Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Nucleic Acids Res ; 51(16): 8864-8879, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37503845

RESUMEN

Transcription factors, such as nuclear receptors achieve precise transcriptional regulation by means of a tight and reciprocal communication with DNA, where cooperativity gained by receptor dimerization is added to binding site sequence specificity to expand the range of DNA target gene sequences. To unravel the evolutionary steps in the emergence of DNA selection by steroid receptors (SRs) from monomeric to dimeric palindromic binding sites, we carried out crystallographic, biophysical and phylogenetic studies, focusing on the estrogen-related receptors (ERRs, NR3B) that represent closest relatives of SRs. Our results, showing the structure of the ERR DNA-binding domain bound to a palindromic response element (RE), unveil the molecular mechanisms of ERR dimerization which are imprinted in the protein itself with DNA acting as an allosteric driver by allowing the formation of a novel extended asymmetric dimerization region (KR-box). Phylogenetic analyses suggest that this dimerization asymmetry is an ancestral feature necessary for establishing a strong overall dimerization interface, which was progressively modified in other SRs in the course of evolution.


Asunto(s)
ADN , Factores de Transcripción , Factores de Transcripción/metabolismo , Dimerización , Filogenia , ADN/genética , ADN/metabolismo , Sitios de Unión , Receptores de Estrógenos/genética
2.
Nucleic Acids Res ; 50(11): 6038-6051, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35687141

RESUMEN

Nucleobase deamination, such as A-to-I editing, represents an important posttranscriptional modification of RNA. When deamination affects guanosines, a xanthosine (X) containing RNA is generated. However, the biological significance and chemical consequences on RNA are poorly understood. We present a comprehensive study on the preparation and biophysical properties of X-modified RNA. Thermodynamic analyses revealed that base pairing strength is reduced to a level similar to that observed for a G•U replacement. Applying NMR spectroscopy and X-ray crystallography, we demonstrate that X can form distinct wobble geometries with uridine depending on the sequence context. In contrast, X pairing with cytidine occurs either through wobble geometry involving protonated C or in Watson-Crick-like arrangement. This indicates that the different pairing modes are of comparable stability separated by low energetic barriers for switching. Furthermore, we demonstrate that the flexible pairing properties directly affect the recognition of X-modified RNA by reverse transcription enzymes. Primer extension assays and PCR-based sequencing analysis reveal that X is preferentially read as G or A and that the ratio depends on the type of reverse transcriptase. Taken together, our results elucidate important properties of X-modified RNA paving the way for future studies on its biological significance.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN , Xantinas , Emparejamiento Base , Desaminación , Conformación de Ácido Nucleico , ARN/química , ARN/genética , Ribonucleósidos , Xantinas/química
3.
RNA ; 27(11): 1390-1399, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34353925

RESUMEN

In bacteria, trans-translation is the major quality control system for rescuing stalled ribosomes. It is mediated by tmRNA, a hybrid RNA with properties of both a tRNA and a mRNA, and the small protein SmpB. Because trans-translation is absent in eukaryotes but necessary for bacterial fitness or survival, it is a promising target for the development of novel antibiotics. To facilitate screening of chemical libraries, various reliable in vitro and in vivo systems have been created for assessing trans-translational activity. However, the aim of the current work was to permit the safe and easy in vitro evaluation of trans-translation from pathogenic bacteria, which are obviously the ones we should be targeting. Based on green fluorescent protein (GFP) reassembly during active trans-translation, we have created a cell-free assay adapted to the rapid evaluation of trans-translation in ESKAPE bacteria, with 24 different possible combinations. It can be used for easy high-throughput screening of chemical compounds as well as for exploring the mechanism of trans-translation in these pathogens.


Asunto(s)
Bacterias/patogenicidad , Biosíntesis de Proteínas , ARN Bacteriano/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Técnicas In Vitro , ARN Bacteriano/genética , Proteínas de Unión al ARN/genética , Proteínas Ribosómicas/genética , Ribosomas/genética
4.
Nucleic Acids Res ; 49(8): 4281-4293, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33856457

RESUMEN

Deazapurine nucleosides such as 3-deazaadenosine (c3A) are crucial for atomic mutagenesis studies of functional RNAs. They were the key for our current mechanistic understanding of ribosomal peptide bond formation and of phosphodiester cleavage in recently discovered small ribozymes, such as twister and pistol RNAs. Here, we present a comprehensive study on the impact of c3A and the thus far underinvestigated 3-deazaguanosine (c3G) on RNA properties. We found that these nucleosides can decrease thermodynamic stability of base pairing to a significant extent. The effects are much more pronounced for 3-deazapurine nucleosides compared to their constitutional isomers of 7-deazapurine nucleosides (c7G, c7A). We furthermore investigated base pair opening dynamics by solution NMR spectroscopy and revealed significantly enhanced imino proton exchange rates. Additionally, we solved the X-ray structure of a c3A-modified RNA and visualized the hydration pattern of the minor groove. Importantly, the characteristic water molecule that is hydrogen-bonded to the purine N3 atom and always observed in a natural double helix is lacking in the 3-deazapurine-modified counterpart. Both, the findings by NMR and X-ray crystallographic methods hence provide a rationale for the reduced pairing strength. Taken together, our comparative study is a first major step towards a comprehensive understanding of this important class of nucleoside modifications.


Asunto(s)
Estabilidad del ARN , ARN/química , Tubercidina/química , Emparejamiento Base , Cristalografía por Rayos X , Mutagénesis , Purinas/química , ARN/genética , Termodinámica
5.
Nucleic Acids Res ; 49(11): 6529-6548, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34057470

RESUMEN

Post-transcriptional modification of tRNA wobble adenosine into inosine is crucial for decoding multiple mRNA codons by a single tRNA. The eukaryotic wobble adenosine-to-inosine modification is catalysed by the ADAT (ADAT2/ADAT3) complex that modifies up to eight tRNAs, requiring a full tRNA for activity. Yet, ADAT catalytic mechanism and its implication in neurodevelopmental disorders remain poorly understood. Here, we have characterized mouse ADAT and provide the molecular basis for tRNAs deamination by ADAT2 as well as ADAT3 inactivation by loss of catalytic and tRNA-binding determinants. We show that tRNA binding and deamination can vary depending on the cognate tRNA but absolutely rely on the eukaryote-specific ADAT3 N-terminal domain. This domain can rotate with respect to the ADAT catalytic domain to present and position the tRNA anticodon-stem-loop correctly in ADAT2 active site. A founder mutation in the ADAT3 N-terminal domain, which causes intellectual disability, does not affect tRNA binding despite the structural changes it induces but most likely hinders optimal presentation of the tRNA anticodon-stem-loop to ADAT2.


Asunto(s)
Adenosina Desaminasa/química , Adenosina/metabolismo , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Animales , Dominio Catalítico , Línea Celular Tumoral , Movimiento Celular , Cristalografía por Rayos X , Ferredoxinas/química , Inosina/metabolismo , Ratones , Modelos Moleculares , Mutación , Neuronas/fisiología , Dominios Proteicos , ARN de Transferencia/química , ARN de Transferencia/metabolismo
6.
J Am Chem Soc ; 144(23): 10344-10352, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35666572

RESUMEN

Atomic mutagenesis is the key to advance our understanding of RNA recognition and RNA catalysis. To this end, deazanucleosides are utilized to evaluate the participation of specific atoms in these processes. One of the remaining challenges is access to RNA-containing 1-deazaguanosine (c1G). Here, we present the synthesis of this nucleoside and its phosphoramidite, allowing first time access to c1G-modified RNA. Thermodynamic analyses revealed the base pairing parameters for c1G-modified RNA. Furthermore, by NMR spectroscopy, a c1G-triggered switch of Watson-Crick into Hoogsteen pairing in HIV-2 TAR RNA was identified. Additionally, using X-ray structure analysis, a guanine-phosphate backbone interaction affecting RNA fold stability was characterized, and finally, the critical impact of an active-site guanine in twister ribozyme on the phosphodiester cleavage was revealed. Taken together, our study lays the synthetic basis for c1G-modified RNA and demonstrates the power of the completed deazanucleoside toolbox for RNA atomic mutagenesis needed to achieve in-depth understanding of RNA recognition and catalysis.


Asunto(s)
ARN Catalítico , ARN , Emparejamiento Base , Guanina , Mutagénesis , Conformación de Ácido Nucleico , ARN/química , ARN Catalítico/química
7.
RNA ; 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33268500

RESUMEN

Proper evaluation of the ionic structure of biomolecular systems through X ray and cryo-EM techniques remains challenging but is essential for advancing our understanding of the underlying structure/activity/solvent relationships. However, numerous studies overestimate the number of Mg2+ in deposited structures due to assignment errors finding their origin in improper consideration of stereochemical rules. Herein, to tackle such issues, we re-evaluate the PDBid 6QNR and 6SJ6 models of the ribosome ionic structure. We establish that stereochemical principles need to be carefully pondered when evaluating ion binding features, even when K+ anomalous signals are available as it is the case for the 6QNR PDB entry. For ribosomes, assignment errors can result in misleading conceptions of their solvent structure. For instance, present stereochemical analysis result in a significant decrease of the number of assigned Mg2+ in 6QNR, suggesting that K+ and not Mg2+ is the prevalent ion in the ribosome 1st solvation shell. We stress that the use of proper stereochemical guidelines in combination or not with other identification techniques, such as those pertaining to the detection of transition metals, of some anions and of K+ anomalous signals, is critical for deflating the current Mg2+ bubble witnessed in many ribosome and other RNA structures. We also stress that for the identification of lighter ions such as Mg2+, Na+, …, for which no anomalous signals can be detected, stereochemistry coupled with high resolution structures (<2.4 Å) remain the best currently available option.

8.
RNA ; 26(9): 1184-1197, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32430362

RESUMEN

The 7SK small nuclear RNA (7SKsnRNA) plays a key role in the regulation of RNA polymerase II by sequestrating and inhibiting the positive transcription elongation factor b (P-TEFb) in the 7SK ribonucleoprotein complex (7SKsnRNP), a process mediated by interaction with the protein HEXIM. P-TEFb is also an essential cellular factor recruited by the viral protein Tat to ensure the replication of the viral RNA in the infection cycle of the human immunodeficiency virus (HIV-1). Tat promotes the release of P-TEFb from the 7SKsnRNP and subsequent activation of transcription, by displacing HEXIM from the 5'-hairpin of the 7SKsnRNA. This hairpin (HP1), comprising the signature sequence of the 7SKsnRNA, has been the subject of three independent structural studies aimed at identifying the structural features that could drive the recognition by the two proteins, both depending on arginine-rich motifs (ARM). Interestingly, four distinct structures were determined. In an attempt to provide a comprehensive view of the structure-function relationship of this versatile RNA, we present here a structural analysis of the models, highlighting how HP1 is able to adopt distinct conformations with significant impact on the compactness of the molecule. Since these models are solved under different conditions by nuclear magnetic resonance (NMR) and crystallography, the impact of the buffer composition on the conformational variation was investigated by complementary biophysical approaches. Finally, using isothermal titration calorimetry, we determined the thermodynamic signatures of the Tat-ARM and HEXIM-ARM peptide interactions with the RNA, showing that they are associated with distinct binding mechanisms.


Asunto(s)
ARN Interferente Pequeño/genética , ARN Nuclear Pequeño/genética , Sitios de Unión/genética , VIH-1/genética , Espectroscopía de Resonancia Magnética/métodos , Conformación de Ácido Nucleico , Factor B de Elongación Transcripcional Positiva/genética , Unión Proteica/genética , ARN Polimerasa II/genética , ARN Viral/genética , Proteínas de Unión al ARN/genética , Relación Estructura-Actividad
9.
Nucleic Acids Res ; 48(7): 3734-3746, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32095818

RESUMEN

Reverse transcription (RT) of RNA templates containing RNA modifications leads to synthesis of cDNA containing information on the modification in the form of misincorporation, arrest, or nucleotide skipping events. A compilation of such events from multiple cDNAs represents an RT-signature that is typical for a given modification, but, as we show here, depends also on the reverse transcriptase enzyme. A comparison of 13 different enzymes revealed a range of RT-signatures, with individual enzymes exhibiting average arrest rates between 20 and 75%, as well as average misincorporation rates between 30 and 75% in the read-through cDNA. Using RT-signatures from individual enzymes to train a random forest model as a machine learning regimen for prediction of modifications, we found strongly variegated success rates for the prediction of methylated purines, as exemplified with N1-methyladenosine (m1A). Among the 13 enzymes, a correlation was found between read length, misincorporation, and prediction success. Inversely, low average read length was correlated to high arrest rate and lower prediction success. The three most successful polymerases were then applied to the characterization of RT-signatures of other methylated purines. Guanosines featuring methyl groups on the Watson-Crick face were identified with high confidence, but discrimination between m1G and m22G was only partially successful. In summary, the results suggest that, given sufficient coverage and a set of specifically optimized reaction conditions for reverse transcription, all RNA modifications that impede Watson-Crick bonds can be distinguished by their RT-signature.


Asunto(s)
ADN Polimerasa Dirigida por ARN/metabolismo , Transcripción Reversa , Adenosina/análogos & derivados , Guanosina/química , Guanosina/metabolismo , Aprendizaje Automático , Metilación , Oligorribonucleótidos/química , Transcriptoma
10.
Eur Biophys J ; 50(3-4): 429-451, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33864101

RESUMEN

A small-scale ITC benchmarking study was performed involving 9 biophysics laboratories/facilities, to evaluate inter-laboratory and intra-laboratory basal levels of uncertainty. Our prime goal was to assess a number of important factors that can influence both the data gathered by this technique and the thermodynamic parameter values derived therefrom. In its first part, the study involved 5 laboratories and 13 different instruments, working with centrally prepared samples and the same experimental protocol. The second part involved 4 additional laboratories and 6 more instruments, where the users prepared their own samples according to provided instructions and did the experiments following the same protocol as in the first part. The study design comprised: (1) selecting a minimal set of laboratories; (2) providing very stable samples; (3) providing samples not requiring preparation or manipulation; and (4) providing a well-defined and detailed experimental protocol. Thus, we were able to assess: (i) the variability due to instrument and data analysis performed by each user on centrally prepared samples; (ii) the comparability of data retrieved when using 4 different software packages to analyze the same data, besides the data analysis carried out by the different users on their own experimental results; and (iii) the variability due to local sample preparation (second part of the study). Individual values, as well as averages and standard deviations for the binding parameters for EDTA-cation interaction, were used as metrics for comparing the equilibrium association constant (logK), enthalpy of interaction (ΔH), and the so-called "stoichiometry" (n), a concentration-correction factor.


Asunto(s)
Benchmarking , Laboratorios , Calorimetría , Ácido Edético , Unión Proteica , Termodinámica
11.
Angew Chem Int Ed Engl ; 59(17): 6881-6886, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-31999864

RESUMEN

Temporal information about cellular RNA populations is essential to understand the functional roles of RNA. We have developed the hydrazine/NH4 Cl/OsO4 -based conversion of 6-thioguanosine (6sG) into A', where A' constitutes a 6-hydrazino purine derivative. A' retains the Watson-Crick base-pair mode and is efficiently decoded as adenosine in primer extension assays and in RNA sequencing. Because 6sG is applicable to metabolic labeling of freshly synthesized RNA and because the conversion chemistry is fully compatible with the conversion of the frequently used metabolic label 4-thiouridine (4sU) into C, the combination of both modified nucleosides in dual-labeling setups enables high accuracy measurements of RNA decay. This approach, termed TUC-seq DUAL, uses the two modified nucleosides in subsequent pulses and their simultaneous detection, enabling mRNA-lifetime evaluation with unprecedented precision.


Asunto(s)
Guanosina/análogos & derivados , Análisis de Secuencia de ARN/métodos , Tionucleósidos/química , Secuencia de Bases , Guanosina/química , Hidrazinas/química , Estabilidad del ARN , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Coloración y Etiquetado
12.
RNA ; 23(12): 1788-1795, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28939697

RESUMEN

Fluorogenic RNA aptamers are short nucleic acids able to specifically interact with small molecules and strongly enhance their fluorescence upon complex formation. Among the different systems recently introduced, Spinach, an aptamer forming a fluorescent complex with the 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI), is one of the most promising. Using random mutagenesis and ultrahigh-throughput screening, we recently developed iSpinach, an improved version of the aptamer, endowed with an increased folding efficiency and thermal stability. iSpinach is a shorter version of Spinach, comprising five mutations for which the exact role has not yet been deciphered. In this work, we cocrystallized a reengineered version of iSpinach in complex with the DFHBI and solved the X-ray structure of the complex at 2 Å resolution. Only a few mutations were required to optimize iSpinach production and crystallization, underlying the good folding capacity of the molecule. The measured fluorescence half-lives in the crystal were 60% higher than in solution. Comparisons with structures previously reported for Spinach sheds some light on the possible function of the different beneficial mutations carried by iSpinach.


Asunto(s)
Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Compuestos de Bencilo/metabolismo , Colorantes Fluorescentes/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Imidazolinas/metabolismo , Secuencia de Bases , Compuestos de Bencilo/química , Biocatálisis , Colorantes Fluorescentes/química , Humanos , Imidazolinas/química , Conformación de Ácido Nucleico
13.
Anal Biochem ; 577: 117-134, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30849378

RESUMEN

The comprehension of molecular recognition phenomena demands the understanding of the energetic and kinetic processes involved. General equations valid for the thermodynamic analysis of any observable that is assessed as a function of the concentration of the involved compounds are described, together with their implementation in the AFFINImeter software. Here, a maximum of three different molecular species that can interact with each other to form an enormous variety of supramolecular complexes are considered. The corrections currently employed to take into account the effects of dilution, volume displacement, concentration errors and those due to external factors, especially in the case of ITC measurements, are included. The methods used to fit the model parameters to the experimental data, and to generate the uncertainties are described in detail. A simulation tool and the so called kinITC analysis to get kinetic information from calorimetric experiments are also presented. An example of how to take advantage of the AFFINImeter software for the global multi-temperature analysis of a system exhibiting cooperative 1:2 interactions is presented and the results are compared with data previously published. Some useful recommendations for the analysis of experiments aimed at studying molecular interactions are provided.


Asunto(s)
Calorimetría/métodos , Proteínas/química , Programas Informáticos , Fenómenos Biofísicos , Cinética , Unión Proteica , Temperatura , Termodinámica
14.
Proc Natl Acad Sci U S A ; 112(20): E2561-8, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25941362

RESUMEN

Elongation factor-catalyzed GTP hydrolysis is a key reaction during the ribosomal elongation cycle. Recent crystal structures of G proteins, such as elongation factor G (EF-G) bound to the ribosome, as well as many biochemical studies, provide evidence that the direct interaction of translational GTPases (trGTPases) with the sarcin-ricin loop (SRL) of ribosomal RNA (rRNA) is pivotal for hydrolysis. However, the precise mechanism remains elusive and is intensively debated. Based on the close proximity of the phosphate oxygen of A2662 of the SRL to the supposedly catalytic histidine of EF-G (His87), we probed this interaction by an atomic mutagenesis approach. We individually replaced either of the two nonbridging phosphate oxygens at A2662 with a methyl group by the introduction of a methylphosphonate instead of the natural phosphate in fully functional, reconstituted bacterial ribosomes. Our major finding was that only one of the two resulting diastereomers, the SP methylphosphonate, was compatible with efficient GTPase activation on EF-G. The same trend was observed for a second trGTPase, namely EF4 (LepA). In addition, we provide evidence that the negative charge of the A2662 phosphate group must be retained for uncompromised activity in GTP hydrolysis. In summary, our data strongly corroborate that the nonbridging proSP phosphate oxygen at the A2662 of the SRL is critically involved in the activation of GTP hydrolysis. A mechanistic scenario is supported in which positioning of the catalytically active, protonated His87 through electrostatic interactions with the A2662 phosphate group and H-bond networks are key features of ribosome-triggered activation of trGTPases.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Oxígeno/metabolismo , Fosfatos/metabolismo , Biosíntesis de Proteínas/fisiología , ARN Ribosómico/metabolismo , Catálisis , Histidina/metabolismo , Hidrólisis , Modelos Biológicos , Mutagénesis , Compuestos Organofosforados/metabolismo , Factor G de Elongación Peptídica/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , Fosfatos/análisis
15.
J Org Chem ; 82(15): 7939-7945, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28707898

RESUMEN

5-Hydroxymethylcytosine (hm5C) is an RNA modification that has attracted significant interest because of the finding that RNA hydroxymethylation can favor mRNA translation. For insight into the mechanistic details of hm5C function to be obtained, the availability of RNAs containing this modification at defined positions that can be used for in vitro studies is highly desirable. In this work, we present an eight-step route to 5-hydroxymethylcytidine (hm5rC) phosphoramidite for solid-phase synthesis of modified RNA oligonucleotides. Furthermore, we examined the effects of hm5rC on RNA duplex stability and its impact on structure formation using the sarcin-ricin loop (SRL) motif. Thermal denaturation experiments revealed that hm5rC increases RNA duplex stability. By contrast, when cytosine within an UNCG tetraloop motif was replaced by hm5rC, the thermodynamic stability of the corresponding hairpin fold was attenuated. Importantly, incorporation of hm5rC into the SRL motif resulted in an RNA crystal structure at 0.85 Å resolution. Besides changes in the hydration pattern at the site of modification, a slight opening of the hm5rC-G pair compared to the unmodified C-G in the native structure was revealed.


Asunto(s)
5-Metilcitosina/análogos & derivados , Oligonucleótidos/química , ARN/química , Termodinámica , 5-Metilcitosina/química , Conformación de Carbohidratos , Cristalografía por Rayos X , Modelos Moleculares
16.
Anal Chem ; 88(23): 11963-11971, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27934108

RESUMEN

Nucleic acid aptamers are involved in a broad field of applications ranging from therapeutics to analytics. Deciphering the binding mechanisms between aptamers and small ligands is therefore crucial to improve and optimize existing applications and to develop new ones. Particularly interesting is the enantiospecific binding mechanism involving small molecules with nonprestructured aptamers. One archetypal example is the chiral binding between l-tyrosinamide and its 49-mer aptamer for which neither structural nor mechanistic information is available. In the present work, we have taken advantage of a multiple analytical characterization strategy (i.e., using electroanalytical techniques such as kinetic rotating droplet electrochemistry, fluorescence polarization, isothermal titration calorimetry, and quartz crystal microbalance) for interpreting the nature of binding process. Screening of the binding thermodynamics and kinetics with a wide range of aptamer sequences revealed the lack of symmetry between the two ends of the 23-mer minimal binding sequence, showing an unprecedented influence of the 5' aptamer modification on the bimolecular binding rate constant kon and no significant effect on the dissociation rate constant koff. The results we have obtained lead us to conclude that the enantiospecific binding reaction occurs through an induced-fit mechanism, wherein the ligand promotes a primary nucleation binding step near the 5'-end of the aptamer followed by a directional folding of the aptamer around its target from 5'-end to 3'-end. Functionalization of the 5'-end position by a chemical label, a polydA tail, a protein, or a surface influences the kinetic/thermodynamic constants up to 2 orders of magnitude in the extreme case of a surface immobilized aptamer, while significantly weaker effect is observed for a 3'-end modification. The reason is that steric hindrance must be overcome to nucleate the binding complex in the presence of a modification near the nucleation site.


Asunto(s)
Aptámeros de Nucleótidos/química , Calorimetría , Técnicas Electroquímicas , Polarización de Fluorescencia , Tecnicas de Microbalanza del Cristal de Cuarzo , Bibliotecas de Moléculas Pequeñas/química , Secuencia de Bases , Sitios de Unión , Cinética , Ligandos , Termodinámica
17.
RNA Biol ; 13(4): 373-90, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26932506

RESUMEN

Riboswitches are non-coding elements upstream or downstream of mRNAs that, upon binding of a specific ligand, regulate transcription and/or translation initiation in bacteria, or alternative splicing in plants and fungi. We have studied thiamine pyrophosphate (TPP) riboswitches regulating translation of thiM operon and transcription and translation of thiC operon in E. coli, and that of THIC in the plant A. thaliana. For all, we ascertained an induced-fit mechanism involving initial binding of the TPP followed by a conformational change leading to a higher-affinity complex. The experimental values obtained for all kinetic and thermodynamic parameters of TPP binding imply that the regulation by A. thaliana riboswitch is governed by mass-action law, whereas it is of kinetic nature for the two bacterial riboswitches. Kinetic regulation requires that the RNA polymerase pauses after synthesis of each riboswitch aptamer to leave time for TPP binding, but only when its concentration is sufficient. A quantitative model of regulation highlighted how the pausing time has to be linked to the kinetic rates of initial TPP binding to obtain an ON/OFF switch in the correct concentration range of TPP. We verified the existence of these pauses and the model prediction on their duration. Our analysis also led to quantitative estimates of the respective efficiency of kinetic and thermodynamic regulations, which shows that kinetically regulated riboswitches react more sharply to concentration variation of their ligand than thermodynamically regulated riboswitches. This rationalizes the interest of kinetic regulation and confirms empirical observations that were obtained by numerical simulations.


Asunto(s)
Escherichia coli/genética , Riboswitch , Tiamina Pirofosfato/genética , Radical Hidroxilo/metabolismo , Cinética , Termodinámica
18.
Nucleic Acids Res ; 42(11): 7281-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24813449

RESUMEN

The HIV-1 dimerization initiation sequence (DIS) is a conserved palindrome in the apical loop of a conserved hairpin motif in the 5'-untranslated region of its RNA genome. DIS hairpin plays an important role in genome dimerization by forming a 'kissing complex' between two complementary hairpins. Understanding the kinetics of this interaction is key to exploiting DIS as a possible human immunodeficiency virus (HIV) drug target. Here, we present a single-molecule Förster resonance energy transfer (smFRET) study of the dimerization reaction kinetics. Our data show the real-time formation and dissociation dynamics of individual kissing complexes, as well as the formation of the mature extended duplex complex that is ultimately required for virion packaging. Interestingly, the single-molecule trajectories reveal the presence of a previously unobserved bent intermediate required for extended duplex formation. The universally conserved A272 is essential for the formation of this intermediate, which is stabilized by Mg(2+), but not by K(+) cations. We propose a 3D model of a possible bent intermediate and a minimal dimerization pathway consisting of three steps with two obligatory intermediates (kissing complex and bent intermediate) and driven by Mg(2+) ions.


Asunto(s)
VIH-1/genética , ARN Viral/química , Dimerización , Transferencia Resonante de Energía de Fluorescencia , Magnesio/química , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico
19.
Biochemistry ; 54(6): 1327-37, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25590897

RESUMEN

PDZ domains are highly abundant protein-protein interaction modules commonly found in multidomain scaffold proteins. The PDZ1 domain of MAGI-1, a protein present at cellular tight junctions that contains six PDZ domains, is targeted by the E6 oncoprotein of the high-risk human papilloma virus. Thermodynamic and dynamic studies using complementary isothermal titration calorimetry and nuclear magnetic resonance (NMR) (15)N heteronuclear relaxation measurements were conducted at different temperatures to decipher the molecular mechanism of this interaction. Binding of E6 peptides to the MAGI-1 PDZ1 domain is accompanied by an unusually large and negative change in heat capacity (ΔC(p)) that is attributed to a disorder-to-order transition of the C-terminal extension of the PDZ1 domain upon E6 binding. Analysis of temperature-dependent thermodynamic parameters and (15)N NMR relaxation data of a PDZ1 mutant in which this disorder-to-order transition was abolished allows the unusual thermodynamic signature of E6 binding to be correlated to local folding of the PDZ1 C-terminal extension. Comparison of the exchange contributions observed for wild-type and mutant proteins explains how variation in the solvent-exposed area may compensate for the loss of conformational entropy and further designates a distinct set of a few residues that mediate this local folding phenomena.


Asunto(s)
Dominios PDZ , Péptidos/química , Secuencia de Aminoácidos , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Conformación Proteica , Termodinámica , Uniones Estrechas/química
20.
Nucleic Acids Res ; 41(4): 2698-708, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23275545

RESUMEN

In the mammalian mitochondrial translation apparatus, the proteins and their partner RNAs are coded by two genomes. The proteins are nuclear-encoded and resemble their homologs, whereas the RNAs coming from the rapidly evolving mitochondrial genome have lost critical structural information. This raises the question of molecular adaptation of these proteins to their peculiar partner RNAs. The crystal structure of the homodimeric bacterial-type human mitochondrial aspartyl-tRNA synthetase (DRS) confirmed a 3D architecture close to that of Escherichia coli DRS. However, the mitochondrial enzyme distinguishes by an enlarged catalytic groove, a more electropositive surface potential and an alternate interaction network at the subunits interface. It also presented a thermal stability reduced by as much as 12°C. Isothermal titration calorimetry analyses revealed that the affinity of the mitochondrial enzyme for cognate and non-cognate tRNAs is one order of magnitude higher, but with different enthalpy and entropy contributions. They further indicated that both enzymes bind an adenylate analog by a cooperative allosteric mechanism with different thermodynamic contributions. The larger flexibility of the mitochondrial synthetase with respect to the bacterial enzyme, in combination with a preserved architecture, may represent an evolutionary process, allowing nuclear-encoded proteins to cooperate with degenerated organelle RNAs.


Asunto(s)
Aspartato-ARNt Ligasa/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Mitocondrias/enzimología , Termodinámica , Aspartato-ARNt Ligasa/metabolismo , Estabilidad de Enzimas , Proteínas de Escherichia coli/metabolismo , Humanos , Modelos Moleculares , ARN de Transferencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA