressed proteins in wild plant rhizomes and compare the profiles of high vs. low perezone-producing plants. Our results show that in perezone-producing rhizomes, the presence of high concentrations of this compound could result from a positive response to the effects of some edaphic factors, such as total phosphorus (Pt), total nitrogen (Nt), ammonium (NH4), and organic matter (O. M.), but could also be due to a negative response to the soil pH value. Additionally, we identified 616 differentially expressed proteins between high and low perezone producers. According to the functional annotation of this comparison, the upregulated proteins were grouped in valine biosynthesis, breakdown of leucine and isoleucine, and secondary metabolism such as terpenoid biosynthesis. Downregulated proteins were grouped in basal metabolism processes, such as pyruvate and purine metabolism and glycolysis/gluconeogenesis. Our results suggest that soil parameters can impact the content of perezone in wild plants. Furthermore, we used proteomic resources to obtain data on the pathways expressed when A. cordata plants produce high and low concentrations of perezone. These data may be useful to further explore the possible relationship between perezone production and abiotic or biotic factors and the molecular mechanisms related to high and low perezone production.
Asunto(s)
Rizoma , Sesquiterpenos , Proteómica , Sesquiterpenos/química , SueloRESUMEN
Lysine acetylation is a widespread posttranslational modification (PTM) in all kingdoms of live. A large number of proteins involved in most of biological pathways are targets of this PTM. The lysine acetylation is a reversible modification controlled by two main groups of enzymes, lysine acetyltransferases responsible for transferring the acetyl group of acetylCoA to the side chain of lysine residues and lysine deacetylases which effectively remove the acetyl tag. Dysregulation of enzymes that control acetylation and/or target proteins have been associated with a growing number of human pathologies. Lysine acetylation is largely a modification that occurs at low stoichiometry at its target sites. Here we describe a method to identify lysine acetylation sites and estimate their site occupancy at the proteome scale. The method relies on a high-resolution mass spectrometry-based proteomics approach, which includes a specific chemical acetylation reaction on unmodified lysine residues that carry heavy isotopes. The procedures described here have been applied to cell line cultures and to clinically relevant samples stored as both snap-frozen and formalin-fixed paraffin-embedded (FFPE) tissues.